1
|
Sapkota R, Jørgensen LN, Boeglin L, Nicolaisen M. Fungal Communities of Spring Barley from Seedling Emergence to Harvest During a Severe Puccinia hordei Epidemic. MICROBIAL ECOLOGY 2023; 85:617-627. [PMID: 35229200 DOI: 10.1007/s00248-022-01985-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
All plant tissues from leaves, stems, and roots are hosting a wide diversity of fungal species. Our understanding of the assembly of this diversity of fungi during the plant growth cycle is limited. Here, we characterized the mycobiome of three spring barley cultivars grown in Zealand, Denmark, at weekly intervals during a growth season from seedling emergence to senescence and seed maturity. A notable proportion of members of the fungal communities were shared among different plant organs, but community dynamics were tissue-specific. A severe attack of Puccinia hordei occurring during the vegetative stage had profound effects on the mycobiome, and P. hordei biomass displaced that of other taxa. Plant tissue type was the most important factor determining the mycobiome, but also plant age was contributing significantly. Using a random forest model, we found that specific members of the mycobiome were responding differently to plant age, for instance, Olpidium and Articulospora in roots, Dioszegia and Sporobolomyces in leaves, Pyrenophora in stems, and Epicoccum in heads. A co-occurrence network analysis revealed complex interactions among fungal OTUs, and network connectivity was changing as per plant growth stage and plant tissue type. This study contributes to the understanding of assembly of fungal communities in cereals by providing a detailed description of fungal communities associated with barley. This knowledge will be vital for microbiome assisted plant health management and our study will serve as an important baseline for future efforts to harness microbiota in cereal health.
Collapse
Affiliation(s)
- Rumakanta Sapkota
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Laure Boeglin
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
2
|
Interaction between growth environment and host progeny shape fungal endophytic assemblages in transplanted Fagus sylvatica. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
|
4
|
Likar M, Grašič M, Stres B, Regvar M, Gaberščik A. Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. J Fungi (Basel) 2022; 8:284. [PMID: 35330286 PMCID: PMC8951327 DOI: 10.3390/jof8030284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/29/2023] Open
Abstract
Common reed (Phragmites australis) has high biomass production and is primarily subjected to decomposition processes affected by multiple factors. To predict litter decomposition dynamics in intermittent lakes, it is critical to understand how communities of fungi, as the primary decomposers, form under different habitat conditions. This study reports the shotgun metagenomic sequencing of the initial fungal communities on common reed leaves decomposing under different environmental conditions. We demonstrate that a complex network of fungi forms already on the plant persists into the decomposition phase. Phragmites australis leaves contained at least five fungal phyla, with abundant Ascomycota (95.7%) and Basidiomycota (4.1%), identified as saprotrophs (48.6%), pathotrophs (22.5%), and symbiotrophs (12.6%). Most of the correlations between fungi in fresh and decomposing leaves were identified as co-occurrences (positive correlations). The geographic source of litter and leaf age did not affect the structure and diversity of fungal communities. Keystone taxa were mostly moisture-sensitive. Our results suggest that habitat has a strong effect on the formation of the fungal communities through keystone taxa. Nevertheless, it can also alter the proportions of individual fungal groups in the community through indirect effects on competition between the fungal taxa and their exploitation of favourable conditions.
Collapse
Affiliation(s)
- Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Mateja Grašič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Marjana Regvar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| | - Alenka Gaberščik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.); (M.R.); (A.G.)
| |
Collapse
|
5
|
Geml J, Arnold AE, Semenova-Nelsen TA, Nouhra ER, Drechsler-Santos ER, Góes-Neto A, Morgado LN, Ódor P, Hegyi B, Grau O, Ibáñez A, Tedersoo L, Lutzoni F. Community dynamics of soil-borne fungal communities along elevation gradients in neotropical and paleotropical forests. Mol Ecol 2022; 31:2044-2060. [PMID: 35080063 DOI: 10.1111/mec.16368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Because of their steep gradients in abiotic and biotic factors, mountains offer an ideal setting to illuminate the mechanisms that underlie patterns of species distributions and community assembly. We compared the composition of taxonomically and functionally diverse fungal communities in soils along five elevational gradients in mountains of the Neo- and Paleotropics (northern Argentina, southern Brazil, Panama, Malaysian Borneo, and Papua New Guinea). Both richness and composition of soil fungal communities reflect environmental factors, particularly temperature and soil pH, with some shared patterns among neotropical and paleotropical regions. Community dynamics are characterized by replacement of species along elevation gradients, implying a relatively narrow elevation range for most fungi, which appears to be driven by contrasting environmental preferences among both functional and taxonomic groups. For functional groups dependent on symbioses with plants (especially ectomycorrhizal fungi), the distribution of host plants drives richness and community composition, resulting in important differences in elevational patterns between neotropical and paleotropical montane communities. The pronounced compositional and functional turnover along elevation gradients implies that tropical montane forest fungi will be sensitive to climate change, resulting in shifts in composition and functionality over time.
Collapse
Affiliation(s)
- József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Tatiana A Semenova-Nelsen
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands
| | - Eduardo R Nouhra
- Multidisciplinary Institute of Plant Biology (IMBIV), CONICET, FCEFyN, National University of Córdoba, Córdoba, Córdoba, Argentina
| | | | - Aristóteles Góes-Neto
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis N Morgado
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA, Leiden, The Netherlands.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Péter Ódor
- Institute of Ecology and Botany, Centre for Ecological Research, 2163, Vácrátót, Hungary
| | - Balázs Hegyi
- Research and Development Centre, Eszterházy Károly Catholic University, H-3300, Eger, Hungary.,Doctoral School of Earth Science and Department for Landscape Protection and Environmental Geography, University of Debrecen, H-4002, Debrecen, Hungary
| | - Oriol Grau
- CREAF, Global Ecology Unit, 08193, Cerdanyola del Vallès, Catalonia, Spain.,Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ. Antilles, Univ. Guyane), Campus Agronomique, Kourou, French Guiana.,Spanish National Research Council (CSIC), Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
| | - Alicia Ibáñez
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, U.S.A
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 50411, Tartu, Estonia
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC, 27708, U.S.A
| |
Collapse
|
6
|
Optimization of Protocol for Construction of Fungal ITS Amplicon Library for High-Throughput Illumina Sequencing to Study the Mycobiome of Aspen Leaves. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-Throughput Illumina Sequencing (HTS) can be used to study metagenomes, for example, those of importance for plant health. However, protocols must be optimized according to the plant system in question, the focal microorganisms in the samples, the marker genes selected, and the number of environmental samples. We optimized the protocol for metagenomic studies of aspen leaves, originating from varied genotypes sampled across the growing season, and consequently varying in phenolic composition and in the abundance of endo- and epiphytic fungal species. We optimized the DNA extraction protocol by comparing commercial kits and evaluating five fungal ribosomal specific primers (Ps) alone, and with extended primers that allow binding to sample-specific index primers, and we then optimized the amplification with these composite Ps for 380 samples. The fungal DNA concentration in the samples varied from 561 ng/µL to 1526 ng/µL depending on the DNA extraction kit used. However, binding to phenolic compounds affected DNA quality as assessed by Nanodrop measurements (0.63–2.04 and 0.26–2.00 absorbance ratios for 260/280 and 260/230, respectively), and this was judged to be more important in making our choice of DNA extraction kit. We initially modified the PCR conditions after determining the concentration of DNA extract in a few subsamples and then evaluated and optimized the annealing temperature, duration, and number of cycles to obtain the required amplification and PCR product bands. For three specific Ps, the extended Ps produced dimers and unexpected amplicon fragments due to nonspecific binding. However, we found that the specific Ps that targeted the ITS2 region of fungal rDNA successfully amplified this region for every sample (with and without the extension PP) resulting in the desired PCR bands, and also allowing the addition of sample-specific index primers, findings which were successfully verified in a second PCR. The optimized protocol allowed us to successfully prepare an amplicon library in order to subject the intended 380 environmental samples to HTS.
Collapse
|
7
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
8
|
Kinnunen-Grubb M, Sapkota R, Vignola M, Nunes IM, Nicolaisen M. Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiol Ecol 2021; 96:5911094. [PMID: 32970821 DOI: 10.1093/femsec/fiaa196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Plants-microbiome associations are the result of millions of years of co-evolution. Due to breeding-accelerated plant evolution in non-native and highly managed soil, plant-microbe links could have been lost. We hypothesized that post-domestication breeding of wheat changed the root-associated microbiome. To test this, we analyzed root-associated fungal and bacterial communities shortly after emergence of seedlings representing a transect of wheat evolution including modern wheat, landraces and ancestors. Numbers of observed microbial taxa were highest in landraces bred in low-input agricultural systems, and lowest in ancestors that had evolved in native soils. The microbial communities of modern cultivars were different from those of landraces and ancestors. Old wheat accessions enriched Acidobacteria and Actinobacteria, while modern cultivars enriched OTUs from Candidatus Saccharibacteria, Verrucomicrobia and Firmicutes. The fungal pathogens Fusarium, Neoascochyta and Microdochium enriched in modern cultivars. Both bacterial and fungal communities followed a neutral assembly model when bulk soil was considered as the source community, but accessions of the ancient Triticum turgidum and T. monococcum created a more isolated environment in their roots. In conclusion, wheat root-associated microbiomes have dramatically changed through a transect of breeding history.
Collapse
Affiliation(s)
- Marta Kinnunen-Grubb
- Novozymes A/S, Microbiomics and Microbe Discovery Denmark, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Marta Vignola
- School of Engineering, University of Glasgow, 78 Oakfield Ave, Glasgow G12 8LS, United Kingdom
| | - Inês Marques Nunes
- Novozymes A/S, Microbiomics and Microbe Discovery Denmark, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
9
|
Siddique AB, Biella P, Unterseher M, Albrectsen BR. Mycobiomes of Young Beech Trees Are Distinguished by Organ Rather Than by Habitat, and Community Analyses Suggest Competitive Interactions Among Twig Fungi. Front Microbiol 2021; 12:646302. [PMID: 33936005 PMCID: PMC8086555 DOI: 10.3389/fmicb.2021.646302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Beech trees (Fagus sylvatica) are prominent keystone species of great economic and environmental value for central Europe, hosting a diverse mycobiome. The composition of endophyte communities may depend on tree health, plant organ or tissue, and growth habitat. To evaluate mycobiome communalities at local scales, buds, and twigs were sampled from two young healthy mountain beech stands in Bavaria, Germany, four kilometers apart. With Illumina high-throughput sequencing, we found 113 fungal taxa from 0.7 million high-quality reads that mainly consisted of Ascomycota (52%) and Basidiomycota (26%) taxa. Significant correlations between richness and diversity indices were observed (p < 0.05), and mycobiomes did not differ between habitats in the current study. Species richness and diversity were higher in twigs compared to spring buds, and the assemblages in twigs shared most similarities. Interaction network analyses revealed that twig-bound fungi shared similar numbers of (interaction) links with others, dominated by negative co-occurrences, suggesting that competitive exclusion may be the predominant ecological interaction in the highly connected twig mycobiome. Combining community and network analyses strengthened the evidence that plant organs may filter endophytic communities directly through colonization access and indirectly by facilitating competitive interactions between the fungi.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Department of Ecology and Environmental Sciences, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
10
|
Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep 2021; 11:3645. [PMID: 33574436 PMCID: PMC7878899 DOI: 10.1038/s41598-021-83153-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Plants host diverse microbial communities, but there is little consensus on how we sample these communities, and this has unknown consequences. Using root and leaf tissue from showy milkweed (Asclepias speciosa), we compared two common sampling strategies: (1) homogenizing after subsampling (30 mg), and (2) homogenizing bulk tissue before subsampling (30 mg). We targeted bacteria, arbuscular mycorrhizal (AM) fungi and non-AM fungi in roots, and foliar fungal endophytes (FFE) in leaves. We further extracted DNA from all of the leaf tissue collected to determine the extent of undersampling of FFE, and sampled FFE twice across the season using strategy one to assess temporal dynamics. All microbial groups except AM fungi differed in composition between the two sampling strategies. Community overlap increased when rare taxa were removed, but FFE and bacterial communities still differed between strategies, with largely non-overlapping communities within individual plants. Increasing the extraction mass 10 × increased FFE richness ~ 10 ×, confirming the severe undersampling indicated in the sampling comparisons. Still, seasonal patterns in FFEs were apparent, suggesting that strong drivers are identified despite severe undersampling. Our findings highlight that current sampling practices poorly characterize many microbial groups, and increased sampling intensity is necessary for increase reproducibility and to identify subtler patterns in microbial distributions.
Collapse
Affiliation(s)
- Lorinda S Bullington
- MPG Ranch, Missoula, MT, 59801, USA.
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | | |
Collapse
|
11
|
Shi Y, Yang H, Chu M, Niu X, Huo X, Gao Y, Lin Q, Zeng J, Zhang T, Lou K. Endophytic bacterial communities and spatiotemporal variations in cotton roots in Xinjiang, China. Can J Microbiol 2020; 67:506-517. [PMID: 33180552 DOI: 10.1139/cjm-2020-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous bacteria are important for maintaining the health and other ecologically relevant functions of cotton plants. However, little is known about the community structures and diversity of endophytic bacteria in cotton plants. In our study, we used the Illumina amplicon sequencing technology to study the endophytic bacteria found in cotton root tissue in Xinjiang, China. A total of 60.84 × 106 effective sequences of the 16S rRNA gene in the V5-V6 variable region revealed a large number of operational taxonomic units (OTUs), namely 81-338 OTUs, at a cut-off level of 3% and a sequencing depth of 50 000 sequences. Among the 23 classes identified, Gammaproteobacteria was the dominant group, followed by Alphaproteobacteria, Actinobacteria, and Bacillus. The diversity of endogenous bacteria differed at different growth periods, with the most OTUs detected in seedlings (654), followed by the budding stage (381), flowering stage (350), and flocking stage (351). A total of 217 OTUs were common to all four stages. Pantoea tags were more common to the Shihezi region, whereas Erwinia labels were more common to the Hami region. These results suggest that the dynamics of endophytic bacterial communities are affected by plant growth stage. This highlights the relevance of microbial diversity studies in improving our understanding of endophyte communities.
Collapse
Affiliation(s)
- YingWu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China.,Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, Xinjiang, China
| | - HongMei Yang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China.,Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, Xinjiang, China
| | - Ming Chu
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China.,Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, Xinjiang, China
| | - XinXiang Niu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, Xinjiang, China.,Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
| | - XiangDong Huo
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Yan Gao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Qing Lin
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Tao Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| |
Collapse
|
12
|
Calvert J. Sampling of Plant Material to Study Endophytes in Small, Large, and Woody Plants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2232:37-42. [PMID: 33161537 DOI: 10.1007/978-1-0716-1040-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The study of fungal, bacterial, and other endophytic microorganisms using high throughput DNA sequencing requires sampling and processing of plant material that eliminates phylloplane microorganisms and retains those inside the plant compartment. Leaves, stems, roots, and other plant tissues are removed from the plant, washed, surface sterilized, and stored for downstream applications. Especially in ecological studies, field work for sample collection may take place in remote locations where laboratory equipment and resources are rudimentary, and accessing samples from target plants can be challenging. This chapter serves as a guide to basic protocols in the design and sample collection for studies focused on the endophytes of leaf, stem, and root tissues.
Collapse
Affiliation(s)
- Jed Calvert
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
13
|
Huang YL. Effect of Host, Environment and Fungal Growth on Fungal Leaf Endophyte Communities in Taiwan. J Fungi (Basel) 2020; 6:jof6040244. [PMID: 33114080 PMCID: PMC7712724 DOI: 10.3390/jof6040244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
Fungal endophytes inhabit plant tissues without causing disease symptoms. They are highly diverse and distributed globally in all plants that have been investigated. Host, geographic, and environmental effects on endophyte communities have been reported in several studies, but the direct effect of fungal growth rate on endophyte composition has not been tested. To understand the relationship between foliar endophyte composition and fungal growth and to examine the effect of host, elevation, and climatic factors on the foliar endophyte communities, this study examined the foliar endophyte communities of representative gymnosperms and Rhododendron spp. across different elevations of Hehuanshan and Taipingshan forests in Taiwan. The isolation frequency and diversity of foliar endophytes were higher at low elevations than at high elevations. The foliar endophyte community structure differed as a function of host family and forest vegetation type. Elevation, mean annual temperature, and precipitation were significantly correlated with the community structure. Fungal growth rate was correlated with the endophyte abundance, which indicates that fast-growing fungi might have a competitive advantage when coexisting with other fungi in a plant host.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Department of Biology, National Museum of Natural Science, Taichung 40453, Taiwan
| |
Collapse
|
14
|
Borg Dahl M, Krebs M, Unterseher M, Urich T, Gaudig G. Temporal dynamics in the taxonomic and functional profile of the Sphagnum-associated fungi (mycobiomes) in a Sphagnum farming field site in Northwestern Germany. FEMS Microbiol Ecol 2020; 96:5917977. [PMID: 33016319 DOI: 10.1093/femsec/fiaa204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Matthias Krebs
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| | - Martin Unterseher
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany.,Montessori-Schule, Helsinkiring 5, 17493, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Greta Gaudig
- Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
15
|
Küngas K, Bahram M, Põldmaa K. Host tree organ is the primary driver of endophytic fungal community structure in a hemiboreal forest. FEMS Microbiol Ecol 2020; 96:5673485. [PMID: 31825516 DOI: 10.1093/femsec/fiz199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/10/2019] [Indexed: 01/21/2023] Open
Abstract
Despite numerous studies on plant endophytes, little is known about fungal communities associated with different aboveground tissues of living trees. We used high-throughput sequencing to compare the diversity and community structure of fungi inhabiting leaves, branches and trunks of Alnus incana and Corylus avellana growing at three hemiboreal forest sites. Our analysis revealed that tree organs are the main determinants of the structure of fungal communities, whereas the effects of host species and locality remained secondary and negligible, respectively. The structure of fungal communities in trunks was the most distinct compared to that in leaves and branches. The foliar fungal communities were more similar within than between individual trees, implying that certain fungi may grow through parts of the tree crown. The weak effect of locality compared to host organs and species identity suggests that the structural variation of fungal communities in the aboveground parts of trees depends mainly on deterministic factors rather than dispersal limitation.
Collapse
Affiliation(s)
- Kati Küngas
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., EE51005 Tartu, Estonia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| | - Kadri Põldmaa
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., EE51005 Tartu, Estonia
| |
Collapse
|
16
|
Chen J, Akutse KS, Saqib HSA, Wu X, Yang F, Xia X, Wang L, Goettel MS, You M, Gurr GM. Fungal Endophyte Communities of Crucifer Crops Are Seasonally Dynamic and Structured by Plant Identity, Plant Tissue and Environmental Factors. Front Microbiol 2020; 11:1519. [PMID: 32760366 PMCID: PMC7373767 DOI: 10.3389/fmicb.2020.01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Endophytic fungi are important in diverse plant functions but knowledge of the factors that shape assemblages of these symbionts is lacking. Here, using a culture-dependent approach, we report 4,178 endophytic fungal isolates representing 16 orders isolated from stems, roots and leaves of three cruciferous plant species, Chinese cabbage (Brassica rapa L.), radish (Raphanus sativus L.) and white cabbage (B. olerocea L.), collected from 21 focal fields with different landscape contexts and pesticide uses during four seasons (summer, autumn, winter and spring). The colonization rate of fungi was found to be most strongly affected by season, plant identity and plant tissue. The colonization was highest during autumn, followed by summer, spring and lowest during winter. The colonization was highest in B. olerocea (53.2%), followed by B. rapa (42.6%), and lowest in R. sativus (35.0%). The colonization was highest in stems (51.9%) in all plant types, followed by leaves (42.4%) and roots (37.5%). Hypocreales was the dominant order (33.3% of all the isolates), followed by Glomerellales (26.5%), Eurotiales (12.1%), Pleosporales (9.8%) and Capnodiales (6.0%). Fungal endophyte abundance (number of isolates) followed the same pattern as colonization rate, while species richness varied with season and host plant tissue. Ordination analyses showed that the abundance and richness of Hypocreales, Eurotiales and Sordariales were associated with plant roots, while Capnodiales, Pleosporales and Trichosphaeriales were associated with spring. Other environmental factors, elevation, and the proportions of grassland, forest, orchard and waterbodies in the surrounding landscape also exerted effects within some categories of other main effects or for certain fungal taxa. Our results indicate that while fungal endophyte communities of crucifer crops vary strongly with the season, they are also strongly structured by plant identity and plant tissue, to a lesser extent by pesticide use and only weakly by landscape composition. The understanding of the ecological roles of fungal endophytes could contribute to habitat management and consequently improve crop pest management.
Collapse
Affiliation(s)
- Junhui Chen
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | | | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Xiaolu Wu
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Feiying Yang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Mark S. Goettel
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
17
|
Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes. Sci Rep 2020; 10:1876. [PMID: 32024862 PMCID: PMC7002378 DOI: 10.1038/s41598-020-58723-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
Over the past 15 years, massive gas hydrate deposits have been studied extensively in Joetsu Basin, Japan Sea, where they are associated primarily with active gas chimney structures. Our research documents the discovery of spheroidal microdolomite aggregates found in association with other impurities inside of these massive gas hydrates. The microdolomites are often conjoined and show dark internal cores occasionally hosting saline fluid inclusions. Bacteroidetes sp. are concentrated on the inner rims of microdolomite grains, where they degrade complex petroleum-macromolecules present as an impurity within yellow methane hydrate. These oils show increasing biodegradation with depth which is consistent with the microbial activity of Bacteroidetes. Further investigation of these microdolomites and their contents can potentially yield insight into the dynamics and microbial ecology of other hydrate localities. If microdolomites are indeed found to be ubiquitous in both present and fossil hydrate settings, the materials preserved within may provide valuable insights into an unusual microhabitat which could have once fostered ancient life.
Collapse
|
18
|
Sapp M, Tyborski N, Linstädter A, López Sánchez A, Mansfeldt T, Waldhoff G, Bareth G, Bonkowski M, Rose LE. Site-specific distribution of oak rhizosphere-associated oomycetes revealed by cytochrome c oxidase subunit II metabarcoding. Ecol Evol 2019; 9:10567-10581. [PMID: 31624568 PMCID: PMC6787841 DOI: 10.1002/ece3.5577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/19/2023] Open
Abstract
The phylum Oomycota comprises important tree pathogens like Phytophthora quercina, involved in central European oak decline, and Phytophthora cinnamomi shown to affect holm oaks among many other hosts. Despite the importance to study the distribution, dispersal and niche partitioning of this phylum, metabarcoding surveys, and studies considering environmental factors that could explain oomycete community patterns are still rare. We investigated oomycetes in the rhizosphere of evergreen oaks in a Spanish oak woodland using metabarcoding based on Illumina sequencing of the taxonomic marker cytochrome c oxidase subunit II (cox2). We developed an approach amplifying a 333 bp long fragment using the forward primer Hud-F (Mycologia, 2000) and a reverse primer found using DegePrime (Applied and Environmental Microbiology, 2014). Factors reflecting topo-edaphic conditions and tree health were linked to oomycete community patterns. The majority of detected OTUs belonged to the Peronosporales. Most taxa were relatives of the Pythiaceae, but relatives of the Peronosporaceae and members of the Saprolegniales were also found. The most abundant OTUs were related to Globisporangium irregulare and P. cinnamomi, both displaying strong site-specific patterns. Oomycete communities were strongly correlated with the environmental factors: altitude, crown foliation, slope and soil skeleton and soil nitrogen. Our findings illustrate the significance of small scale variation in habitat conditions for the distribution of oomycetes and highlight the importance to study oomycete communities in relation to such ecological patterns.
Collapse
Affiliation(s)
- Melanie Sapp
- Cluster of Excellence on Plant Sciences (CEPLAS)Population GeneticsHeinrich Heine UniversityDüsseldorfGermany
| | - Nicolas Tyborski
- Cluster of Excellence on Plant Sciences (CEPLAS)Population GeneticsHeinrich Heine UniversityDüsseldorfGermany
| | - Anja Linstädter
- Botanical Institute, Range Ecology and Range ManagementUniversity of CologneCologneGermany
- Institute of Crop Science and Resource Conservation (INRES)University of BonnBonnGermany
| | - Aida López Sánchez
- Botanical Institute, Range Ecology and Range ManagementUniversity of CologneCologneGermany
- Departamento de Sistemas y Recursos NaturalesUniversidad Politécnica de MadridMadridSpain
| | - Tim Mansfeldt
- Institute of GeographyUniversity of CologneCologneGermany
| | - Guido Waldhoff
- Institute of GeographyUniversity of CologneCologneGermany
| | - Georg Bareth
- Institute of GeographyUniversity of CologneCologneGermany
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS)Institute of ZoologyTerrestrial EcologyUniversity of CologneCologneGermany
| | - Laura E. Rose
- Cluster of Excellence on Plant Sciences (CEPLAS)Population GeneticsHeinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
19
|
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. MICROBIOME 2019; 7:59. [PMID: 30975184 PMCID: PMC6460791 DOI: 10.1186/s40168-019-0677-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. RESULTS Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. CONCLUSIONS This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Rumakanta Sapkota
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Stine K. Steffensen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Inge S. Fomsgaard
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
20
|
Taudière A, Bellanger JM, Carcaillet C, Hugot L, Kjellberg F, Lecanda A, Lesne A, Moreau PA, Scharmann K, Leidel S, Richard F. Diversity of foliar endophytic ascomycetes in the endemic Corsican pine forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Zhao Y, Xiong Z, Wu G, Bai W, Zhu Z, Gao Y, Parmar S, Sharma VK, Li H. Fungal Endophytic Communities of Two Wild Rosa Varieties With Different Powdery Mildew Susceptibilities. Front Microbiol 2018; 9:2462. [PMID: 30386316 PMCID: PMC6198141 DOI: 10.3389/fmicb.2018.02462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Powdery mildew (PM) is one of the most devastating and wide spread fungal diseases of rose, which seriously decrease its productivity and commercial value. In the present study, the endophytic fungal communities of two wild Rosa varieties (Rosa multiflora Thunb and R. multiflora var. carnea Redouté and Thory) with different PM susceptibilities were studied through Illumina MiSeq sequencer. A total of 14,000,424 raw reads were obtained from 60 samples, and 6,862,953 tags were produced after merging paired-end reads. 4462 distinct OTUs were generated at a 97% similarity level. It was found that only 34.2% of OTUs shared between two plant varieties. All of the OTUs were assigned into four fungal phyla, 17 classes, 43 orders, 86 families, 157 genera, and 208 species. Members of Ascomycota were found to be the most common fungal endophytes (EF) among all plant samples (93.7% relative abundance), followed by Basidiomycota (4.7% relative abundance), while Zygomycota and Glomeromycota were found to be rare and incidental. At each developmental stage of plants, the diversity and community structure of EF between two Rosa varieties showed significant differences. Both PCoA plots and PERMANOVA analyses indicated that developmental stage was the major factor contributing to the difference between the Rosa varieties (R2 = 0.348, p < 0.001). In addition, plant varieties and tissues were also important factors contributing to the difference (R2 = 0.031, p < 0.05; R2 = 0.029, p < 0.05). Moreover, Neofusicoccum, Rhodosporidium, and Podosphaera, etc., were found to be significantly different between two Rosa varieties, and some of the endophytes may play a role in PM resistance. These finding are encouraging to testify the potential use of these fungi in the biocontrol of PM in future studies.
Collapse
Affiliation(s)
- Yi Zhao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhi Xiong
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Guangli Wu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Weixiao Bai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhengqing Zhu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Yonghan Gao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
22
|
Qian X, Chen L, Guo X, He D, Shi M, Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018; 6:e5767. [PMID: 30345176 PMCID: PMC6187995 DOI: 10.7717/peerj.5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023] Open
Abstract
The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Albrectsen BR, Siddique AB, Decker VHG, Unterseher M, Robinson KM. Both plant genotype and herbivory shape aspen endophyte communities. Oecologia 2018; 187:535-545. [PMID: 29492690 PMCID: PMC5997111 DOI: 10.1007/s00442-018-4097-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/13/2018] [Indexed: 12/29/2022]
Abstract
Salicinoid phenolic glycosides are common defence substances in salicaceous trees and specialist leaf beetles use these compounds for their own defence against predators. Salicinoids vary qualitatively and qualitatively in aspen (Populus tremula) and this variation has a genetic basis. The foliar endophyte mycobiome is plentiful and we hypothesised that it is related to plant genotype, potentially mediated by salicinoid composition, and that interactions with the leaf beetle Chrysomela tremula may alter this relationship. We studied these three-way interactions in controlled greenhouse experiments. Endophytic fungi were isolated from sterilised leaf tissues with and without beetle damage, and from beetles. We confirmed that endophyte composition was influenced by host genotype. Beetle activity added generalist morphs to the mycobiome that overrode the initial host association. Yeast-like genera (Cryptococcus and Rhodotorula) were isolated only from beetle-damaged tissues and from beetles, whereas fast-growing filamentous fungi dominated beetle-free control plants. Competition experiments between filamentous fungi of plant origin and beetle-related yeasts suggested interaction of both stimulating and inhibiting modes of action amongst the fungi. As a result, we detected examples of amensalism, commensalism, parasitism and competition between the morphs tested, but we found no evidence of mutualism, and consequently no co-evolutionary relationship could be demonstrated, between yeasts carried by beetles, host genotype and associated filamentous morphs. Endophyte studies are method-dependent and high-throughput sequencing technology best define the fungal mycobiome, culturing however continues to be a cheap way to provide fundamental ecological insights and it is also required for experimental studies.
Collapse
Affiliation(s)
| | - Abu Bakar Siddique
- Ernst-Moritz-Arndt Universität Greifswald, Institut für Botanik und Landschaftsökologie, Soldmannstr. 15, 17487, Greifswald, Germany
| | - Vicki Huizu Guo Decker
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre, Umeå, Sweden
| | - Martin Unterseher
- Ernst-Moritz-Arndt Universität Greifswald, Institut für Botanik und Landschaftsökologie, Soldmannstr. 15, 17487, Greifswald, Germany.,Evangelisches Schulzentrum Martinschule, Max-Planck- Str. 7, 17491, Greifswald, Germany
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
24
|
Glynou K, Nam B, Thines M, Maciá-Vicente JG. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. THE NEW PHYTOLOGIST 2018; 217:1190-1202. [PMID: 29094363 DOI: 10.1111/nph.14873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/02/2017] [Indexed: 05/02/2023]
Abstract
There is increasing knowledge on the diversity of root-endophytic fungi, but limited information on their lifestyles and dependence on hosts hampers our understanding of their ecological functions. We compared diversity and biogeographical patterns of cultivable and noncultivable root endophytes to assess whether their occurrence is determined by distinct ecological factors. The endophytic diversity in roots of nonmycorrhizal Microthlaspi spp. growing across Europe was assessed using high-throughput sequencing (HTS) and compared with a previous dataset based on cultivation of endophytes from the same root samples. HTS revealed a large fungal richness undetected by cultivation, but which largely comprised taxa with restricted distributions and/or low representation of sequence reads. Both datasets coincided in a consistent high representation of widespread endophytes within orders Pleosporales, Hypocreales and Helotiales, as well as similar associations of community structure with spatial and environmental conditions. Likewise, distributions of particular endophytes inferred by HTS agreed with cultivation data in suggesting individual ecological preferences. Our findings support that Microthlaspi spp. roots are colonized mostly by saprotrophic and likely facultative endophytes, and that differential niche preferences and distribution ranges among fungi importantly drive the assembly of root-endophytic communities.
Collapse
Affiliation(s)
- Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany
| | - Bora Nam
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Marco Thines
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Jose G Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, Frankfurt am Main, 60325, Germany
| |
Collapse
|
25
|
Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1375-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Borg Dahl M, Brejnrod AD, Unterseher M, Hoppe T, Feng Y, Novozhilov Y, Sørensen SJ, Schnittler M. Genetic barcoding of dark-spored myxomycetes (Amoebozoa)-Identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Mol Ecol Resour 2017; 18:306-318. [PMID: 29024429 DOI: 10.1111/1755-0998.12725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 12/18/2022]
Abstract
Unicellular, eukaryotic organisms (protists) play a key role in soil food webs as major predators of microorganisms. However, due to the polyphyletic nature of protists, no single universal barcode can be established for this group, and the structure of many protistean communities remains unresolved. Plasmodial slime moulds (Myxogastria or Myxomycetes) stand out among protists by their formation of fruit bodies, which allow for a morphological species concept. By Sanger sequencing of a large collection of morphospecies, this study presents the largest database to date of dark-spored myxomycetes and evaluate a partial 18S SSU gene marker for species annotation. We identify and discuss the use of an intraspecific sequence similarity threshold of 99.1% for species differentiation (OTU picking) in environmental PCR studies (ePCR) and estimate a hidden diversity of putative species, exceeding those of described morphospecies by 99%. When applying the identified threshold to an ePCR data set (including sequences from both NGS and cloning), we find 64 OTUs of which 21.9% had a direct match (>99.1% similarity) to the database and the remaining had on average 90.2 ± 0.8% similarity to their best match, thus thought to represent undiscovered diversity of dark-spored myxomycetes.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Asker D Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Hoppe
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Yun Feng
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Yuri Novozhilov
- V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. ISME JOURNAL 2017; 12:31-47. [PMID: 28885627 DOI: 10.1038/ismej.2017.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with 13C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.
Collapse
Affiliation(s)
- Kohei Ino
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alex W Hernsdorf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Uta Konno
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsunori Yanagawa
- Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Yokosuka City, Kanagawa, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinari Hirota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yoko S Togo
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazumasa Ito
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Akari Fukuda
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | | | | | - Daisuke D Komatsu
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Toyoho Ishimura
- National Institute of Technology, Ibaraki College, Hitachinaka-shi, Ibaraki, Japan
| | - Yuki Amano
- Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Brian C Thomas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yohey Suzuki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS. Fungi associated with mesophotic macroalgae from the 'Au'au Channel, west Maui are differentiated by host and overlap terrestrial communities. PeerJ 2017; 5:e3532. [PMID: 28713652 PMCID: PMC5508810 DOI: 10.7717/peerj.3532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Mesophotic coral ecosystems are an almost entirely unexplored and undocumented environment that likely contains vast reservoirs of undescribed biodiversity. Twenty-four macroalgae samples, representing four genera, were collected from a Hawaiian mesophotic reef at water depths between 65 and 86 m in the 'Au'au Channel, Maui, Hawai'i. Algal tissues were surveyed for the presence and diversity of fungi by sequencing the ITS1 gene using Illumina technology. Fungi from these algae were then compared to previous fungal surveys conducted in Hawaiian terrestrial ecosystems. Twenty-seven percent of the OTUs present on the mesophotic coral ecosystem samples were shared between the marine and terrestrial environment. Subsequent analyses indicated that host species of algae significantly differentiate fungal community composition. This work demonstrates yet another understudied habitat with a moderate diversity of fungi that should be considered when estimating global fungal diversity.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Geoffrey L Zahn
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Heather L Spalding
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Alison R Sherwood
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Celia M Smith
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Anthony S Amend
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
29
|
Characterisation of above-ground endophytic and soil fungal communities associated with dieback-affected and healthy plants in five exotic invasive species. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Siddique AB, Khokon AM, Unterseher M. What do we learn from cultures in the omics age? High-throughput sequencing and cultivation of leaf-inhabiting endophytes from beech (Fagus sylvatica L.) revealed complementary community composition but similar correlations with local habitat conditions. MycoKeys 2017. [DOI: 10.3897/mycokeys.20.11265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Mishra VK, Passari AK, Leo VV, Singh BP. Molecular Diversity and Detection of Endophytic Fungi Based on Their Antimicrobial Biosynthetic Genes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Bezerromycetales and Wiesneriomycetales ord. nov. (class Dothideomycetes), with two novel genera to accommodate endophytic fungi from Brazilian cactus. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1254-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Eusemann P, Schnittler M, Nilsson RH, Jumpponen A, Dahl MB, Würth DG, Buras A, Wilmking M, Unterseher M. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome-Picea glauca system at an arctic treeline ecotone. THE NEW PHYTOLOGIST 2016; 211:1221-1231. [PMID: 27144386 DOI: 10.1111/nph.13988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Plant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping. In the present study, fungal metabarcoding and tree microsatellite data were compared for the first time. In general, neighbouring trees shared more fungal taxa with each other than trees growing in further distance. Mycobiomes correlated strongly with phenological host traits and local habitat characteristics contrasting a dense forest stand with an open treeline site. Genetic similarity between trees did not influence fungal composition and no significant correlation existed between needle mycobiome and tree genotype. Our results suggest the pronounced influence of local habitat conditions and phenotypic tree traits on needle-inhabiting fungi. By contrast, the tree genetic identity cannot be benchmarked as a dominant driver for needle-inhabiting mycobiomes, at least not for white spruce in this extreme environment.
Collapse
Affiliation(s)
- Pascal Eusemann
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
- Institute of Forest Genetics, Thünen Institute, Eberswalder Chaussee 3a, 15377, Waldsieversdorf, Germany
| | - Martin Schnittler
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - R Henrik Nilsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - Ari Jumpponen
- Division of Biology, Kansas State University, 433 Ackert Hall, Manhattan, KS, 66506, USA
| | - Mathilde B Dahl
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - David G Würth
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - Allan Buras
- Chair of Ecoclimatology, TU Munich, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - Martin Wilmking
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| | - Martin Unterseher
- Institute of Botany und Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Soldmannstr. 15, 17487, Greifswald, Germany
| |
Collapse
|
34
|
Unterseher M, Siddique AB, Brachmann A, Peršoh D. Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry. PLoS One 2016; 11:e0152878. [PMID: 27078859 PMCID: PMC4831807 DOI: 10.1371/journal.pone.0152878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology.
Collapse
Affiliation(s)
- Martin Unterseher
- Ernst-Moritz-Arndt Universität Greifswald, Institut für Botanik und Landschaftsökologie, Greifswald, Germany
- * E-mail:
| | - Abu Bakar Siddique
- Ernst-Moritz-Arndt Universität Greifswald, Institut für Botanik und Landschaftsökologie, Greifswald, Germany
| | | | - Derek Peršoh
- Ruhr-Universität Bochum, AG Geobotanik, Bochum, Germany
| |
Collapse
|