1
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Wang G, Zhang X, Chen B, Peng Y. Construction of an Efficient Agrobacterium tumefaciens-Based Transformation System in the Entomopathogenic fungus Metahizium rileyi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21711-21719. [PMID: 39287555 DOI: 10.1021/acs.jafc.4c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metarhizium rileyi is a filamentous entomopathogenic fungus that is highly pathogenic to lepidopteran insects. In our study, we constructed an Agrobacterium tumefaciens-mediated transgene system using the hygromycin resistance gene (Hyg R) as a selection marker in M. rileyi through homologous recombination. Binary knockout vectors for two genes (NOR_03501, longevity assurance gene, and NOR_03153, ATP-binding domain protein domain gene) in the M. rileyi strain SZCY201010 were successfully developed. We compared the genetic transformation efficiency using five kinds of asexual spores. The initial genetic transformation rates using a competent blastospore for NOR_03501 and NOR_03153 were 54.35 and 47.19%, respectively. Subsequently, both genes were successfully knocked out, and the transformed fungi were verified by PCR, RT-qPCR, and green fluorescent protein labeling. The biological phenotypes of the two genes were analyzed. The NOR_03501 gene plays a crucial role in carbon source utilization, stress resistance, and cuticle infection of fungal mycelium growth, while the NOR_03153 gene is significant for conidial production, stress resistance, and body wall infection. This study provides a promising tool for gene manipulation in M. rileyi, enhancing research in functional genomics and the exploration of fungal gene resources.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Peng TL, Syazwan SA, Hamdan RH, Najwa NS, Ramli MF, Harshiny N, Ishak IH. Virulence and proteomic responses of Metarhizium anisopliae against Aedes albopictus larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105982. [PMID: 39084787 DOI: 10.1016/j.pestbp.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024]
Abstract
The tropical climate in Malaysia provides an ideal environment for the rapid proliferation of Aedes mosquitoes, notably Aedes aegypti and Aedes albopictus, prominent vectors of dengue fever. Alarmingly, these species are increasingly developing resistance to conventional pesticides. This study aimed to evaluate the efficacy of Metarhizium anisopliae isolate HSAH5 spores, specifically on conidia (CO) and blastospores (BL), against Ae. albopictus larvae. The study centered on evaluating their pathogenic effects and the resultant changes in protein expression. Spore suspensions with varying concentrations were prepared for larvicidal bioassays, and protein expressions were analysed using liquid chromatography-mass spectrometry. Subsequently, protein annotation and network analysis were conducted to elucidate infection mechanisms and the proteomic response. Based on the lethal concentrations and time frames, CO exhibited faster larval mortality than BL at lower concentrations. Despite this, both spore types demonstrated comparable overall pathogenic effects. Results from the proteomic profiling revealed 150 proteins with varied expressions following exposure to Ae. albopictus extract, shedding light on distinct infection strategies between the spores. Gene Ontology enrichment and network analysis illustrated the diverse metabolic adaptations of M. anisopliae and interactions with mosquito larvae. This highlighted the complexity of host-pathogen dynamics and the significance of biosynthetic processes, energy storage, and cellular interaction pathways in disease progression. The BL network, consisting 80 proteins and 74 connections, demonstrates the intricate fungal mechanisms triggered by host stimuli. Conversely, the CO network, though smaller, displayed notable interconnectivity and concentrated involvement at the cell periphery, suggesting a deliberate strategy for initial host contact. This study offers valuable insights into proteome dynamics of M. anisopliae's BL and CO for managing mosquito populations and combating disease transmission, thereby significantly advancing public health and environmental conservation efforts.
Collapse
Affiliation(s)
- Tan Li Peng
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia.
| | - Samsuddin Ahmad Syazwan
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia; Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nurainun Sofea Najwa
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Muhammad Fahmi Ramli
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nalliah Harshiny
- Mycology and Pathology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia; Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia
| | - Intan Haslina Ishak
- School of Biological Science, Universiti Sains Malaysia, Persiaran Sains, 11800 Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
Wang G, Chen B, Zhang X, Du G, Han G, Liu J, Peng Y. The basic leucine zipper domain (bZIP) transcription factor BbYap1 promotes evasion of host humoral immunity and regulates lipid homeostasis contributing to fungal virulence in Beauveria bassiana. mSphere 2024; 9:e0035124. [PMID: 38926907 PMCID: PMC11288043 DOI: 10.1128/msphere.00351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of β-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host's expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. IMPORTANCE Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangyu Han
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, School of Life Science, Yunnan Normal University, Kunming, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| |
Collapse
|
5
|
Ying SH. Subcellular biochemistry and biology of filamentous entomopathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:35-58. [PMID: 39389707 DOI: 10.1016/bs.aambs.2024.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Filamentous entomopathogenic fungi (EPF) function as important biotic factors regulating the arthropod population in natural ecosystems and have great potential as biocontrol agents in modern agriculture. In the infection cycle, EPF undergo a plethora of physiological processes, including metabolism (e.g., cuticle hydrolysis and nutrient utilization), development (e.g., dimorphism and conidiation), stress response (e.g., oxidative and osmotic stresses), and immune evasion from the host. In-depth explorations of the mechanisms involved in the lifecycle of EPF offer excellent opportunities to increase their virulence and stability, which increases the efficacy of EPF in biocontrol programs. This review discusses the current state of knowledge relating to the biological roles and regulatory mechanisms of organelles and subcellular structures in the physiology of EPF, as well as some suggestions for future investigation.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
6
|
Peng YJ, Zhang H, Wang G, Feng MG, Ying SH. MARVEL family proteins contribute to vegetative growth, development, and virulence of the insect fungal pathogen Beauveria bassiana. J Invertebr Pathol 2024; 203:108076. [PMID: 38382734 DOI: 10.1016/j.jip.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Beauveria bassiana is one of the most extensively studied entomopathogenic fungi (EPF) and is widely used as a biocontrol agent against various insect pests. Proteins containing the MARVEL domain are conserved in eukaryotes, typically with four transmembrane structures. In this study, we identified the five MARVEL domain proteins in B. bassiana. Five MARVEL domain proteins were localized to cytomembrane and vacuoles in B. bassiana, but had different roles in maintaining the lipid-droplet homeostasis. These proteins were required for fungal virulence, but differentially contributed to fungal utilization of nutrients, stress tolerance, and development under aerial and submerged conditions. Notably, BbMARVEL2 was essential for conidial surface morphology. Additionally, these five MARVEL domain proteins contributed to fungal interaction with the host immune defense. This study provides new mechanistic insights into the life cycle of B. bassiana as a biocontrol agent.
Collapse
Affiliation(s)
- Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Peng Y, Wen S, Wang G, Zhang X, Di T, Du G, Chen B, Zhang L. Reconstruction of Gut Bacteria in Spodoptera frugiperda Infected by Beauveria bassiana Affects the Survival of Host Pest. J Fungi (Basel) 2023; 9:906. [PMID: 37755014 PMCID: PMC10532432 DOI: 10.3390/jof9090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host gut and the dominant populations in fungus-infected insects. B. bassiana AJS91881 was isolated and identified from the infected larvae of Spodoptera litura. The virulence of AJS91881 to the eggs, larvae, pupae and adults of S. frugiperda was measured. Moreover, the gut microbial community diversity of healthy and fungus-infected insects was analyzed. Our results showed that after treatment with B. bassiana AJS91881, the egg hatching rate, larval survival rate and adult lifespan of the insects were significantly reduced, and the pupae rigor rate was significantly increased compared to that of the control group. Additionally, the gut microbial community was reconstructed after B. bassiana infection. At the phylum and genus level, the relative abundance of the Proteobacteria and Serratia increased significantly in the B. bassiana treatment group. The KEGG function prediction results showed that fungal infection affected insect gut metabolism, environmental information processing, genetic information processing, organism systems and cellular processes. Fungal infection was closely related to the metabolism of various substances in the insect gut. Serratia marcescens was the bacterium with the highest relative abundance after infection by B. bassiana; intestinal bacteria S. marcescens inhibited the infection of insect fungi B. bassiana against the S. frugiperda. The presence of gut bacteria also significantly reduced the virulence of the fungi against the insects when compared to the group with the larvae fed antibiotics that were infected with fungal suspension (Germfree, GF) and healthy larvae that were infected with fungal suspension prepared with an antibiotic solution (+antibiotic). In conclusion, the reconstruction of the insect intestinal bacterial community is an indispensable link for understanding the pathogenicity of B. bassiana against S. frugiperda. Most importantly, in the later stage of fungal infection, the increased abundance of S. marcescens in the insect intestine inhibited the virulence of B. bassiana to some extent. The findings aid in understanding changes in the gut microbiota during the early stages of entomopathogenic fungal infection of insects and the involvement of insect gut microbes in host defense mediated by pathogenic fungal infection. This study is also conducive to understanding the interaction between entomopathogenic fungi, hosts and gut microbes, and provides a new idea for the joint use of entomopathogenic fungi and gut bacteria to control pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| | - Limin Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| |
Collapse
|
8
|
Lin HY, Feng MG, Ying SH. Phosphorylation modification orchestrates the functionalities of peroxin 14 in filamentous entomopathogenic fungus Beauveria bassiana. Fungal Biol 2023; 127:1284-1290. [PMID: 37821150 DOI: 10.1016/j.funbio.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023]
Abstract
Peroxin 14 (Pex14) is a component of the receptor-docking complex at peroxisomal membrane. However, its post translation modification remains largely unknown in filamentous fungi. In this study, we characterized two phosphorylation sites (S54 and T262) in Beauveria bassiana Pex14 (BbPex14). Two phosphorylation sites are dispensable for the BbPex14 role as a peroxin. The BbPex14 roles in conidiation and blastospore formation are dependent on two phosphorylation sites, and blastospore formation is more dependent on phosphorylation modification of two sites. Two phosphorylation sites differentially contribute to pexophagy during conidiation and under stress, in which the site T262 is indispensable. Evidently, the phosphorylation modification expands the functionalities of BbPex14. This study improves our understandings of the complex regulatory mechanisms underlying organellar biology in the filamentous fungi.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Pang J, Peng Y, Di T, Du G, Chen B. Virulence of Metarhizium rileyi Is Determined by Its Growth and Antioxidant Stress and the Protective and Detoxifying Enzymes of Spodoptera frugiperda. INSECTS 2023; 14:260. [PMID: 36975945 PMCID: PMC10051772 DOI: 10.3390/insects14030260] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Spodoptera frugiperda is one of the most destructive crop pests in the world. Metarhizium rileyi is an entomopathogenic fungus specific for noctuid pests and is a very promising prospect in biological control against S. frugiperda. Two M. rileyi strains (XSBN200920 and HNQLZ200714) isolated from infected S. frugiperda were used to evaluate the virulence and biocontrol potential to different stages and instars of S. frugiperda. The results showed that XSBN200920 was significantly more virulent than HNQLZ200714 to eggs, larvae, pupae, and adults of S. frugiperda. In the larvae infected with the two M. rileyi strains, the activity of three protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT)) and two detoxifying enzymes (including glutathione-S transferase (GST) and carboxylesterase (CarE)) increased firstly and then decreased. The expression levels of protective enzymes and detoxification enzymes in larvae treated with XSBN200920 were greater than with HNQLZ200714. Furthermore, antioxidant stress-related gene (MrSOD and MrCAT family genes) expression in the two strains was measured by RT-qPCR (real-time quantitative PCR). The expression of these genes was significantly higher in the XSBN200920 strain compared to HNQLZ200714. There were also significant differences in the sensitivity of the two strains to the growth of different carbon and nitrogen sources and oxidative stress agents. In addition, the activity expression of antioxidant enzymes on the third day of culturing in XSBN200920 was significantly higher than with HNQLZ200714. In summary, the high virulence of M. rileyi XSBN200920 was not only determined by the expression levels of protective and detoxifying enzymes of the host but also regulated by the growth of entomogenic fungi and the resistance to the oxidative stress against S. frugiperda at different stages and instars. This study provides a theoretical fundament for the systematic control of Spodoptera frugiperda using Metarhizium rileyi.
Collapse
|
10
|
Peng YJ, Zhang H, Feng MG, Ying SH. Steryl Acetyl Hydrolase 1 (BbSay1) Links Lipid Homeostasis to Conidiogenesis and Virulence in the Entomopathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2022; 8:jof8030292. [PMID: 35330294 PMCID: PMC8953178 DOI: 10.3390/jof8030292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Beauveria bassiana, as a well-studied entomopathogenic fungus, has a great potential for the biological control of insect pests. Lipid metabolism has been linked to the life cycle of B. bassiana; however, the underlying mechanisms remain unknown. In this study, a homolog of yeast steryl acetyl hydrolase 1 (Say1) was functionally characterized. The loss of B. bassianaSAY1 (BbSAY1) impaired the lipid homeostasis in conidia, with a significant reduction in oleic acid content. The ΔBbsay1 mutant strain displayed anelevated accumulation of lipid bodies and aweakened membrane permeability. As for phenotypic aspects, gene loss resulted in significant defects in germination, conidiation, and virulence. Our findings highlight that Say1, involved in lipid homeostasis, contributes to the cytomembrane integrity, development, and virulence in B. bassiana.
Collapse
|
11
|
Li XH, Peng YJ, Ding JL, Feng MG, Ying SH. A homologue of yeast acyl-CoA synthetase Faa1 contributes to cytomembrane functionality involved in development and virulence in the insect pathogenic fungus Beauveria bassiana. Microb Pathog 2022; 164:105419. [DOI: 10.1016/j.micpath.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|