1
|
Hou WN, Ganbaatar B, Bau T. Two new species of Metacampanella (Agaricales, Marasmiaceae) from China and Mongolia. MycoKeys 2024; 108:227-247. [PMID: 39296990 PMCID: PMC11408874 DOI: 10.3897/mycokeys.108.131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Metacampanella is an important genus in the Marasmiaceae family. We collected specimens during our investigations in China and Mongolia. Through morphological and molecular phylogenetic analyses, we identified two new species of this genus: Metacampanellasubtricolor and Metacampanellacoprophila. In addition, we identified Metacampanellatricolor as a novel combination. Molecular systematic studies support these results. Illustrated descriptions, taxonomic discussions, and keys to the genus are provided.
Collapse
Affiliation(s)
- Wei-Nan Hou
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China Jilin Agricultural University Changchun China
| | - Burenbaatar Ganbaatar
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China Jilin Agricultural University Changchun China
- Laboratory of Plant Taxonomy and Phylogenetic, Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia Botanic Garden and Research Institute, Mongolian Academy of Sciences Ulaanbaatar Mongolia
- School of Animal Science & Biotechnology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia Mongolian University of Life Sciences Ulaanbaatar Mongolia
| | - Tolgor Bau
- Key Laboratory of Edible Fungal Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China Jilin Agricultural University Changchun China
| |
Collapse
|
2
|
Yang X, Gao Y, Li Z, Zang P, Zhao Y, Liu Q. Discovery of seed germinating fungi (Mycetinis scorodonius) from Gastrodia elata Bl. f. glauca S. chow in Changbai Mountain and examination of their germination ability. Sci Rep 2024; 14:12215. [PMID: 38806667 PMCID: PMC11133366 DOI: 10.1038/s41598-024-63189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 05/30/2024] Open
Abstract
Multi-generational asexual reproduction of Gastrodia elata Bl. will cause seedling species degeneration. Sexual reproduction of Gastrodia elata Bl. seed is an effective method to solve the problem of degeneration. The development of Gastrodia elata Bl. seeds cannot be separated from the germination fungus. However, there are few strains of germination fungus in production, and there is also the problem of species degradation in application for many years. It is very important for the sexual reproduction of Gastrodia elata Bl. to isolate more new strains of excellent germination fungus from the origin. This study used the Gastrodia elata Bl. f. glauca S. chow seeds germination vegetative propagation corms capture method to isolate its symbiotic germination fungus, and comprehensively identified the species of germination fungus by colony morphology, ITS, sporocarps regeneration and germination function, and compared the growth characteristics and germination ability with other germination fungus (Mycena purpureofusca, Mycena dendrobii and Mycena osmundicola). The germination fungus was isolated from the vegetative propagation corms of Gastrodia elata Bl. f. glauca S. chow seeds and named GYGL-1. After comprehensive identification, GYGL-1 was Mycetinis scorodonius. Compared with other germination fungus, GYGL-1 has fast germination speed, vigorous growth, and high germination ability for Gastrodia elata Bl. f. glauca S. chow seeds. Innovated the isolation method of Gastrodia elata Bl. seeds germination fungus, obtained the regenerated sporocarps of the germination fungus, and discovered that Mycetinis scorodonius has a new function of germinating Gastrodia elata Bl. f. glauca S. chow seeds, enriching the resource library of Gastrodia elata Bl. germination fungus.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China.
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China.
| | - Zhaochun Li
- JINGZHEN TIANMA Co., Ltd., Jingyu County, Baishan, 135200, Jilin, China
| | - Pu Zang
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
- Laboratory of Medicinal Plant Cultivation and Breeding, State Administration of Traditional Chinese Medicine, Changchun, 130118, China
| | - Yan Zhao
- College of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
3
|
Li D, Jin X, Li Y, Wang Y, He H, Zhang H. Fungal communities associated with early immature tubers of wild Gastrodia elata. Ecol Evol 2024; 14:e11004. [PMID: 38389997 PMCID: PMC10881901 DOI: 10.1002/ece3.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Full myco-heterotrophic orchid Gastrodia elata Bl. is widely distributed in Northeast Asia, and previous research has not fully investigated the symbiotic fungal community of its early immature tubers. This study utilized Illumina sequencing to compare symbiotic fungal communities in natural G. elata immature tubers and their habitats. LEfSe (Linear Discriminant Analysis Effect Size) was used to screen for Biomarkers that could explain variations among different fungal communities, and correlation analyses were performed among Biomarkers and other common orchid mycorrhizal fungi. Our results illustrate that the symbiotic fungal communities of immature G. elata tubers cannot be simply interpreted as subsets of the environmental fungal communities because some key members cannot be traced back to the environment. The early growth of G. elata was related to a small group of fungi, such as Sebacina, Thelephora, and Inocybe, which were also common mycorrhizal fungi from other orchids. In addition, Mycena, Auricularia, and Cryptococcus were unique fungal partners of G. elata, and many new species have yet to be discovered. Possible symbiotic Mycena should be M. plumipes and its sibling species in this case. Our results provide insight into the symbiotic partner switch and trophic pattern change during the development and maturation of G. elata.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
- School of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Xiao‐Han Jin
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
- School of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Yu Li
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
| | - Yu‐Chuan Wang
- Gastrodia Tuber Research Institute of ZhaotongZhaotongChina
| | - Hai‐Yan He
- The Agriculture and Life Sciences CollegeZhaotong UniversityZhaotongChina
- Yunnan Key Laboratory of Gastrodia elata and Fungus Symbiotic BiologyZhaotongChina
| | - Han‐Bo Zhang
- State Key Laboratory Conservation and Utilization of Bio‐Resources in YunnanKunmingChina
| |
Collapse
|
4
|
Li YY, Boeraeve M, Cho YH, Jacquemyn H, Lee YI. Mycorrhizal Switching and the Role of Fungal Abundance in Seed Germination in a Fully Mycoheterotrophic Orchid, Gastrodia confusoides. FRONTIERS IN PLANT SCIENCE 2022; 12:775290. [PMID: 35095954 PMCID: PMC8792533 DOI: 10.3389/fpls.2021.775290] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mycorrhizal associations are essential for orchid germination and seedling establishment, and thus may constrain the distribution and abundance of orchids under natural conditions. Previous studies have shown that germination and seedling establishment in several orchids often decline with increasing distance from adult plants, resulting in non-random spatial patterns of seedling establishment. In contrast, individuals of the fully mycoheterotrophic orchid Gastrodia confusoides often tend to have random aboveground spatial patterns of distribution within bamboo forests. Since G. confusoides is parasitic on litter-decaying fungi, its random spatial patterns of distribution may be due to highly scattered patterns of litter-decaying fungi within bamboo forests. To test this hypothesis, we first identified the main mycorrhizal fungi associating with developing seeds and adult plants at a bamboo forest site in Taiwan using Miseq high-throughput DNA sequencing. Next, we combined seed germination experiments with quantitative PCR (qPCR) analyses to investigate to what extent the abundance of mycorrhizal fungi affected spatial patterns of seed germination. Our results show that seed germination and subsequent growth to an adult stage in G. confusoides required a distinct switch in mycorrhizal partners, in which protocorms associated with a single Mycena OTU, while adults mainly associated with an OTU from the genus Gymnopus. A strong, positive relationship was observed between germination and Mycena abundance in the litter, but not between germination and Gymnopus abundance. Fungal abundance was not significantly related to the distance from the adult plants, and consequently germination was also not significantly related to the distance from adult plants. Our results provide the first evidence that the abundance of litter-decaying fungi varies randomly within the bamboo forest and independently from G. confusoides adults.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Beijing Key Laboratory of Seed Disease Testing and Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yu-Hsiu Cho
- Biology Department, National Museum of Natural Science, Taichung, Taiwan
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Fungal diversity driven by bark features affects phorophyte preference in epiphytic orchids from southern China. Sci Rep 2021; 11:11287. [PMID: 34050223 PMCID: PMC8163780 DOI: 10.1038/s41598-021-90877-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Epiphytic orchids exhibit varying degrees of phorophyte tree specificity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea uniflora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specific association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially influencing the relationship between orchids and trees. Difference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could influence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confirmed the presence of significantly different fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is influenced by the fungal communities of the host tree bark.
Collapse
|
6
|
Ogura-Tsujita Y, Yukawa T, Kinoshita A. Evolutionary histories and mycorrhizal associations of mycoheterotrophic plants dependent on saprotrophic fungi. JOURNAL OF PLANT RESEARCH 2021; 134:19-41. [PMID: 33417080 PMCID: PMC7817554 DOI: 10.1007/s10265-020-01244-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
Mycoheterotrophic plants (MHPs) are leafless, achlorophyllous, and completely dependent on mycorrhizal fungi for their carbon supply. Mycorrhizal symbiosis is a mutualistic association with fungi that is undertaken by the majority of land plants, but mycoheterotrophy represents a breakdown of this mutualism in that plants parasitize fungi. Most MHPs are associated with fungi that are mycorrhizal with autotrophic plants, such as arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Although these MHPs gain carbon via the common mycorrhizal network that links the surrounding autotrophic plants, some mycoheterotrophic lineages are associated with saprotrophic (SAP) fungi, which are free-living and decompose leaf litter and wood materials. Such MHPs are dependent on the forest carbon cycle, which involves the decomposition of wood debris and leaf litter, and have a unique biology and evolutionary history. MHPs associated with SAP fungi (SAP-MHPs) have to date been found only in the Orchidaceae and likely evolved independently at least nine times within that family. Phylogenetically divergent SAP Basidiomycota, mostly Agaricales but also Hymenochaetales, Polyporales, and others, are involved in mycoheterotrophy. The fungal specificity of SAP-MHPs varies from a highly specific association with a single fungal species to a broad range of interactions with multiple fungal orders. Establishment of symbiotic culture systems is indispensable for understanding the mechanisms underlying plant-fungus interactions and the conservation of MHPs. Symbiotic culture systems have been established for many SAP-MHP species as a pure culture of free-living SAP fungi is easier than that of biotrophic AM or ECM fungi. Culturable SAP-MHPs are useful research materials and will contribute to the advancement of plant science.
Collapse
Affiliation(s)
- Yuki Ogura-Tsujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan.
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-8580, Japan.
| | - Tomohisa Yukawa
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Akihiko Kinoshita
- Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto city, Chuo-ku, Kurokami, Kumamoto, 860-0862, Japan
| |
Collapse
|
7
|
Pecoraro L, Wang X, Venturella G, Gao W, Wen T, Gafforov Y, Gupta VK. Molecular evidence supports simultaneous association of the achlorophyllous orchid Chamaegastrodia inverta with ectomycorrhizal Ceratobasidiaceae and Russulaceae. BMC Microbiol 2020; 20:236. [PMID: 32746782 PMCID: PMC7397628 DOI: 10.1186/s12866-020-01906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Achlorophyllous orchids are mycoheterotrophic plants, which lack photosynthetic ability and associate with fungi to acquire carbon from different environmental sources. In tropical latitudes, achlorophyllous forest orchids show a preference to establish mycorrhizal relationships with saprotrophic fungi. However, a few of them have been recently found to associate with ectomycorrhizal fungi and there is still much to be learned about the identity of fungi associated with tropical orchids. The present study focused on mycorrhizal diversity in the achlorophyllous orchid C. inverta, an endangered species, which is endemic to southern China. The aim of this work was to identify the main mycorrhizal partners of C. inverta in different plant life stages, by means of morphological and molecular methods. RESULTS Microscopy showed that the roots of analysed C. inverta samples were extensively colonized by fungal hyphae forming pelotons in root cortical cells. Fungal ITS regions were amplified by polymerase chain reaction, from DNA extracted from fungal mycelia isolated from orchid root samples, as well as from total root DNA. Molecular sequencing and phylogenetic analyses showed that the investigated orchid primarily associated with ectomycorrhizal fungi belonging to a narrow clade within the family Ceratobasidiaceae, which was previously detected in a few fully mycoheterotrophic orchids and was also found to show ectomycorrhizal capability on trees and shrubs. Russulaceae fungal symbionts, showing high similarity with members of the ectomycorrhizal genus Russula, were also identified from the roots of C. inverta, at young seedling stage. Ascomycetous fungi including Chaetomium, Diaporthe, Leptodontidium, and Phomopsis genera, and zygomycetes in the genus Mortierella were obtained from orchid root isolated strains with unclear functional role. CONCLUSIONS This study represents the first assessment of root fungal diversity in the rare, cryptic and narrowly distributed Chinese orchid C. inverta. Our results provide new insights on the spectrum of orchid-fungus symbiosis suggesting an unprecedented mixed association between the studied achlorophyllous forest orchid and ectomycorrhizal fungi belonging to Ceratobasidiaceae and Russulaceae. Ceratobasidioid fungi as dominant associates in the roots of C. inverta represent a new record of the rare association between the identified fungal group and fully mycoheterotrophic orchids in nature.
Collapse
Affiliation(s)
- Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Xiao Wang
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Tingchi Wen
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, China
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic, Hay Moulay Rachid, Ben Guerir, Morocco
| |
Collapse
|
8
|
Chen L, Wang YC, Qin LY, He HY, Yu XL, Yang MZ, Zhang HB. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiol 2019; 19:158. [PMID: 31291888 PMCID: PMC6617676 DOI: 10.1186/s12866-019-1501-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastrodia elata is a widely distributed achlorophyllous orchid and is highly valued as both medicine and food. Gastrodia elata produces dust-like seeds and relies on mycorrhizal fungi for its germination and growth. In its life cycle, G. elata is considered to switch from a specific single-fungus relationship (Mycena) to another single-fungus relationship (Armillaria). However, no studies have investigated the changes in the plant-fungus relationship during the growth of G. elata in the wild. In this study, high-throughput sequencing was used to characterize the fungal community of tubers in different growth phases as well as the soils surrounding G. elata. RESULTS The predominant fungi were Basidiomycota (60.44%) and Ascomycota (26.40%), which exhibited changes in abundance and diversity with the growth phases of G. elata. Diverse basidiomycetes in protocorms (phase P) were Hyphodontia, Sistotrema, Tricholoma, Mingxiaea, Russula, and Mycena, but the community changed from a large proportion of Resinicium bicolor (40%) in rice-like tubers (phase M) to an unidentified Agaricales operational taxonomic unit 1(OTU1,98.45%) in propagation vegetation tubers (phase B). The soil fungi primarily included Simocybe, Psathyrella, Conocybe, and Subulicystidium. Three Mycena OTUs obtained in this study were differentially distributed among the growth phases of G. elata, accounting for less than 1.0% of the total reads, and were phylogenetically close to Mycena epipterygia and M. alexandri. CONCLUSIONS Our data indicated that G. elata interacts with a broad range of fungi beyond the Mycena genus. These fungi changed with the growth phases of G. elata. In addition, these data suggested that the development of the fungal community during the growth of G. elata was more complex than previously assumed and that at least two different fungi could be involved in development before the arrival of Armillaria.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yu-Chuan Wang
- Gastrodia Tuber Research Institute of Zhaotong, Zhaotong, 657000, Yunnan Province, China
| | - Li-Yuan Qin
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hai-Yan He
- Gastrodia Tuber Research Institute of Zhaotong, Zhaotong, 657000, Yunnan Province, China
| | - Xian-Lun Yu
- Gastrodia Tuber Research Institute of Zhaotong, Zhaotong, 657000, Yunnan Province, China
| | - Ming-Zhi Yang
- School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
9
|
Kariman K, Barker SJ, Tibbett M. Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ 2018; 6:e6030. [PMID: 30533314 PMCID: PMC6284451 DOI: 10.7717/peerj.6030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023] Open
Abstract
Root-fungal symbioses such as mycorrhizas and endophytes are key components of terrestrial ecosystems. Diverse in trophy habits (obligate, facultative or hemi-biotrophs) and symbiotic relations (from mutualism to parasitism), these associations also show great variability in their root colonization and nutritional strategies. Specialized interface structures such as arbuscules and Hartig nets are formed by certain associations while others are restricted to non-specialized intercellular or intracellular hyphae in roots. In either case, there are documented examples of active nutrient exchange, reinforcing the fact that specialized structures used to define specific mycorrhizal associations are not essential for reciprocal exchange of nutrients and plant growth promotion. In feremycorrhiza (with Austroboletus occidentalis and eucalypts), the fungal partner markedly enhances plant growth and nutrient acquisition without colonizing roots, emphasizing that a conventional focus on structural form of associations may have resulted in important functional components of rhizospheres being overlooked. In support of this viewpoint, mycobiome studies using the state-of-the-art DNA sequencing technologies have unearthed much more complexity in root-fungal relationships than those discovered using the traditional morphology-based approaches. In this review, we explore the existing literature and most recent findings surrounding structure, functioning, and ecology of root-fungal symbiosis, which highlight the fact that plant fitness can be altered by taxonomically/ecologically diverse fungal symbionts regardless of root colonization and interface specialization. Furthermore, transition from saprotrophy to biotrophy seems to be a common event that occurs in diverse fungal lineages (consisting of root endophytes, soil saprotrophs, wood decayers etc.), and which may be accompanied by development of specialized interface structures and/or mycorrhiza-like effects on plant growth and nutrition.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Susan Jane Barker
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, United Kingdom
| |
Collapse
|
10
|
Hynson NA, Schiebold JMI, Gebauer G. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. ANNALS OF BOTANY 2016; 118:467-79. [PMID: 27451987 PMCID: PMC4998980 DOI: 10.1093/aob/mcw119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species' dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. METHODS Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ(13)C and δ(15)N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, (13)C and (15)N enrichment among plant families and trophic strategies. KEY RESULTS We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. CONCLUSIONS We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments.
Collapse
Affiliation(s)
- Nicole A Hynson
- Department of Botany, University of Hawaii Mānoa, Honolulu, HI 96822, USA
| | - Julienne M-I Schiebold
- Laboratory of Isotope Biogeochemistry, BayCEER, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, BayCEER, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
11
|
Lee YI, Yang CK, Gebauer G. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. ANNALS OF BOTANY 2015; 116:423-35. [PMID: 26113634 PMCID: PMC4549957 DOI: 10.1093/aob/mcv085] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated. METHODS Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids. KEY RESULTS Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts. CONCLUSIONS Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi.
Collapse
Affiliation(s)
- Yung-I Lee
- Biology Department, National Museum of Natural Science, No 1, Kuan-Chien Rd, Taichung, Taiwan, Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Kai Yang
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, 12 Chienshan Rd., Sec. 1, Chushan Township, Nantou 55750, Taiwan, Department of Life Science, National Taiwan Normal University, 88 Tingchow Rd., Sec. 4, Taipei 11677, Taiwan and
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
12
|
Liu T, Li CM, Han YL, Chiang TY, Chiang YC, Sung HM. Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics 2015; 16:185. [PMID: 25886817 PMCID: PMC4371811 DOI: 10.1186/s12864-015-1422-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/28/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species' association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment. RESULTS Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance. CONCLUSIONS G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.
Collapse
Affiliation(s)
- Tsunglin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Min Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yue-Lun Han
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Molecular analysis of fungi associated with the Mediterranean orchid Ophrys bertolonii Mor. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1038-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. AMERICAN JOURNAL OF BOTANY 2011; 98:1148-63. [PMID: 21712419 DOI: 10.3732/ajb.1000486] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY We investigated whether four widespread, photosynthetic Mediterranean meadow orchids (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea, and Serapias vomeracea) had either nutritional dependency on mycobionts or mycorrhizal fungal specificity. Nonphotosynthetic orchids generally engage in highly specific interactions with fungal symbionts that provide them with organic carbon. By contrast, fully photosynthetic orchids in sunny, meadow habitats have been considered to lack mycorrhizal specificity. METHODS We performed both culture-dependent and culture-independent ITS sequence analysis to identify fungi from orchid roots. By analyzing stable isotope ((13)C and (15)N) natural abundances, we also determined the degree of autotrophy and mycoheterotrophy in the four orchid species. KEY RESULTS Phylogenetic and multivariate comparisons indicated that Or. purpurea and Oph. fuciflora featured lower fungal diversity and more specific mycobiont spectra than A. laxiflora and S. vomeracea. All orchid species were significantly enriched in (15)N compared with neighboring non-orchid plants. Orchis purpurea had the most pronounced N gain from fungi and differed from the other orchids in also obtaining C from fungi. CONCLUSIONS These results indicated that even in sunny Mediterranean meadows, orchids may be mycoheterotrophic, with correlated mycorrhizal fungal specificity.
Collapse
Affiliation(s)
- Mariangela Girlanda
- Dipartimento di Biologia Vegetale dell'Università di Torino e Istituto per la Protezione delle Piante del CNR, Viale Mattioli 25 10125 Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liebel HT, Gebauer G. Stable isotope signatures confirm carbon and nitrogen gain through ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:270-5. [PMID: 21309973 DOI: 10.1111/j.1438-8677.2010.00369.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees.
Collapse
Affiliation(s)
- H T Liebel
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|