1
|
Ilicic D, Woodhouse J, Karsten U, Schimani K, Zimmermann J, Grossart HP. Chytrid fungi infecting Arctic microphytobenthic communities under varying salinity conditions. Sci Rep 2024; 14:25821. [PMID: 39468208 PMCID: PMC11519490 DOI: 10.1038/s41598-024-77202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
This study aimed to investigate the presence and diversity of fungal parasites in Arctic coastal microphytobenthic communities. These communities represent a key component in the functioning of Arctic trophic food webs. Fungal parasites, particularly Chytridiomycota (chytrids), play significant roles by controlling microalgal bloom events, impacting genetic diversity, modifying microbial interactions, and accelerating nutrient and energy transfer to higher trophic levels. In the context of rapid Arctic warming and increased glacier meltwater, which significantly affects these communities, we used high-throughput sequencing to explore fungal community composition. Our results show that chytrids dominate fungal communities in Arctic benthic habitats and that the overall fungal diversity is primarily influenced by the salinity gradient. Chytrid representation is positively correlated with the presence of potential benthic diatom (Surirella, Nitzschia, Navicula) and green algae (Ulvophyceae) hosts, while microscopic observations provide further evidence for the presence of active chytrid infections.
Collapse
Affiliation(s)
- Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Katherina Schimani
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Jonas Zimmermann
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
2
|
Duval P, Martin E, Vallon L, Antonelli P, Girard M, Signoret A, Luis P, Abrouk D, Wiest L, Fildier A, Bonnefoy C, Jame P, Bonjour E, Cantarel A, Gervaix J, Vulliet E, Cazabet R, Minard G, Valiente Moro C. Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. FEMS Microbiol Ecol 2024; 100:fiae129. [PMID: 39327012 PMCID: PMC11523617 DOI: 10.1093/femsec/fiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.
Collapse
Affiliation(s)
- Penelope Duval
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laurent Vallon
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Pierre Antonelli
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Maxime Girard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Patricia Luis
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Danis Abrouk
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Patrick Jame
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Erik Bonjour
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Amelie Cantarel
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Rémy Cazabet
- UMR 5205, Laboratoire d'Informatique en image et systèmes d'information, Université de Lyon, Villeurbanne, France
| | - Guillaume Minard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| |
Collapse
|
3
|
Thomé PC, Wolinska J, Van Den Wyngaert S, Reñé A, Ilicic D, Agha R, Grossart HP, Garcés E, Monaghan MT, Strassert JFH. Phylogenomics including new sequence data of phytoplankton-infecting chytrids reveals multiple independent lifestyle transitions across the phylum. Mol Phylogenet Evol 2024; 197:108103. [PMID: 38754710 DOI: 10.1016/j.ympev.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.
Collapse
Affiliation(s)
- Pauline C Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Silke Van Den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Biology, University of Turku, Turku, Finland
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
4
|
Bonito G. Ecology and evolution of algal-fungal symbioses. Curr Opin Microbiol 2024; 79:102452. [PMID: 38461593 DOI: 10.1016/j.mib.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Abstract
Ecological interactions and symbiosis between algae and fungi are ancient, widespread, and diverse with many independent origins. The heterotrophic constraint on fungal nutrition drives fungal interactions with autotrophic organisms, including algae. While ancestors of modern fungi may have evolved as parasites of algae, there remains a latent ability in algae to detect and respond to fungi through a range of symbioses that are witnessed today in the astounding diversity of lichens, associations with corticoid and polypore fungi, and endophytic associations with macroalgae. Research into algal-fungal interactions and biotechnological innovation have the potential to improve our understanding of their diversity and functions in natural systems, and to harness this knowledge to develop sustainable and novel approaches for producing food, energy, and bioproducts.
Collapse
Affiliation(s)
- Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Wang F, Wang J, He Y, Yan Y, Fu D, Rene ER, Singh RP. Effect of different bulking agents on fed-batch composting and microbial community profile. ENVIRONMENTAL RESEARCH 2024; 249:118449. [PMID: 38354880 DOI: 10.1016/j.envres.2024.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Jingyao Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yuheng He
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
6
|
Stüer‐Patowsky K, Lilje O, Wurzbacher C. Quantification of the dark fungal taxon Cryptomycota using qPCR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13257. [PMID: 38615691 PMCID: PMC11016352 DOI: 10.1111/1758-2229.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Fungi are present in a wide variety of natural environments, and in the last years, various studies have shown that they are quite abundant in aquatic ecosystems. In addition, a whole new highly diverse phylum, the Cryptomycota, was discovered. Nevertheless, research on aquatic fungi and a detailed evaluation of their functions and distribution are still sparse. One of the main reasons is a limitation in reliable identification and quantification methods. To bridge part of the research gap, this study aims to implement a quantitative PCR method to detect and quantify the newly discovered phylum. We developed and validated a Cryptomycota-specific qPCR primer pair targeting the 5.8S region that detects the majority of Cryptomycota, but Microsporidia. The resulting amplicon is 102 bp long. We used different environmental samples to evaluate the primer pair, various fungal sequences as negative control and positive control sequences. Obtained amplicons were sequenced using Illumina, and the obtained ASVs were all classified as Cryptomycota. The qPCR method works reliably and specifically for the quantification of Cryptomycota in environmental samples.
Collapse
Affiliation(s)
- Katrin Stüer‐Patowsky
- Chair of Urban Water Systems EngineeringTechnical University of MunichGarchingGermany
| | - Osu Lilje
- School of Life and Environmental SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Christian Wurzbacher
- Chair of Urban Water Systems EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
7
|
Fernández-Valero AD, Karpov SA, Sampedro N, Gordi J, Timoneda N, Garcés E, Reñé A. Newly identified diversity of Dinomycetaceae (Rhizophydiales, Chytridiomycota), a family of fungal parasites of marine dinoflagellates. Eur J Protistol 2024; 93:126053. [PMID: 38350179 DOI: 10.1016/j.ejop.2024.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| | - Sergey A Karpov
- Department of Invertebrate Zoology, Biological Faculty, St Petersburg State University, Universitetskaya nab. 7/9, St Petersburg 199034, Russia; Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St Petersburg 199034, Russia; North-Western State Medical University named after I.I. Mechnikov, Kirochnaya st. 41, St Petersburg 191015, Russia
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Martínez-Ruiz EB, Agha R, Spahr S, Wolinska J. Widely used herbicide metolachlor can promote harmful bloom formation by stimulating cyanobacterial growth and driving detrimental effects on their chytrid parasites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123437. [PMID: 38272168 DOI: 10.1016/j.envpol.2024.123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Metolachlor (MET) is a widely used herbicide that can adversely affect phytoplanktonic non-target organisms, such as cyanobacteria. Chytrids are zoosporic fungi ubiquitous in aquatic environments that parasitize cyanobacteria and can keep their proliferation in check. However, the influence of organic pollutants on the interaction between species, including parasitism, and the associated ecological processes remain poorly understood. Using the host-parasite system consisting of the toxigenic cyanobacterium Planktothrix agardhii and its chytrid parasite Rhizophydium megarrhizum, we investigated the effects of environmentally relevant concentrations of MET on host-parasite interactions under i) continuous exposure of chytrids and cyanobacteria, and ii) pre-exposure of chytrids. During a continuous exposure, the infection prevalence and intensity were not affected, but chytrid reproductive structures were smaller at the highest tested MET concentration. In the parasite's absence, MET promoted cyanobacteria growth possibly due to a hormesis effect. In the pre-exposure assay, MET caused multi- and transgenerational detrimental effects on parasite fitness. Chytrids pre-exposed to MET showed reduced infectivity, intensity, and prevalence of the infection, and their sporangia size was reduced. Thus, pre-exposure of the parasite to MET resulted in a delayed decline of the cyanobacterial cultures upon infection. After several parasite generations without MET exposure, the parasite recovered its initial fitness, indicating that detrimental effects are transient. This study demonstrates that widely used herbicides, such as MET, could favor cyanobacterial bloom formation both directly, by promoting cyanobacteria growth, and indirectly, by inhibiting their chytrid parasites, which are known to play a key role as top-down regulators of cyanobacteria. In addition, we evidence the relevance of addressing multi-organism systems, such as host-parasite interactions, in toxicity assays. This approach offers a more comprehensive understanding of the effects of pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Germany
| |
Collapse
|
9
|
Smith NEC. Call me by your name: Considerations of DNA sequences as types within wider discussions on fungal nomenclature. Mycology 2023; 15:137-143. [PMID: 38813474 PMCID: PMC11132796 DOI: 10.1080/21501203.2023.2295412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/11/2023] [Indexed: 05/31/2024] Open
Abstract
This paper discusses the interaction between two substantial debates in taxonomy and nomenclature: The potential introduction of DNA-only types into fungal taxonomy and whether certain species names are offensive and should be changed. It argues that the acceptance of DNA sequences as types will likely lead to a proliferation of eponyms (species named after a person or persons) and that this will render them more likely to censure thus creating a point of instability in the fungal nomenclature. More fundamentally, it seeks to highlight the cultural and aesthetic attraction of names and to promote wider conversation on why we consider the Latin binomial central in our description of species.
Collapse
|
10
|
Canini F, Borruso L, Newsham KK, D'Alò F, D'Acqui LP, Zucconi L. Wide divergence of fungal communities inhabiting rocks and soils in a hyper-arid Antarctic desert. Environ Microbiol 2023; 25:3671-3682. [PMID: 37964667 DOI: 10.1111/1462-2920.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Highly simplified microbial communities colonise rocks and soils of continental Antarctica ice-free deserts. These two habitats impose different selection pressures on organisms, yet the possible filtering effects on the diversity and composition of microbial communities have not hitherto been fully characterised. We hence compared fungal communities in rocks and soils in three localities of inner Victoria Land. We found low fungal diversity in both substrates, with a mean species richness of 28 across all samples, and significantly lower diversity in rocks than in soils. Rock and soil communities were strongly differentiated, with a multinomial species classification method identifying just three out of 328 taxa as generalists with no affinity for either substrate. Rocks were characterised by a higher abundance of lichen-forming fungi (typically Buellia, Carbonea, Pleopsidium, Lecanora, and Lecidea), possibly owing to the more protected environment and the porosity of rocks permitting photosynthetic activity. In contrast, soils were dominated by obligate yeasts (typically Naganishia and Meyerozyma), the abundances of which were correlated with edaphic factors, and the black yeast Cryomyces. Our study suggests that strong differences in selection pressures may account for the wide divergences of fungal communities in rocks and soils of inner Victoria Land.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bozen-Bolzano, Italy
| | - Kevin K Newsham
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, UK
| | - Federica D'Alò
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Porano (TR), Italy
| | - Luigi P D'Acqui
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Sesto Fiorentino (FI), Italy
| |
Collapse
|
11
|
Monjot A, Bronner G, Courtine D, Cruaud C, Da Silva C, Aury JM, Gavory F, Moné A, Vellet A, Wawrzyniak I, Colombet J, Billard H, Debroas D, Lepère C. Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait-based approach. Environ Microbiol 2023; 25:3406-3422. [PMID: 37916456 DOI: 10.1111/1462-2920.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
The advent of high-throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho-physio-phenological traits-based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over-expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over-expressing photosynthesis-, endocytosis- and phagosome-linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non-phagotrophic phytoplankton.
Collapse
Affiliation(s)
- Arthur Monjot
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gisèle Bronner
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Courtine
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Frederick Gavory
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Agnès Vellet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jonathan Colombet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Hermine Billard
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
12
|
Xu T, Dai T, Si J, Li X. Editorial: Diversity and molecular diagnostics of fungi and oomycetes in plants. Front Cell Infect Microbiol 2023; 13:1305306. [PMID: 37886668 PMCID: PMC10598375 DOI: 10.3389/fcimb.2023.1305306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Tingyan Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xin Li
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
McGuire PM, Butkevich N, Saksena AV, Walter MT, Shapleigh JP, Reid MC. Oxic-anoxic cycling promotes coupling between complex carbon metabolism and denitrification in woodchip bioreactors. Environ Microbiol 2023; 25:1696-1712. [PMID: 37105180 DOI: 10.1111/1462-2920.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non-point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C-limited. Prior studies have observed that oxic-anoxic cycling increased the mobilization of organic C, increased nitrate (NO3 - ) removal rates, and attenuated production of nitrous oxide (N2 O). Here, we use multi-omics approaches and amplicon sequencing of fungal 5.8S-ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3 - removal and attenuated N2 O production under redox-dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip-derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade I nosZ transcripts during the oxic-anoxic transition was strongly correlated with the N2 O yield. Analysis of metagenome-assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Natalie Butkevich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Aryaman V Saksena
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Rúa-Giraldo ÁL. Fungal taxonomy: A puzzle with many missing pieces. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:288-311. [PMID: 37721899 PMCID: PMC10588969 DOI: 10.7705/biomedica.7052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.
Collapse
|
15
|
Seto K, Simmons DR, Quandt CA, Frenken T, Dirks AC, Clemons RA, McKindles KM, McKay RML, James TY. A combined microscopy and single-cell sequencing approach reveals the ecology, morphology, and phylogeny of uncultured lineages of zoosporic fungi. mBio 2023; 14:e0131323. [PMID: 37486265 PMCID: PMC10470594 DOI: 10.1128/mbio.01313-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.
Collapse
Affiliation(s)
- Kensuke Seto
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - D. Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Cluster Nature and Society, HAS University of Applied Sciences, 's-Hertogenbosch, the Netherlands
| | - Alden C. Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A. Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Katelyn M. McKindles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
An X, Han S, Ren X, Sichone J, Fan Z, Wu X, Zhang Y, Wang H, Cai W, Sun F. Succession of Fungal Community during Outdoor Deterioration of Round Bamboo. J Fungi (Basel) 2023; 9:691. [PMID: 37367627 DOI: 10.3390/jof9060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Bamboo's mechanical and aesthetic properties are significantly influenced by fungi. However, few studies have been conducted to investigate the structure and dynamics of fungal communities in bamboo during its natural deterioration. In this study, fungal community succession and characteristic variations of round bamboo in roofed and unroofed environments over a period of 13 weeks of deterioration were deciphered using high-throughput sequencing and multiple characterization methods. A total of 459 fungal Operational Taxonomic Units (OTUs) from eight phyla were identified. The fungal community's richness of roofed bamboo samples showed an increasing trend, whereas that of unroofed bamboo samples presented a declining trend during deterioration. Ascomycota and Basidiomycota were the dominant phyla throughout the deterioration process in two different environments: Basidiomycota was found to be an early colonizer of unroofed bamboo samples. Principal Coordinates Analysis (PCoA) analysis suggested that the deterioration time had a greater impact on fungal community variation compared to the exposure conditions. Redundancy analysis (RDA) further revealed that temperature was a major environmental factor that contributed to the variation in fungal communities. Additionally, the bamboo epidermis presented a descending total amount of cell wall components in both roofed and unroofed conditions. The correlation analysis between the fungal community and relative abundance of three major cell wall components elucidated that Cladosporium was negatively correlated with hemicellulose in roofed samples, whereas they presented a positive correlation with hemicellulose and a negative correlation with lignin in unroofed samples. Furthermore, the contact angle decreased during the deterioration process in the roofed as well as unroofed samples, which could arise from the degradation of lignin. Our findings provide novel insights into the fungal community succession on round bamboo during its natural deterioration and give useful information for round bamboo protection.
Collapse
Affiliation(s)
- Xiaojiao An
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuaibo Han
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Ren
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - John Sichone
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Zhang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Wang
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Cai
- Anji Zhujing Bamboo Technology Co., Ltd., Huzhou 313300, China
| | - Fangli Sun
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China
- Microbes and Insects Control Institute of Bio-Based Materials, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Nilsson RH, Ryberg M, Wurzbacher C, Tedersoo L, Anslan S, Põlme S, Spirin V, Mikryukov V, Svantesson S, Hartmann M, Lennartsdotter C, Belford P, Khomich M, Retter A, Corcoll N, Gómez Martinez D, Jansson T, Ghobad-Nejhad M, Vu D, Sanchez-Garcia M, Kristiansson E, Abarenkov K. How, not if, is the question mycologists should be asking about DNA-based typification. MycoKeys 2023; 96:143-157. [PMID: 37214179 PMCID: PMC10194844 DOI: 10.3897/mycokeys.96.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Fungal metabarcoding of substrates such as soil, wood, and water is uncovering an unprecedented number of fungal species that do not seem to produce tangible morphological structures and that defy our best attempts at cultivation, thus falling outside the scope of the International Code of Nomenclature for algae, fungi, and plants. The present study uses the new, ninth release of the species hypotheses of the UNITE database to show that species discovery through environmental sequencing vastly outpaces traditional, Sanger sequencing-based efforts in a strongly increasing trend over the last five years. Our findings challenge the present stance of some in the mycological community - that the current situation is satisfactory and that no change is needed to "the code" - and suggest that we should be discussing not whether to allow DNA-based descriptions (typifications) of species and by extension higher ranks of fungi, but what the precise requirements for such DNA-based typifications should be. We submit a tentative list of such criteria for further discussion. The present authors hope for a revitalized and deepened discussion on DNA-based typification, because to us it seems harmful and counter-productive to intentionally deny the overwhelming majority of extant fungi a formal standing under the International Code of Nomenclature for algae, fungi, and plants.
Collapse
Affiliation(s)
- R. Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia
- College of Science, King Saud University, 1145 Riyadh, Saudi Arabia
| | - Sten Anslan
- Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Sergei Põlme
- Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Viacheslav Spirin
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Sten Svantesson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Martin Hartmann
- Botany Unit (Mycology), Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Helsinki, Finland
| | - Charlotte Lennartsdotter
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Pauline Belford
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Maryia Khomich
- Interaction Design and Software Engineering, Chalmers University of Technology, Lindholmsplatsen 1, 417 56 Göteborg, Sweden
| | - Alice Retter
- Department of Clinical Science, University of Bergen, Box 7804, 5020 Bergen, Norway
| | - Natàlia Corcoll
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Daniela Gómez Martinez
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Tobias Jansson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Masoomeh Ghobad-Nejhad
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Duong Vu
- Department of Biotechnology, Iranian Research Organization for Science and Technology, PO Box 3353-5111, Tehran 3353136846, Iran
| | | | - Erik Kristiansson
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Kessy Abarenkov
- Mycology and Microbiology Center, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
18
|
Fernández-Valero AD, Reñé A, Timoneda N, Sampedro N, Garcés E. Dinoflagellate hosts determine the community structure of marine Chytridiomycota: Demonstration of their prominent interactions. Environ Microbiol 2022; 24:5951-5965. [PMID: 36057937 PMCID: PMC10087856 DOI: 10.1111/1462-2920.16182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
The interactions of parasitic fungi with their phytoplankton hosts in the marine environment are mostly unknown. In this study, we evaluated the diversity of Chytridiomycota in phytoplankton communities dominated by dinoflagellates at several coastal locations in the NW Mediterranean Sea and demonstrated the most prominent interactions of these parasites with their hosts. The protist community in seawater differed from that in sediment, with the latter characterized by a greater heterogeneity of putative hosts, such as dinoflagellates and diatoms, as well as a chytrid community more diverse in its composition and with a higher relative abundance. Chytrids accounted for 77 amplicon sequence variants, of which 70 were found exclusively among different blooming host species. The relative abundance of chytrids was highest in samples dominated by the dinoflagellate genera Ostreopsis and Alexandrium, clearly indicating the presence of specific chytrid communities. The establishment of parasitoid-host co-cultures of chytrids and dinoflagellates allowed the morphological identification and molecular characterization of three species of Chytridiomycota, including Dinomyces arenysensis, as one of the most abundant environmental sequences, and the discovery of two other species not yet described.
Collapse
Affiliation(s)
- Alan Denis Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
20
|
The Introduction of Two New Species of Aquatic Fungi from Anzali Lagoon, Northern Iran. DIVERSITY 2022. [DOI: 10.3390/d14100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During a survey of aquatic fungi from Anzali Lagoon in Iran, several fungal specimens were isolated from freshwater habitats. Morphological evidence and comparing sequencing based on rDNA (ITS and LSU) and protein-coding genes (TEF1 and TUB2) showed that some isolates belong to undescribed fungal species. These isolates belong to Arthrobotrys and Sarocladium, two ascomycetes genera. Arthrobotrys hyrcanus, sp. nov., differs from closely related species such as A. dianchiensis by its larger conidia and septation of primary conidia. Sarocladium pseudokiliense, sp. nov., was similar to S. kiliense, but distinguished by its conidial shape and the absence of adelophialides and chlamydospores. Morphological descriptions, illustrations and multilocus phylogenetic analysis for both new species are provided.
Collapse
|
21
|
Adam C, Magdalena Ś. Species Diversity of Mycoplankton on the Background of Selected Indicators of Water Quality in Stratified Mesotrophic Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013298. [PMID: 36293879 PMCID: PMC9602596 DOI: 10.3390/ijerph192013298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/08/2023]
Abstract
The aim of the study was to determine mycoplankton species diversity in relation to the physico-chemical parameters of lake waters. The research was carried out in the summer months in 15 mesotrophic lakes and showed a high ecological significance index for Rhodotorula glutinis, Epicoccum nigrum, Fusarium sporotrichioides, and Trichophyton violaceum. Mycoplankton abundance and species diversity decreased with the depth of water, which coincided with a decrease in oxygen content and organic matter concentration. A high concentration of nitrogen compounds (total nitrogen-TN and dissolved nitrogen-DN) limited the development of mycobiota in the hypolimnion. In the metalimnion, the intensive development of organisms, especially bacteria, limited mycoplankton abundance despite perfect physical and chemical conditions for its development. Finally, mycoplankton functioned the best in slightly alkaline waters.
Collapse
Affiliation(s)
- Cudowski Adam
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Świsłocka Magdalena
- Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|
22
|
Agha R, Gerphagnon M, Schampera C, Rohrlack T, Fastner J, Wolinska J. Fate of hepatotoxin microcystin during infection of cyanobacteria by fungal chytrid parasites. HARMFUL ALGAE 2022; 118:102288. [PMID: 36195431 DOI: 10.1016/j.hal.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
Chytrid parasites are increasingly recognized as ubiquitous and potent control agents of phytoplankton, including bloom-forming toxigenic cyanobacteria. In order to explore the fate of the cyanobacterial toxin microcystins (MCs) and assess potential upregulation of their production under parasite attack, a laboratory experiment was conducted to evaluate short- and long-term variation in extracellular and intracellular MC in the cyanobacteria Planktothrix agardhii and P. rubescens, both under chytrid infection and in the presence of lysates of previously infected cyanobacteria. MCs release under parasite infection was limited and not different to uninfected cyanobacteria, with extracellular toxin shares never exceeding 10%, substantially below those caused by mechanical lysis induced by a cold-shock. Intracellular MC contents in P. rubescens under infection were not significantly different from uninfected controls, whereas infected P. agardhii showed a 1.5-fold increase in intracellular MC concentrations, but this was detected within the first 48 hours after parasite inoculation and not later, indicating no substantial MC upregulation in cells being infected. The presence of lysates of previously infected cyanobacteria did not elicit higher intracellular MC contents in exposed cyanobacteria, speaking against a putative upregulation of toxin production induced via quorum sensing in response to parasite attack. These results indicate that chytrid epidemics can constitute a bloom decay mechanism that is not accompanied by massive release of toxins into the medium.
Collapse
Affiliation(s)
- Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Mélanie Gerphagnon
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Charlotte Schampera
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Thomas Rohrlack
- Norwegian University of LifeSciences (NMBU), Department of Environmental Sciences, Ås, Norway
| | - Jutta Fastner
- German Environment Agency, Section Protection of Drinking Water Resources, Schichauweg 58, 12307 Berlin
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Van den Wyngaert S, Ganzert L, Seto K, Rojas-Jimenez K, Agha R, Berger SA, Woodhouse J, Padisak J, Wurzbacher C, Kagami M, Grossart HP. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. THE ISME JOURNAL 2022; 16:2242-2254. [PMID: 35764676 PMCID: PMC9381765 DOI: 10.1038/s41396-022-01267-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.
Collapse
Affiliation(s)
- Silke Van den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany. .,Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Lars Ganzert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany.,GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany.,Marbio, UiT- The Arctic University of Norway, Sykehusveien 23, 9019, Tromsø, Norway
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogayaku, Yokohama, Kanagawa, 240-8501, Japan.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | | | - Ramsy Agha
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Stella A Berger
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany
| | - Judit Padisak
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Egyetem u. 10, 8200, Veszprém, Hungary
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Maiko Kagami
- Faculty of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogayaku, Yokohama, Kanagawa, 240-8501, Japan.
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany. .,Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany.
| |
Collapse
|
24
|
The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J Fungi (Basel) 2022; 8:jof8090927. [PMID: 36135652 PMCID: PMC9501098 DOI: 10.3390/jof8090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area “Secche della Meloria”; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a “substrate specificity”, highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.
Collapse
|
25
|
Yu X, Li X, Ren C, Wang J, Wang C, Zou Y, Wang X, Li G, Li Q. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom. BIORESOURCE TECHNOLOGY 2022; 358:127386. [PMID: 35636680 DOI: 10.1016/j.biortech.2022.127386] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In order to determine a feasible degrading process for spent mushroom (SMS) with high lignin content, the present work used cow dung (CD), SMS, and a mixture of CD and SMS as substrates and evaluated the effects of vermicomposting on the microflora and the quality of composting products. Bacterial (R2 = 0.548, P = 0.001) and fungal (R2 = 0.314, P = 0.005) community both were different between composting and vermicomposting. Vermicomposting and substrates affected enzyme activities indirectly by affecting ammonium, pH, total carbon, richness, and bacterial community composition. These results suggested that appropriate regulation of environmental factors may increase microbial activity. An increase in ion-exchange capacity (up to 139.8%), pH (6.9%), and nitrate (71.1%) and a decrease in total carbon (31.2%) and carbon/nitrogen ratio (32.1%) in vermicomposting indicated that earthworms could further improve product quality. Co-composting with CD and integrated subsequent vermicomposting efficiently promoted the maturity of SMS.
Collapse
Affiliation(s)
- Xiaolan Yu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, Hainan, China
| | - Xiaoliang Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Haikou 571101, China
| | - Changqi Ren
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinchuang Wang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, Hainan, China.
| | - Chaobi Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Yukun Zou
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, Hainan, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Guangyi Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, Hainan, China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, Hainan, China.
| |
Collapse
|
26
|
Biological Microbial Interactions from Cooccurrence Networks in a High Mountain Lacustrine District. mSphere 2022; 7:e0091821. [PMID: 35642514 PMCID: PMC9241510 DOI: 10.1128/msphere.00918-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions (“interacting guilds”) that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions in situ. IMPORTANCE A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior in situ.
Collapse
|
27
|
Papazlatani CV, Karas PA, Lampronikou E, Karpouzas DG. Using biobeds for the treatment of fungicide-contaminated effluents from various agro-food processing industries: Microbiome responses and mobile genetic element dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153744. [PMID: 35149062 DOI: 10.1016/j.scitotenv.2022.153744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Agro-food processing industries generate large amounts of pesticide-contaminated effluents that pose a significant environmental threat if managed improperly. Biopurification systems like biobeds could be utilized for the depuration of these effluents although direct evidence for their efficiency are still lacking. We employed a column leaching experiment with pilot biobeds to (i) assess the depuration potential of biobeds against fungicide-contaminated effluents from seed-producing (carboxin, metalaxyl-M, fluxapyroxad), bulb-handling (thiabendazole, fludioxonil and chlorothalonil) and fruit-packaging (fludioxonil, imazalil) industries, (ii) to monitor microbial succession via amplicon sequencing and (iii) to determine the presence and dynamics of mobile genetic elements like intl1, IS1071, IncP-1 and IncP-1ε often associated with the transposition of pesticide-degrading genes. Biobeds could effectively retain (adsorbed but extractable with organic solvents) and dissipate (degraded and/or not extractable with organic solvents) the fungicides that were contained in the agro-industrial effluents with 93.1-99.98% removal efficiency in all cases. Lipophilic substances like fluxapyroxad were mostly retained in the biobed while more polar substances like metalaxyl-M and carboxin were mostly dissipated or showed higher leaching potential like metalaxyl-M. Biobeds supported a bacterial and fungal community that was not affected by fungicide application but showed clear temporal patterns in the different biobed horizons. This was most probably driven by the establishment of microaerophilic conditions upon water saturation of biobeds, as supported by the significant increase in the abundance of facultative or strict anaerobes like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Wastewater application did not affect the dynamics of mobile genetic elements in biobeds whose abundance (intl1, IS1071, IncP-1ε) showed significant increases with time. Our findings suggest that biobeds could effectively decontaminate fungicide-contaminated effluents produced by agro-food industries and support a rather resilient microbial community.
Collapse
Affiliation(s)
- Christina V Papazlatani
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Eleni Lampronikou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece.
| |
Collapse
|
28
|
Sen K, Sen B, Wang G. Diversity, Abundance, and Ecological Roles of Planktonic Fungi in Marine Environments. J Fungi (Basel) 2022; 8:jof8050491. [PMID: 35628747 PMCID: PMC9147564 DOI: 10.3390/jof8050491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Fungi are considered terrestrial and oceans are a “fungal desert”. However, with the considerable progress made over past decades, fungi have emerged as morphologically, phylogenetically, and functionally diverse components of the marine water column. Although their communities are influenced by a plethora of environmental factors, the most influential include salinity, temperature, nutrients, and dissolved oxygen, suggesting that fungi respond to local environmental gradients. The biomass carbon of planktonic fungi exhibits spatiotemporal dynamics and can reach up to 1 μg CL−1 of seawater, rivaling bacteria on some occasions, which suggests their active and important role in the water column. In the nutrient-rich coastal water column, there is increasing evidence for their contribution to biogeochemical cycling and food web dynamics on account of their saprotrophic, parasitic, hyper-parasitic, and pathogenic attributes. Conversely, relatively little is known about their function in the open-ocean water column. Interestingly, methodological advances in sequencing and omics approach, the standardization of sequence data analysis tools, and integration of data through network analyses are enhancing our current understanding of the ecological roles of these multifarious and enigmatic members of the marine water column. This review summarizes the current knowledge of the diversity and abundance of planktonic fungi in the world’s oceans and provides an integrated and holistic view of their ecological roles.
Collapse
Affiliation(s)
- Kalyani Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Edgcomb VP, Teske AP, Mara P. Microbial Hydrocarbon Degradation in Guaymas Basin-Exploring the Roles and Potential Interactions of Fungi and Sulfate-Reducing Bacteria. Front Microbiol 2022; 13:831828. [PMID: 35356530 PMCID: PMC8959706 DOI: 10.3389/fmicb.2022.831828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.
Collapse
Affiliation(s)
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paraskevi Mara
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
30
|
Ilicic D, Woodhouse J, Karsten U, Zimmermann J, Wichard T, Quartino ML, Campana GL, Livenets A, Van den Wyngaert S, Grossart HP. Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones. Front Microbiol 2022; 13:805694. [PMID: 35308360 PMCID: PMC8931407 DOI: 10.3389/fmicb.2022.805694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.
Collapse
Affiliation(s)
- Doris Ilicic
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Jason Woodhouse
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Jonas Zimmermann
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Berlin, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Gabriela Laura Campana
- Department of Coastal Biology, Argentinean Antarctic Institute, Buenos Aires, Argentina
- Department of Basic Sciences, National University of Luján, Luján, Buenos Aires, Argentina
| | - Alexandra Livenets
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
| | | | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- *Correspondence: Hans-Peter Grossart,
| |
Collapse
|
31
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
32
|
Pham TT, Dinh KV, Nguyen VD. Biodiversity and Enzyme Activity of Marine Fungi with 28 New Records from the Tropical Coastal Ecosystems in Vietnam. MYCOBIOLOGY 2021; 49:559-581. [PMID: 35035248 PMCID: PMC8725946 DOI: 10.1080/12298093.2021.2008103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.
Collapse
Affiliation(s)
- Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Khuong V. Dinh
- Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| |
Collapse
|
33
|
Azpiazu-Muniozguren M, Perez A, Rementeria A, Martinez-Malaxetxebarria I, Alonso R, Laorden L, Gamboa J, Bikandi J, Garaizar J, Martinez-Ballesteros I. Fungal Diversity and Composition of the Continental Solar Saltern in Añana Salt Valley (Spain). J Fungi (Basel) 2021; 7:1074. [PMID: 34947056 PMCID: PMC8703443 DOI: 10.3390/jof7121074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
The Añana Salt Valley in Spain is an active continental solar saltern formed 220 million years ago. To date, no fungal genomic studies of continental salterns have been published, although DNA metabarcoding has recently expanded researchers' ability to study microbial community structures. Accordingly, the aim of this present study was to evaluate fungal diversity using the internal transcribed spacer (ITS) metabarcoding at different locations along the saltern (springs, ponds, and groundwater) to describe the fungal community of this saline environment. A total of 380 fungal genera were detected. The ubiquity of Saccharomyces was observed in the saltern, although other halotolerant and halophilic fungi like Wallemia, Cladosporium, and Trimmatostroma were also detected. Most of the fungi observed in the saltern were saprotrophs. The fungal distribution appeared to be influenced by surrounding conditions, such as the plant and soil contact, cereal fields, and vineyards of this agricultural region.
Collapse
Affiliation(s)
- Maia Azpiazu-Muniozguren
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Alba Perez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain;
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Lorena Laorden
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Javier Gamboa
- Biogenetics, Portal de Zurbano 3, 6-B, 01013 Vitoria-Gasteiz, Spain;
| | - Joseba Bikandi
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Javier Garaizar
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| | - Ilargi Martinez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.A.-M.); (A.P.); (I.M.-M.); (R.A.); (L.L.); (J.B.); (J.G.)
| |
Collapse
|
34
|
Reynolds NK, Jusino MA, Stajich JE, Smith ME. Understudied, underrepresented, and unknown: Methodological biases that limit detection of early diverging fungi from environmental samples. Mol Ecol Resour 2021; 22:1065-1085. [PMID: 34695878 DOI: 10.1111/1755-0998.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Metabarcoding is an important tool for understanding fungal communities. The internal transcribed spacer (ITS) rDNA is the accepted fungal barcode but has known problems. The large subunit (LSU) rDNA has also been used to investigate fungal communities but available LSU metabarcoding primers were mostly designed to target Dikarya (Ascomycota + Basidiomycota) with little attention to early diverging fungi (EDF). However, evidence from multiple studies suggests that EDF comprise a large portion of unknown diversity in community sampling. Here, we investigate how DNA marker choice and methodological biases impact recovery of EDF from environmental samples. We focused on one EDF lineage, Zoopagomycota, as an example. We evaluated three primer sets (ITS1F/ITS2, LROR/LR3, and LR3 paired with new primer LR22F) to amplify and sequence a Zoopagomycota mock community and a set of 146 environmental samples with Illumina MiSeq. We compared two taxonomy assignment methods and created an LSU reference database compatible with AMPtk software. The two taxonomy assignment methods recovered strikingly different communities of fungi and EDF. Target fragment length variation exacerbated PCR amplification biases and influenced downstream taxonomic assignments, but this effect was greater for EDF than Dikarya. To improve identification of LSU amplicons we performed phylogenetic reconstruction and illustrate the advantages of this critical tool for investigating identified and unidentified sequences. Our results suggest much of the EDF community may be missed or misidentified with "standard" metabarcoding approaches and modified techniques are needed to understand the role of these taxa in a broader ecological context.
Collapse
Affiliation(s)
- Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Michelle A Jusino
- Center for Forest Mycology Research, USDA Forest Service, Northern Research Station, Madison, Wisconsin, USA
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
Zhou G, Gao S, Chang D, Shimizu KY, Cao W. Succession of fungal community and enzyme activity during the co-decomposition process of rice (Oryza sativa L.) straw and milk vetch (Astragalus sinicus L.). WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:1-10. [PMID: 34390974 DOI: 10.1016/j.wasman.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The co-incorporation of rice straw (RS) and milk vetch (MV) into paddy fields has been increasingly applied as a sustainable farming practice in southern China. Our previous study revealed the contribution of bacteria to the co-decomposition of the RS and MV mixture, although additional underlying factors driving the co-decomposition process need to be clarified. The present study further determined the succession of fungal communities and enzyme activity in the co-decomposition process of the RS and MV mixture. The results showed that non-additive synergistic effects on biomass loss were observed in 55.6% of the sampled RS and MV mixture during the co-decomposition process, stimulating mixture decomposition. Overall fungal abundance was 19.6-30.6% higher in the RS and MV mixture throughout the study than in the single residue. Fungal diversity and community structure were mainly affected by the sampling date rather than the type of residue. Specifically, mixing RS and MV significantly increased the abundance of Peziza sp. and Reticulascus tulasneorum (lignocellulose- and lignin-decomposing fungi) and exhibited higher activities of C- and N-related hydrolases than monospecific residues. Random forest (RF) models showed that bacteria contributed more to the residue decomposition and activities of C-related hydrolases, N-related hydrolases, and oxidases than fungi. However, both RF and partial least squares path models revealed that fungal abundance and community structure directly or indirectly affected the residue decomposition rate. These findings showed that mixing RS and MV could stimulate their decomposition by enhancing C-related hydrolase activity and Peziza sp. and Reticulascus tulasneorum abundance.
Collapse
Affiliation(s)
- Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
36
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
37
|
Ramírez GA, Mara P, Sehein T, Wegener G, Chambers CR, Joye SB, Peterson RN, Philippe A, Burgaud G, Edgcomb VP, Teske AP. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 2021; 16:e0256321. [PMID: 34495995 PMCID: PMC8425543 DOI: 10.1371/journal.pone.0256321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
- * E-mail:
| | - Paraskevi Mara
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Taylor Sehein
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Germany
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Christopher R. Chambers
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Richard N. Peterson
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Aurélie Philippe
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Gaëtan Burgaud
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Virginia P. Edgcomb
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Andreas P. Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| |
Collapse
|
38
|
Rosa LH, da Costa Coelho L, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS. Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease. Extremophiles 2021; 25:471-481. [PMID: 34480232 DOI: 10.1007/s00792-021-01240-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by 'fairy ring' disease using metabarcoding. A total of 127 fungal and 706 bacterial taxa were assigned. Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota. The fungal community displayed high indices of diversity, richness and dominance, which increased from healthy through infected to dead moss samples. A range of fungal taxa were more abundant in dead rather than healthy or fairy ring moss samples. Bacterial diversity and richness were greatest in healthy moss and least within the infected fairy ring. The dominant prokaryotic phyla were Actinobacteriota, Proteobacteria, Bacteroidota and Cyanobacteria. Cyanophyceae sp., whilst consistently dominant, were less abundant in fairy ring samples. Our data confirmed the presence and abundance of a range of plant pathogenic fungi, supporting the hypothesis that the disease is linked with multiple fungal taxa. Further studies are required to characterise the interactions between plant pathogenic fungi and their host Antarctic mosses. Monitoring the dynamics of mutualist, phytopathogenic and decomposer microorganisms associated with moss carpets may provide bioindicators of moss health.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lívia da Costa Coelho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | |
Collapse
|
39
|
Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J Fungi (Basel) 2021; 7:jof7090703. [PMID: 34575741 PMCID: PMC8467358 DOI: 10.3390/jof7090703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Culture techniques are vital in both traditional and modern fungal taxonomy. Establishing sexual-asexual links and synanamorphs, extracting DNA and secondary metabolites are mainly based on cultures. However, it is widely accepted that a large number of species are not sporulating in nature while others cannot be cultured. Recent ecological studies based on culture-independent methods revealed these unculturable taxa, i.e., dark taxa. Recent fungal diversity estimation studies suggested that environmental sequencing plays a vital role in discovering missing species. However, Sanger sequencing is still the main approach in determining DNA sequences in culturable species. In this paper, we summarize culture-based and culture-independent methods in the study of ascomycetous taxa. High-throughput sequencing of leaf endophytes, leaf litter fungi and fungi in aquatic environments is important to determine dark taxa. Nevertheless, currently, naming dark taxa is not recognized by the ICN, thus provisional naming of them is essential as suggested by several studies.
Collapse
|
40
|
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021; 12:719000. [PMID: 34512597 PMCID: PMC8430337 DOI: 10.3389/fmicb.2021.719000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
Collapse
Affiliation(s)
- Vinit Kumar
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | | | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
41
|
High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments. Appl Environ Microbiol 2021; 87:e0092821. [PMID: 34190611 DOI: 10.1128/aem.00928-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungi are key components of microbial communities in mangrove wetlands, with important roles in the transformation of nutrients and energy. However, existing studies typically focus on cultivable fungi and seldom on the structure and driving factors of entire fungal communities. The compositions, community assembly, and interaction patterns of mangrove fungal communities on a large scale remain elusive. Here, biogeography, assembly, and co-occurrence patterns of fungal communities in mangroves across eastern to southern China were systematically analyzed by targeting the entire internal transcribed spacer (ITS) region with high-throughput Pacific Biosciences single-molecule real-time sequencing. The analysis revealed a high level of fungal diversity, including a number of basal fungal lineages not previously reported in mangroves, such as Rozellomycota and Chytridiomycota. Beta nearest-taxon index analyses suggested a determinant role of dispersal limitation on fungal community in overall and most individual mangroves, with support from the strong distance-decay patterns of community similarity. Further, nonmetric multidimensional scaling analyses revealed similar biogeographies of dominant and rare fungal communities. A minor role of environmental selection on the fungal community was noted, with geographical location and sediment depth as crucial factors driving the distribution of both, the dominant and rare taxa. Finally, network analysis revealed high modularized co-occurrence patterns of fungal community in mangrove sediments, and the keystone taxa might play important roles in microbial interactions and ecological functions. The investigation expands our understanding of biogeography, assembly patterns, driving factors, and co-occurrence relationships of mangrove fungi and will spur the further functional exploration and protection of fungal resources in mangroves. IMPORTANCE As key components of microbial community in mangroves, fungi have important ecological functions. However, the fungal community in mangroves on a large scale is generally elusive, and mangroves are declining rapidly due to climate change and anthropogenic activities. This work provides an overview of fungal community structure and biogeography in mangrove wetlands along a >9,000-km coastline across eastern to southern China. Our study observed a high number of basal fungal lineages, such as Rozellomycota and Chytridiomycota, in mangrove sediments. In addition, our results highlight a crucial role of dispersal limitation and a minor role of environmental selections on fungal communities in mangrove sediments. These novel findings add important knowledge about the structure, assembly processes, and driving factors of fungal communities in mangrove sediments.
Collapse
|
42
|
Laundon D, Cunliffe M. A Call for a Better Understanding of Aquatic Chytrid Biology. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:708813. [PMID: 37744140 PMCID: PMC10512372 DOI: 10.3389/ffunb.2021.708813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/09/2021] [Indexed: 09/26/2023]
Abstract
The phylum Chytridiomycota (the "chytrids") is an early-diverging, mostly unicellular, lineage of fungi that consists of significant aquatic saprotrophs, parasites, and pathogens, and is of evolutionary interest because its members retain biological traits considered ancestral in the fungal kingdom. While the existence of aquatic chytrids has long been known, their fundamental biology has received relatively little attention. We are beginning to establish a detailed understanding of aquatic chytrid diversity and insights into their ecological functions and prominence. However, the underpinning biology governing their aquatic ecological activities and associated core processes remain largely understudied and therefore unresolved. Many biological questions are outstanding for aquatic chytrids. What are the mechanisms that control their development and life cycle? Which core processes underpin their aquatic influence? What can their biology tell us about the evolution of fungi and the wider eukaryotic tree of life? We propose that the field of aquatic chytrid ecology could be further advanced through the improved understanding of chytrid biology, including the development of model aquatic chytrids and targeted studies using culture-independent approaches.
Collapse
Affiliation(s)
- Davis Laundon
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
43
|
Frolova EV, Paskerova GG, Smirnov AV, Nassonova ES. Molecular phylogeny and new light microscopic data of Metchnikovella spiralis (Microsporidia: Metchnikovellidae), a hyperparasite of eugregarine Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 2021; 148:779-786. [PMID: 33843504 PMCID: PMC11010189 DOI: 10.1017/s0031182021000603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022]
Abstract
Metchnikovellids are a deep-branching group of microsporidia, parasites of gregarines inhabiting the alimentary tract of polychaetes and some other invertebrates. The diversity and phylogeny of these hyperparasites remain poorly studied. Modern descriptions and molecular data are still lacking for many species. The results of a light microscopy study and molecular data for Metchnikovella spiralis Sokolova et al., 2014, a hyperparasite of the eugregarine Polyrhabdina sp., isolated from the polychaete Pygospio elegans, were obtained. The original description of M. spiralis was based primarily on the analysis of stained preparations and transmission electron microscopy images. Here, the species description was complemented with the results of in vivo observations and phylogenetic analysis based on the SSU rRNA gene. It was shown that in this species, free sporogony precedes sac-bound sporogony, as it occurs in the life cycle of most other metchnikovellids. Spore sacs are entwined with spirally wound cords, and possess only one polar plug. Phylogenetic analyses did not group M. spiralis with M. incurvata, another metchnikovellid from the same gregarine species, but placed it as a sister branch to Amphiacantha. The paraphyletic nature of the genus Metchnikovella was discussed. The taxonomic summary for M. spiralis was emended.
Collapse
Affiliation(s)
- Ekaterina V. Frolova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, Saint Petersburg194064, Russian Federation
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Alexey V. Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| | - Elena S. Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, Saint Petersburg194064, Russian Federation
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg199034, Russian Federation
| |
Collapse
|
44
|
Blaalid R, Khomich M. Current knowledge of Chytridiomycota diversity in Northern Europe and future research needs. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Abstract
Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.
Collapse
|
46
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
47
|
Carreira C, Lønborg C, Kühl M, Lillebø AI, Sandaa RA, Villanueva L, Cruz S. Fungi and viruses as important players in microbial mats. FEMS Microbiol Ecol 2021; 96:5910486. [PMID: 32966583 DOI: 10.1093/femsec/fiaa187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
Microbial mats are compacted, surface-associated microbial ecosystems reminiscent of the first living communities on early Earth. While often considered predominantly prokaryotic, recent findings show that both fungi and viruses are ubiquitous in microbial mats, albeit their functional roles remain unknown. Fungal research has mostly focused on terrestrial and freshwater ecosystems where fungi are known as important recyclers of organic matter, whereas viruses are exceptionally abundant and important in aquatic ecosystems. Here, viruses have shown to affect organic matter cycling and the diversity of microbial communities by facilitating horizontal gene transfer and cell lysis. We hypothesise fungi and viruses to have similar roles in microbial mats. Based on the analysis of previous research in terrestrial and aquatic ecosystems, we outline novel hypotheses proposing strong impacts of fungi and viruses on element cycling, food web structure and function in microbial mats, and outline experimental approaches for studies needed to understand these interactions.
Collapse
Affiliation(s)
- Cátia Carreira
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Christian Lønborg
- Section for Applied Marine Ecology and Modelling, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Ana I Lillebø
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
| | - Sónia Cruz
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
48
|
|
49
|
Sedimentary Ancient DNA (sedaDNA) Reveals Fungal Diversity and Environmental Drivers of Community Changes throughout the Holocene in the Present Boreal Lake Lielais Svētiņu (Eastern Latvia). Microorganisms 2021; 9:microorganisms9040719. [PMID: 33807307 PMCID: PMC8066534 DOI: 10.3390/microorganisms9040719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 01/16/2023] Open
Abstract
Fungi are ecologically important in several ecosystem processes, yet their community composition, ecophysiological roles, and responses to changing environmental factors in historical sediments are rarely studied. Here we explored ancient fungal DNA from lake Lielais Svētiņu sediment throughout the Holocene (10.5 kyr) using the ITS metabarcoding approach. Our data revealed diverse fungal taxa and smooth community changes during most of the Holocene with rapid changes occurring in the last few millennia. More precisely, plankton parasitic fungi became more diverse from the Late Holocene (2–4 kyr) which could be related to a shift towards a cooler climate. The Latest Holocene (~2 kyr) showed a distinct increase in the richness of plankton parasites, mycorrhizal, and plant pathogenic fungi which can be associated with an increased transfer rate of plant material into the lake and blooms of planktonic organisms influenced by increased, yet moderate, human impact. Thus, major community shifts in plankton parasites and mycorrhizal fungi could be utilized as potential paleo-variables that accompany host-substrate dynamics. Our work demonstrates that fungal aDNA with predicted ecophysiology and host specificity can be employed to reconstruct both aquatic and surrounding terrestrial ecosystems and to estimate the influence of environmental change.
Collapse
|
50
|
Nassonova ES, Bondarenko NI, Paskerova GG, Kováčiková M, Frolova EV, Smirnov AV. Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis. Parasitol Res 2021; 120:525-534. [PMID: 33415389 DOI: 10.1007/s00436-020-06976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The species Metchnikovella dogieli (Paskerova et al. Protistology 10:148-157, 2016) belongs to one of the early diverging microsporidian groups, the metchnikovellids (Microsporidia: Metchnikovellidae). In relation to typical ('core') microsporidia, this group is considered primitive. The spores of metchnikovellids have no classical polar sac-anchoring disk complex, no coiled polar tube, no posterior vacuole, and no polaroplast. Instead, they possess a short thick manubrium that expands into a manubrial cistern. These organisms are hyperparasites; they infect gregarines that parasitise marine invertebrates. M. dogieli is a parasite of the archigregarine Selenidium pygospionis (Paskerova et al. Protist 169:826-852, 2018), which parasitises the polychaete Pygospio elegans. This species was discovered in samples collected in the silt littoral zone at the coast of the White Sea, North-West Russia, and was described based on light microscopy. No molecular data are available for this species, and the publicly accessible genomic data for metchnikovellids are limited to two species: M. incurvata Caullery & Mesnil, 1914 and Amphiamblys sp. WSBS2006. In the present study, we applied single-cell genomics methods with whole-genome amplification to perform next-generation sequencing of M. dogieli genomic DNA. We performed a phylogenetic analysis based on the SSU rRNA gene and reconstructed a multigene phylogeny using a concatenated alignment that included 46 conserved single-copy protein domains. The analyses recovered a fully supported clade of metchnikovellids as a basal group to the core microsporidia. Two members of the genus Metchnikovella did not form a clade in our tree. This may indicate that this genus is paraphyletic and requires revision.
Collapse
Affiliation(s)
- Elena S Nassonova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064. .,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034.
| | - Natalya I Bondarenko
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Gita G Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Ekaterina V Frolova
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, Russia, 194064.,Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| | - Alexey V Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, 199034
| |
Collapse
|