1
|
Xi M, Wang Y, Yang J, Bi X, Zhong S, Duan T, He Y, Tu T, Qian X. Spatial distribution and community composition of endophytic fungi within Mussaenda pubescens stems. Fungal Biol 2024; 128:1815-1826. [PMID: 38876534 DOI: 10.1016/j.funbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.
Collapse
Affiliation(s)
- Meijuan Xi
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Juanjuan Yang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohui Bi
- Shangqiu Institute of Quality Inspection and Technical Research, Shangqiu, China
| | - Shengen Zhong
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Duan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yimin He
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tieyao Tu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Batzer JC, Shirazi A, Lawson M, Mathew FM, Sureshbabu BM, Smith DL, Mueller DS. Impact of Foliar Fungicide Application on the Culturable Fungal Endophyte Community of Soybean Seed in the Midwest United States. PLANT DISEASE 2024; 108:647-657. [PMID: 37729650 DOI: 10.1094/pdis-06-23-1122-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The purpose of our study was to determine whether the application of quinone outside inhibitor (QoI) and pyrazole-carboxamide fungicides as a tank mix would impact the endophyte community of soybean seed. Field trials during 2018 in Iowa, South Dakota, and Wisconsin, U.S.A., investigated the impact of a single combination fungicide spray at early pod set in soybeans. The composition of culturable endophytic fungi in mature soybean seed was assessed on three cultivars per state, with maturity groups (MGs) ranging from 1.1 to 4.7. An unusually wet 2018 season delayed harvest, which led to a high level of fungal growth in grain. The survey included 1,080 asymptomatic seeds that were disinfested and individually placed on 5-cm-diameter Petri plates of acidified water agar. The survey yielded 721 fungal isolates belonging to 24 putative species in seven genera; taxa were grouped into genera based on a combination of morphological and molecular evidence. The dominant genera encountered in the survey were Alternaria, Diaporthe, and Fusarium. The study showed that the fungicide treatment reduced the incidence of Fusarium in Wisconsin seed, increased the incidence of Diaporthe in seed from all states, and had no impact on the incidence of Alternaria. This is one of the first attempts to characterize the diversity of seed endophytes in soybean and the first to characterize the impacts of fungicide spraying on these endophyte communities across three states. Our study provides evidence that the impact of a fungicide spray on soybean seed endophyte communities may be influenced by site, weather, and cultivar maturity group.
Collapse
Affiliation(s)
- Jean Carlson Batzer
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Amin Shirazi
- Department of Statistics, Iowa State University, Ames, IA
| | - Maia Lawson
- Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| | - Febina M Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | | | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI
| | - Daren S Mueller
- Integrated Pest Management Program and Plant Pathology and Microbiology Department, Iowa State University, Ames, IA
| |
Collapse
|
3
|
Zhong L, Niu B, Xiang D, Wu Q, Peng L, Zou L, Zhao J. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol 2024; 15:1353763. [PMID: 38444811 PMCID: PMC10912284 DOI: 10.3389/fmicb.2024.1353763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Buckwheat is a famous edible and medicinal coarse cereal which contain abundant of bioactive flavonoids, such as rutin. In this study, the composition and diversity of endophytic fungi in eight different buckwheat seeds were analyzed by high-throughput sequencing of ITS rDNA. Results showed that, the fungal sequences reads were allocated to 272 OTUs, of them, 49 OTUs were shared in eight buckwheat seeds. These endophytic fungi could be classified into 6 phyla, 19 classes, 41 orders, 79 families, 119 genera, and 191 species. At genus level, Alternaria sp. was the domain fungal endophyte. Besides, fungal endophytes belonged to the genera of Epicocum, Cladosporium, Botrytis, Filbobasidium, Stemphylium, and Vishniacozyma were highly abundant in buckwheat seeds. The total flavonoids and rutin contents in tartary buckwheat cultivars (CQ, XQ, CH, K2) were much higher than those in common buckwheat cultivars (HT, T2, T4, T8). For tartary buckwheat cultivars, the total flavonoids and rutin contents were ranging from 2.6% to 3.3% and 0.9% to 1.3%, respectively. Accordingly, the tartary buckwheat samples displayed stronger antioxidant activity than the common buckwheat. Spearman correlation heat map analysis was successfully found that certain fungal species from the genera of Alternaria, Botryosphaeria, Colletorichum and Diymella exhibited significant positive correlation with flavonoids contents. Results of this study preliminary revealed the fungi-plant interaction relationship at secondary metabolite level, and could provide novel strategy for increasing the flavonoids accumulation of buckwheat seeds, as well as improving their quality.
Collapse
Affiliation(s)
- Lingyun Zhong
- College of Preclinical Medicine, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Bei Niu
- College of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
4
|
Mravlje J, Kobal T, Regvar M, Starič P, Zaplotnik R, Mozetič M, Vogel-Mikuš K. The Sensitivity of Fungi Colonising Buckwheat Grains to Cold Plasma Is Species Specific. J Fungi (Basel) 2023; 9:609. [PMID: 37367545 DOI: 10.3390/jof9060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.
Collapse
Affiliation(s)
- Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Tanja Kobal
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Marjana Regvar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Pia Starič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Rok Zaplotnik
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Yongliang B, Meiguo X, Roumin L, Weijun H, Shuyan H, Rong Z, Yiping G. Metabolomics and water migration analysis provides valuable insights into nutrient generation in Tartary buckwheat ( Fagopyrum tataricum) seed germination. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Bai Yongliang
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Xin Meiguo
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
- Key laboratory of Guangdong Food Intelligent Manufactory, Foshan University, Foshan, People’s Republic of China
| | - Lin Roumin
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Weijun
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - He Shuyan
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Zeng Rong
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| | - Guo Yiping
- College of Food Science and Technology, Foshan University, Foshan, People’s Republic of China
| |
Collapse
|
6
|
Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. PLANTS 2022; 11:plants11101366. [PMID: 35631791 PMCID: PMC9146572 DOI: 10.3390/plants11101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60–75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.
Collapse
|
7
|
Supercritical CO 2 Plant Extracts Show Antifungal Activities against Crop-Borne Fungi. Molecules 2022; 27:molecules27031132. [PMID: 35164398 PMCID: PMC8838041 DOI: 10.3390/molecules27031132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal infections of cultivated food crops result in extensive losses of crops at the global level, while resistance to antifungal agents continues to grow. Supercritical fluid extraction using CO2 (SFE-CO2) has gained attention as an environmentally well-accepted extraction method, as CO2 is a non-toxic, inert and available solvent, and the extracts obtained are, chemically, of greater or different complexities compared to those of conventional extracts. The SFE-CO2 extracts of Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Humulus lupulus, Taraxacum officinale, Juniperus communis, Hypericum perforatum, Nepeta cataria, Crataegus sp. and Sambucus nigra were studied in terms of their compositions and antifungal activities against the wheat- and buckwheat-borne fungi Alternaria alternata, Epicoccum nigrum, Botrytis cinerea, Fusarium oxysporum and Fusarium poae. The C. recutita and H. arenarium extracts were the most efficacious, and these inhibited the growth of most of the fungi by 80% to 100%. Among the fungal species, B. cinerea was the most susceptible to the treatments with the SFE-CO2 extracts, while Fusarium spp. were the least. This study shows that some of these SFE-CO2 extracts have promising potential for use as antifungal agents for selected crop-borne fungi.
Collapse
|
8
|
Kawanishi M, Suenaga K, Hirano T. [Single-laboratory Validation of an Analytical Method for Detarmination of Fusarium toxins in Buckwheat and Job's Tears]. SHOKUHIN EISEIGAKU ZASSHI. JOURNAL OF THE FOOD HYGIENIC SOCIETY OF JAPAN 2022; 63:117-121. [PMID: 35858796 DOI: 10.3358/shokueishi.63.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium species infect the major cereals consumed as food and feed, contaminating them with various toxic secondary metabolites known as toxins. Among these toxins, which include trichothecenes, zearalenone (ZEA), and fumonisins, the type-B trichothecene deoxynivalenol (DON) is generally considered as the most important. The present study evaluates an analytical method for the detection and quantification of multiple Fusarium toxins, namely, DON, acetyl forms of DON (3-Ac-DON and 15-Ac-DON), a glycoside form of DON (DON-3G), and other Fusarium toxins (nivalenol, an acetyl form of NIV (fusarenonX), T-2 and HT-2 toxins, diacetoxyscirpenol, and ZEA) in Job's tears and buckwheat.
Collapse
Affiliation(s)
- Miho Kawanishi
- Food and Agricultural Materials Inspection Center, Headquarters: Saitama Shintoshin National Government Building Kensato Bldg
| | - Kazuya Suenaga
- Food and Agricultural Materials Inspection Center, Agricultural Chemicals Inspection Station
| | - Tomohiro Hirano
- Food and Agricultural Materials Inspection Center, Headquarters: Saitama Shintoshin National Government Building Kensato Bldg
| |
Collapse
|
9
|
Mravlje J, Regvar M, Starič P, Mozetič M, Vogel-Mikuš K. Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. PLANTS (BASEL, SWITZERLAND) 2021; 10:851. [PMID: 33922511 PMCID: PMC8145130 DOI: 10.3390/plants10050851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023]
Abstract
Crop seeds are frequently colonised by fungi from the field or storage places. Some fungi can cause plant diseases or produce mycotoxins, compromising the use of seeds as seeding material, food or feed. We have investigated the effects of cold plasma (CP) on seed germination and diversity of seed-borne fungi in common and Tartary buckwheat. The seeds were treated with CP for 15, 30, 45, 60, 90, and 120 s in a low-pressure radiofrequency system using oxygen as the feed gas. The fungi from the seed surface and fungal endophytes were isolated using potato dextrose agar plates. After identification by molecular methods, the frequency and diversity of fungal strains were compared between CP treated and chemically surface-sterilised (30% of H2O2) seeds. CP treatments above 60 s negatively affected the germination of both buckwheat species. A significant reduction in fungal frequency and diversity was observed after 90 s and 120 s in common and Tartary buckwheat, respectively. The filamentous fungi of genera Alternaria and Epicoccum proved to be the most resistant to CP. The results of our study indicate that CP treatment used in our study may be applicable in postharvest and food production, but not for further seed sowing.
Collapse
Affiliation(s)
- Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
| | - Marjana Regvar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
| | - Pia Starič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| | - Miran Mozetič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.R.); (K.V.-M.)
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (P.S.); (M.M.)
| |
Collapse
|
10
|
Hirsch Ramos A, Silva Timm N, Dietrich Ferreira C, Antunes AC, Hoffmann JF, Oliveira Rios A, Oliveira M. Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adriano Hirsch Ramos
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Newiton Silva Timm
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
- Department of Agricultural Engineering Rural Sciences Center Federal University of Santa Maria Santa Maria Brazil
| | | | - Ana Clara Antunes
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | - Alessandro Oliveira Rios
- Department of Food Science Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Maurício Oliveira
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
11
|
Sazhina S, Plotnikov A, Sozinov A, Porsev I. Effect of organic fertilizers on buckwheat yield. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202700093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper discusses the effect of pre-sowing treatment of buckwheat with organic fertilizers on its structural indicators, yield and susceptibility to root rot. It was found that fertilizing has a positive effect on growth, development and yield of buckwheat in comparison with the control. Potassium humate was revealed to be particularly effective and showed the yield range from 3.2 t/ha in Chishminskaya and Barynya varieties and to 4.0 t/ha in Devyatka variety.
Collapse
|
12
|
Wei F, Liu X, Liao X, Shi L, Zhang S, Lu J, Zhou L, Kong W. Simultaneous determination of 19 mycotoxins in lotus seed using a multimycotoxin UFLC-MS/MS method. J Pharm Pharmacol 2019; 71:1172-1183. [DOI: 10.1111/jphp.13101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/07/2019] [Indexed: 01/26/2023]
Abstract
Abstract
Objectives
In relevance to the internal components and improper environmental conditions, lotus seeds are susceptible to fungal contamination and mycotoxins residue, leading to harmful impacts on the quality and safety, as well as their pharmaceutical efficacy and clinical use. It is necessary and urgent to assess various mycotoxins residue in lotus seeds. This study aimed to develop a sensitive method for accurate assessment of multimycotoxin residues in lotus seeds.
Methods
A simple and reliable modified ultrasonication-assisted extraction, QuEChERS purification based ultrafast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) method was successfully developed for ultrasensitive determination of 19 multiclass mycotoxins in starch-rich lotus seeds. Four extraction modes and three clean-up sorbents for improving the recoveries of mycotoxins were optimized. Limits of detection (LODs) and quantification, linearity, precision, accuracy, and matrix effect were studied for method validation. For simultaneous qualitation and quantification, the 19 chemically diversified mycotoxins were well separated on a CAPCELL CORE C18 column (100 mm × 2.1 mm, 2.7 μm) and detected in positive/negative electrospray ionization mode within 7 min.
Key findings
The validated method exhibited satisfactory linearity (r > 0.995), ultragood selectivity (LODs of 0.1–15.0 μg/kg), excellent precision (RSDs <13.0%) and convincing accuracy (recoveries between 79.4% and 131.6% with RSDs <14.4%). Matrix effect, between 54.5% and 113.6%, appeared especially for aflatoxins B1 and B2, deoxynivalenol and T-2 toxins. Matrix-matched curve-based quantification showed that 26 (57.8%) out of 45 lotus seed samples were contaminated with one or more mycotoxins, and ochratoxin A, aflatoxin B2, aflatoxin B1 and citrinin were the most prevalent mycotoxins.
Conclusions
This study reports for the first time the incidence of a wide range of 19 mycotoxins in lotus seeds and the proposed method will get broad application for more trace components in other complex matrices.
Collapse
Affiliation(s)
- Fang Wei
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaofei Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Xing H, Ma J, Xu B, Zhang S, Wang J, Cao L, Yang X. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. Microbiologyopen 2018; 7:e00609. [PMID: 29573223 PMCID: PMC6291794 DOI: 10.1002/mbo3.609] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Fungi are an integral component of the plant microbiome. However, the composition and variation in the fungal communities (mycobiota) associated with seeds are poorly understood. In this study, we investigated the mycobiota of 11 maize seed samples with storage times ranging from 6 months to 12 years. Mycobiota were characterized by a culture-based approach, and fungal species were identified through rDNA-ITS sequence analyses. From a total of 169 pure fungal isolates obtained from both the seed surface and internal tissues, we identified 16 distinct species (belonging to 10 genera) associated with maize seeds, all but one of which were ascomycetes. Among these species, seven were exclusively isolated from internal tissues, two species were isolated only from the seed surface, and another six species were isolated from both the surface and internal tissues. Aspergillus niger was consistently found under all storage conditions and dominated fungal communities with a relative abundance of 36%-100%. Species of Fusarium (9%-40%) and Penicillium (9%-20%) were also frequently isolated, but other species appeared sporadically and were isolated from fewer than three seed stocks. According to our results, while the overall incidence of fungal infection generally declined with storage time, there was no consistent association between seed storage time and fungal species richness or relative abundance; furthermore, the composition of the mycobiota associated with maize seeds was highly variable among the samples. The detection of the four major mycotoxigenic fungal genera, specifically Aspergillus, Fusarium, Penicillium, and Alternaria, was alarming, and the isolation of a potential controlling agent as well as information about their temporal occurrence will contribute to the management of mycotoxins in the future.
Collapse
Affiliation(s)
- Hui‐Qin Xing
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Jian‐Cang Ma
- Zhangye Maize Stock Production BaseZhangyeGansuChina
| | - Bing‐Liang Xu
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Shu‐Wu Zhang
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Jin Wang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Li Cao
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Xue‐Mei Yang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| |
Collapse
|
14
|
Ren G, Hu Y, Zhang J, Zou L, Zhao G. Determination of Multi-Class Mycotoxins in Tartary Buckwheat by Ultra-Fast Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Toxins (Basel) 2018; 10:toxins10010028. [PMID: 29300300 PMCID: PMC5793115 DOI: 10.3390/toxins10010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/03/2023] Open
Abstract
Considering crops are susceptible to toxicogenic fungi during plantation, pre-processing and storage, an ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometry (UFLC-QTrap-MS/MS) method was developed and validated for simultaneous determination of the 12 most frequent mycotoxins, including aflatoxin B1, B2, G1, G2, HT-2, T-2 toxin, ochratoxin A, fumonisin B1, B2, zearalanone, zearalenone, and deoxynivalenol, in 14 batches of Tartary buckwheat cultivar, collected from different origins in Sichuan Province, China. Differing from those complicated approaches, a simple and cost-efficient pretreatment method based on dilute-and-shoot was employed. Based on optimized chromatographic and mass spectrometry conditions, these 12 mycotoxins could be analyzed with high correlation coefficients (all over 0.995), high precision (RSD 0.47–9.26%), stability (RSD 0.72–11.36%), and recovery (79.52% to 108.92%, RSD 4.35–14.27%). Furthermore, this analysis method exhibited good determination performance with little disturbance of the matrix effect. Finally, this proposed method was applied for 14 batches of Tartary buckwheat seeds, in which aflatoxin B1 (AFB1) was detected in one moldy cultivar, Meigu No. 2, with its concentration exceeding the maximum residue limits set by EU regulations. The method thus established, which has significant advantages, could provide a preferred determination approach candidate for measurement of multiple mycotoxins measurement in Tartary buckwheat, even other kinds of foodstuffs.
Collapse
Affiliation(s)
- Guixing Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
15
|
Kovačec E, Regvar M, van Elteren JT, Arčon I, Papp T, Makovec D, Vogel-Mikuš K. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. CHEMOSPHERE 2017; 180:178-185. [PMID: 28407547 DOI: 10.1016/j.chemosphere.2017.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/15/2023]
Abstract
Two plant pathogenic fungi, Botrytis cinerea and Alternaria alternata, isolated from crop plants, were exposed to Cu in ionic (Cu2+), microparticulate (MP, CuO) or nanoparticulate (NP, Cu or CuO) form, in solid and liquid culturing media in order to test fungal response and toxic effects of the mentioned compounds for the potential use as fungicides. B. cinerea has shown pronounced growth and lower levels of lipid peroxidation compared to A. alternata. Its higher resistance/tolerance is attributed mainly to biotransformation of CuO and Cu NPs and CuO MPs into a blue compound at the fungal/culturing media interface, recognized by Cu K-edge EXAFS analysis as Cu-oxalate complex. The pronounced activity of catechol-type siderophores and organic acid secretion in B. cinerea induce leaching and mobilization of Cu ions from the particles and their further complexation with extracellularly secreted oxalic acid. The ability of pathogenic fungus to biotransform CuO MPs and NPs hampers their use as fungicides. However the results show that B. cinerea has a potential to be used in degradation of Cu(O) nanoparticles in environment, copper extraction and purification techniques.
Collapse
Affiliation(s)
- Eva Kovačec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Marjana Regvar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | | | - Iztok Arčon
- University of Nova Gorica, Vipavska 13, Nova Gorica, Slovenia; Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tamás Papp
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, 6726 Szeged, Kozep fasor 52, Hungary
| | - Darko Makovec
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia; Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
| |
Collapse
|