1
|
U'Ren JM, Oita S, Lutzoni F, Miadlikowska J, Ball B, Carbone I, May G, Zimmerman NB, Valle D, Trouet V, Arnold AE. Environmental drivers and cryptic biodiversity hotspots define endophytes in Earth's largest terrestrial biome. Curr Biol 2024; 34:1148-1156.e7. [PMID: 38367618 DOI: 10.1016/j.cub.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.
Collapse
Affiliation(s)
- Jana M U'Ren
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Bernard Ball
- Department of Biology, Duke University, Durham, NC 27708, USA; School of Biology and Environmental Science, University College Dublin, Science Centre Belfield, Dublin D04 V1W8, Ireland
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Naupaka B Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| | - Denis Valle
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Valerie Trouet
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, BIO5 Institute, Ecosystem Genomics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Durodola B, Blumenstein K, Akinbobola A, Kolehmainen A, Chano V, Gailing O, Terhonen E. Beyond the surface: exploring the mycobiome of Norway spruce under drought stress and with Heterobasidion parviporum. BMC Microbiol 2023; 23:350. [PMID: 37978432 PMCID: PMC10655427 DOI: 10.1186/s12866-023-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.
Collapse
Affiliation(s)
- Blessing Durodola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Kathrin Blumenstein
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098, Freiburg, Germany
| | - Adedolapo Akinbobola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Kolehmainen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Department of Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Victor Chano
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
3
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
4
|
Deng J, Zhou W, Dai L, Yuan Q, Zhou L, Qi L, Yu D. The Effects of Shrub Removal on Soil Microbial Communities in Primary Forest, Secondary Forest and Plantation Forest on Changbai Mountain. MICROBIAL ECOLOGY 2023; 85:642-658. [PMID: 35089393 DOI: 10.1007/s00248-021-01943-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Shrub removal is a common management method in forest ecosystems, but comparatively little is known regarding the effects of shrub removal on soil microbial communities among primary forest, secondary forest, and plantation forests in temperate forests, which limits our accurate assessment of sustainable management of understory vegetation removal. Given this, we used a long-term operation experiment across a contrasting mixed broadleaved-Pinus koraiensis forest, Betula platyphylla forest, and Larix gmelinii plantation forest to explore the variations of soil properties and microbial community after 5 years of shrub removal on Changbai Mountain, as well as the contribution of the soil properties and understory plant diversity to the soil microbial community. The results demonstrated that shrub removal could significantly alter soil SWC and TN, TP, and AP contents of the L. gmelinii, as well as N/P of B. platyphylla. Moreover, shrub removal also clearly improved soil bacterial Pielou_e index and Simpson index of mixed broadleaved-P. koraiensis and soil bacterial Simpson index of L. gmelinii, and decreased soil fungal Pielou_e index and Shannon index of L. gmelinii and soil bacterial Pielou_e index and soil fungal Shannon index of B. platyphylla. Identically, shrub removal notably altered the soil bacterial community composition. Soil characteristics and understory plant diversity accounted for 48.02% and 26.88%, and 45.88% and 27.57% of the variance in the bacterial and fungal community composition, respectively. This study aimed to provide an important scientific basis for the restoration and sustainable management of temperate forests in the Changbai Mountain region.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Limin Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Quan Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lin Qi
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
High Variability of Fungal Communities Associated with the Functional Tissues and Rhizosphere Soil of Picea abies in the Southern Baltics. FORESTS 2022. [DOI: 10.3390/f13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change, which leads to higher temperatures, droughts, and storms, is expected to have a strong effect on both health of forest trees and associated biodiversity. The aim of this study was to investigate the diversity and composition of fungal communities associated with the functional tissues and rhizosphere soil of healthy-looking Picea abies to better understand these fungal communities and their potential effect on tree health in the process of climate change. The study sites included 30 P. abies stands, where needles, shoots, roots, and the rhizosphere soil was sampled. DNA was isolated from individual samples, amplified using ITS2 rRNA as a marker and subjected to high-throughput sequencing. The sequence analysis showed the presence of 232,547 high-quality reads, which following clustering were found to represent 2701 non-singleton fungal OTUs. The highest absolute richness of fungal OTUs was in the soil (1895), then in the needles (1049) and shoots (1002), and the lowest was in the roots (641). The overall fungal community was composed of Ascomycota (58.3%), Basidiomycota (37.2%), Zygomycota (2.5%), Chytridiomycota (1.6%), and Glomeromycota (0.4%). The most common fungi based on sequence read abundance were Aspergillus pseudoglaucus (7.9%), Archaeorhizomyces sp. (3.6%), and Rhinocladiella sp. (2.0%). Pathogens were relatively rare, among which the most common were Phacidium lacerum (1.7%), Cyphellophora sessilis (1.4%), and Rhizosphaera kalkhoffii (1.4%). The results showed that the detected diversity of fungal OTUs was generally high, but their relative abundance varied greatly among different study sites, thereby highlighting the complexity of interactions among the host trees, fungi, and local environmental conditions.
Collapse
|
6
|
Environmental factors and host genetic variation shape the fungal endophyte communities within needles of Scots pine (Pinus sylvestris). FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
8
|
Kambach S, Sadlowski C, Peršoh D, Guerreiro MA, Auge H, Röhl O, Bruelheide H. Foliar Fungal Endophytes in a Tree Diversity Experiment Are Driven by the Identity but Not the Diversity of Tree Species. Life (Basel) 2021; 11:1081. [PMID: 34685452 PMCID: PMC8539603 DOI: 10.3390/life11101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023] Open
Abstract
Symbiotic foliar fungal endophytes can have beneficial effects on host trees and might alleviate climate-induced stressors. Whether and how the community of foliar endophytes is dependent on the tree neighborhood is still under debate with contradicting results from different tree diversity experiments. Here, we present our finding regarding the effect of the tree neighborhood from the temperate, densely planted and 12-years-old Kreinitz tree diversity experiment. We used linear models, redundancy analysis, Procrustes analysis and Holm-corrected multiple t-tests to quantify the effects of the plot-level tree neighborhood on the diversity and composition of foliar fungal endophytes in Fagus sylvatica, Quercus petraea and Picea abies. Against our expectations, we did not find an effect of tree diversity on endophyte diversity. Endophyte composition, however, was driven by the identity of the host species. Thirteen endophytes where overabundant in tree species mixtures, which might indicate frequent spillover or positive interactions between foliar endophytes. The independence of the diversity of endophytes from the diversity of tree species might be attributed to the small plot size and the high density of tree individuals. However, the mechanistic causes for these cryptic relationships still remain to be uncovered.
Collapse
Affiliation(s)
- Stephan Kambach
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany;
| | - Christopher Sadlowski
- Faculty of Biology and Biotechnology, Ruhr University of Bochum, Universitätsstraße 150, 44801 Bochum, Germany; (C.S.); (D.P.); (M.A.G.); (O.R.)
| | - Derek Peršoh
- Faculty of Biology and Biotechnology, Ruhr University of Bochum, Universitätsstraße 150, 44801 Bochum, Germany; (C.S.); (D.P.); (M.A.G.); (O.R.)
| | - Marco Alexandre Guerreiro
- Faculty of Biology and Biotechnology, Ruhr University of Bochum, Universitätsstraße 150, 44801 Bochum, Germany; (C.S.); (D.P.); (M.A.G.); (O.R.)
| | - Harald Auge
- Department of Community Ecology, Helmholtz Centre for Environmental Research—UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Oliver Röhl
- Faculty of Biology and Biotechnology, Ruhr University of Bochum, Universitätsstraße 150, 44801 Bochum, Germany; (C.S.); (D.P.); (M.A.G.); (O.R.)
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Diversity and Communities of Fungal Endophytes from Four Pinus Species in Korea. FORESTS 2021. [DOI: 10.3390/f12030302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are ubiquitous in nature. They are known as potential sources of natural products, and possible agents for biocontrol attributing to their ability to produce a repertoire of bioactive compounds. In this study, we isolated fungal endophytes from three different tissues (needle, stem and root) of four Pinus species (Pinus densiflora, Pinus koraiensis, Pnus rigida, and Pinus thunbergii) across 18 sampling sites in Korea. A total number of 5872 culturable fungal endophytes were isolated using standard culturing techniques. Molecular identification based on the sequence analyses of the internal transcribed spacer (ITS) or 28S ribosomal DNA revealed a total of 234 different fungal species. The isolated fungal endophytes belonged to Ascomycota (91.06%), Basidiomycota (5.95%) and Mucoromycota (2.97%), with 144 operational taxonomic units (OTUs) and 88 different genera. In all sampling sites, the highest species richness (S) was observed in site 1T (51 OTUs) while the lowest was observed in site 4T (27 OTUs). In terms of diversity, as measured by Shannon diversity index (H’), the sampling site 2D (H′ = 3.216) showed the highest while the lowest H’ was observed in site 2K (H’ = 2.232). Species richness (S) in three different tissues revealed that root and needle tissues are highly colonized with fungal endophytes compared to stem tissue. No significant difference was observed in the diversity of endophytes in three different tissues. Among the four Pinus species, P. thunbergii exhibited the highest species richness and diversity of fungal endophytes. Our findings also revealed that the environmental factors have no significant impact in shaping the composition of the fungal endophytes. Furthermore, FUNGuild analysis revealed three major classifications of fungal endophytes based on trophic modes namely saprotrophs, symbiotrophs, and pathotrophs in four Pinus species, with high proportions of saprotrophs and pathothrops.
Collapse
|
10
|
Saadani M, Hönig L, Bien S, Koehler M, Rutten G, Wubet T, Braun U, Bruelheide H. Local Tree Diversity Suppresses Foliar Fungal Infestation and Decreases Morphological But Not Molecular Richness in a Young Subtropical Forest. J Fungi (Basel) 2021; 7:173. [PMID: 33673628 PMCID: PMC7997179 DOI: 10.3390/jof7030173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Leaf fungal pathogens alter their host species' performance and, thus, changes in fungal species composition can translate into effects at the tree community scale. Conversely, the functional diversity of tree species in a host tree's local neighbourhood can affect the host's foliar fungal infestation. Therefore, understanding the factors that affect fungal infestations is important to advance our understanding of biodiversity-ecosystem functioning (BEF) relationships. Here we make use of the largest BEF tree experiment worldwide, the BEF-China experiment, where we selected tree host species with different neighbour species. Identifying fungal taxa by microscopy and by high-throughput DNA sequencing techniques based on the internal transcribed spacer (ITS) rDNA region, we analysed the fungal richness and infestation rates of our target trees as a function of local species richness. Based on the visual microscopic assessment, we found that a higher tree diversity reduced fungal richness and host-specific fungal infestation in the host's local neighbourhood, while molecular fungal richness was unaffected. This diversity effect was mainly explained by the decrease in host proportion. Thus, the dilution of host species in the local neighbourhood was the primary mechanism in reducing the fungal disease severity. Overall, our study suggests that diverse forests will suffer less from foliar fungal diseases compared to those with lower diversity.
Collapse
Affiliation(s)
- Mariem Saadani
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Steffen Bien
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Michael Koehler
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Gemma Rutten
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle, Germany
| | - Uwe Braun
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| |
Collapse
|
11
|
Marčiulynienė D, Marčiulynas A, Lynikienė J, Vaičiukynė M, Gedminas A, Menkis A. DNA-Metabarcoding of Belowground Fungal Communities in Bare-Root Forest Nurseries: Focus on Different Tree Species. Microorganisms 2021; 9:150. [PMID: 33440909 PMCID: PMC7827201 DOI: 10.3390/microorganisms9010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 11/20/2022] Open
Abstract
The production of tree seedlings in forest nurseries and their use in the replanting of clear-cut forest sites is a common practice in the temperate and boreal forests of Europe. Although conifers dominate on replanted sites, in recent years, deciduous tree species have received more attention due to their often-higher resilience to abiotic and biotic stress factors. The aim of the present study was to assess the belowground fungal communities of bare-root cultivated seedlings of Alnus glutinosa , Betula pendula, Pinus sylvestris, Picea abies and Quercus robur in order to gain a better understanding of the associated fungi and oomycetes, and their potential effects on the seedling performance in forest nurseries and after outplanting. The study sites were at the seven largest bare-root forest nurseries in Lithuania. The sampling included the roots and adjacent soil of 2-3 year old healthy-looking seedlings. Following the isolation of the DNA from the individual root and soil samples, these were amplified using ITS rRNA as a marker, and subjected to high-throughput PacBio sequencing. The results showed the presence of 161,302 high-quality sequences, representing 2003 fungal and oomycete taxa. The most common fungi were Malassezia restricta (6.7% of all of the high-quality sequences), Wilcoxina mikolae (5.0%), Pustularia sp. 3993_4 (4.6%), and Fusarium oxysporum (3.5%). The most common oomycetes were Pythium ultimum var. ultimum (0.6%), Pythium heterothallicum (0.3%), Pythium spiculum (0.3%), and Pythium sylvaticum (0.2%). The coniferous tree species (P. abies and P. sylvestris) generally showed a higher richness of fungal taxa and a rather distinct fungal community composition compared to the deciduous tree species (A. glutinosa, B. pendula , and Q. robur). The results demonstrated that the seedling roots and the rhizosphere soil in forest nurseries support a high richness of fungal taxa. The seedling roots were primarily inhabited by saprotrophic and mycorrhizal fungi, while fungal pathogens and oomycetes were less abundant, showing that the cultivation practices used in forest nurseries secured both the production of high-quality planting stock and disease control.
Collapse
Affiliation(s)
- Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Miglė Vaičiukynė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas District, Lithuania; (A.M.); (J.L.); (M.V.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden;
| |
Collapse
|
12
|
|
13
|
Managed and Unmanaged Pinus sylvestris Forest Stands Harbour Similar Diversity and Composition of the Phyllosphere and Soil Fungi. Microorganisms 2020; 8:microorganisms8020259. [PMID: 32075257 PMCID: PMC7074758 DOI: 10.3390/microorganisms8020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022] Open
Abstract
The aim was to assess fungal communities associated with living needles and soil of Pinus sylvestris in managed and unmanaged forest stands to get a better understanding of whether and how different intensities of forest management affects fungal diversity and community composition under the north temperate forest zone conditions. The study was carried out in three national parks in Lithuania. Each included five study sites in managed stands and five in unmanaged stands. At each site, three random soil cores and five random last-year needle samples were collected. Following DNA isolation, a DNA fragment of the ITS2 rRNA gene region of each sample was individually amplified and subjected to high-throughput sequencing. Analysis of 195,808 high-quality reads showed the presence of 1909 fungal taxa. Richness and composition of fungal taxa were similar in each substrate (needles and soil) in managed vs. unmanaged sites. The most common fungi in needles were Coleosporium campanulae (12.4% of all fungal sequences), Unidentified sp. 3980_1 (12.4%), Unidentified sp. 3980_4 (4.1%) and Sydowia polyspora (3.1%). In soil: Unidentified sp. 3980_21 (8.6%), Umbelopsis nana (8.2%), Archaeorhizomyces sp. 3980_5 (8.1%) and Penicillium spinulosum (6.3%). The results demonstrated that managed and unmanaged P. sylvestris stands support similar diversity and composition of fungal communities associated with living needles and soil.
Collapse
|
14
|
Elfstrand M, Zhou L, Baison J, Olson Å, Lundén K, Karlsson B, Wu HX, Stenlid J, García‐Gil MR. Genotypic variation in Norway spruce correlates to fungal communities in vegetative buds. Mol Ecol 2020; 29:199-213. [PMID: 31755612 PMCID: PMC7003977 DOI: 10.1111/mec.15314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome-wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.
Collapse
Affiliation(s)
- Malin Elfstrand
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Linghua Zhou
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - John Baison
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Åke Olson
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Karl Lundén
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Harry X. Wu
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Jan Stenlid
- Uppsala BiocentreDepartment of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - M. Rosario García‐Gil
- Umeå Plant Science CentreDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
15
|
Fernandez-Conradi P, Fort T, Castagneyrol B, Jactel H, Robin C. Fungal endophyte communities differ between chestnut galls and surrounding foliar tissues. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.100876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Active Fungal Communities in Asymptomatic Eucalyptus grandis Stems Differ between a Susceptible and Resistant Clone. Microorganisms 2019; 7:microorganisms7100375. [PMID: 31547186 PMCID: PMC6843230 DOI: 10.3390/microorganisms7100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/20/2022] Open
Abstract
Fungi represent a common and diverse part of the microbial communities that associate with plants. They also commonly colonise various plant parts asymptomatically. The molecular mechanisms of these interactions are, however, poorly understood. In this study we use transcriptomic data from Eucalyptus grandis, to demonstrate that RNA-seq data are a neglected source of information to study fungal–host interactions, by exploring the fungal transcripts they inevitably contain. We identified fungal transcripts from E. grandis data based on their sequence dissimilarity to the E. grandis genome and predicted biological functions. Taxonomic classifications identified, amongst other fungi, many well-known pathogenic fungal taxa in the asymptomatic tissue of E. grandis. The comparison of a clone of E. grandis resistant to Chrysoporthe austroafricana with a susceptible clone revealed a significant difference in the number of fungal transcripts, while the number of fungal taxa was not substantially affected. Classifications of transcripts based on their respective biological functions showed that the fungal communities of the two E. grandis clones associate with fundamental biological processes, with some notable differences. To shield the greater host defence machinery in the resistant E. grandis clone, fungi produce more secondary metabolites, whereas the environment for fungi associated with the susceptible E. grandis clone is more conducive for building fungal cellular structures and biomass growth. Secreted proteins included carbohydrate active enzymes that potentially are involved in fungal–plant and fungal–microbe interactions. While plant transcriptome datasets cannot replace the need for designed experiments to probe plant–microbe interactions at a molecular level, they clearly hold potential to add to the understanding of the diversity of plant–microbe interactions.
Collapse
|
17
|
Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. FORESTS 2019. [DOI: 10.3390/f10010042] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Terrestrial plants including forest trees are generally known to live in close association with microbial organisms. The inherent features of this close association can be commensalism, parasitism or mutualism. The term “microbiota” has been used to describe this ecological community of plant-associated pathogenic, mutualistic, endophytic and commensal microorganisms. Many of these microbiota inhabiting forest trees could have a potential impact on the health of, and disease progression in, forest biomes. Comparatively, studies on forest tree microbiomes and their roles in mutualism and disease lag far behind parallel work on crop and human microbiome projects. Very recently, our understanding of plant and tree microbiomes has been enriched due to novel technological advances using metabarcoding, metagenomics, metatranscriptomics and metaproteomics approaches. In addition, the availability of massive DNA databases (e.g., NCBI (USA), EMBL (Europe), DDBJ (Japan), UNITE (Estonia)) as well as powerful computational and bioinformatics tools has helped to facilitate data mining by researchers across diverse disciplines. Available data demonstrate that plant phyllosphere bacterial communities are dominated by members of only a few phyla (Proteobacteria, Actinobacteria, Bacteroidetes). In bulk forest soil, the dominant fungal group is Basidiomycota, whereas Ascomycota is the most prevalent group within plant tissues. The current challenge, however, is how to harness and link the acquired knowledge on microbiomes for translational forest management. Among tree-associated microorganisms, endophytic fungal biota are attracting a lot of attention for their beneficial health- and growth-promoting effects, and were preferentially discussed in this review.
Collapse
|
18
|
Hidden mycota of pine needles: Molecular signatures from PCR-DGGE and Ribosomal DNA phylogenetic characterization of novel phylotypes. Sci Rep 2018; 8:18053. [PMID: 30575771 PMCID: PMC6303302 DOI: 10.1038/s41598-018-36573-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Previous studies for enumerating fungal communities on pine needles relied entirely on phenotypic diversity (microscopy) or identification based on DNA sequence data from those taxa recovered via cultural studies. To bypass limitations of the culturing methods and provide a more realistic diversity estimate, we employed and assessed a PCR-DGGE based method coupled with rDNA phylogenetic sequence analyses to characterize fungal taxa associated with pine needles. Fresh (living) and decayed needles from three hosts of the Pinaceae (Keteleeria fortunei, Pinus elliottii and P. massoniana) were examined. Morphological studies reveal that the most abundant species associated with decayed needles were Cladosporium cladosporioides and an unidentified Trichoderma species followed by Gliocephalotrichum sp., Gliocladium sp., Lophodermium pinastri, Paecilomyces varioti, Phaeostalagmus cyclosporus and a Phoma sp, which are commonly occurring fungi. Community genomic data from freshly collected and decayed pine needles recovered 40 operational taxonomic units, which appear to be mostly undetected members of the natural fungal consortium. Sequence analyses revealed a number of phylotypes or “species” that were not recovered using traditional morphological and cultural approaches previously used. Phylogenetic data from partial 18S rDNA sequence data reveal that most phylotypes represent potential novel phylogenetic fungal lineages with affinities to the Dothideomycetes, Leotiomycetes, Lecanoromycetes and Sordariomycetes and were not identical to previously known endophytes or saprobes. Although the major ecological roles of these phylotypes in pine needles are still enigmatic, this study provides new insights in hidden fungal diversity that mycologists are possibly ignoring given the discrepancies associated with available methods. To what extent do previously recovered identified species (either as saprobes or endophytes) from morphological or culturing studies act as pioneer decomposers or constitute an integral part of endophytic community warrants further investigation.
Collapse
|
19
|
Taudière A, Bellanger JM, Carcaillet C, Hugot L, Kjellberg F, Lecanda A, Lesne A, Moreau PA, Scharmann K, Leidel S, Richard F. Diversity of foliar endophytic ascomycetes in the endemic Corsican pine forests. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Qian X, Chen L, Guo X, He D, Shi M, Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018; 6:e5767. [PMID: 30345176 PMCID: PMC6187995 DOI: 10.7717/peerj.5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023] Open
Abstract
The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Nguyen D, Boberg J, Cleary M, Bruelheide H, Hönig L, Koricheva J, Stenlid J. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods. Sci Rep 2017; 7:41801. [PMID: 28150710 PMCID: PMC5288799 DOI: 10.1038/srep41801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022] Open
Abstract
Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species.
Collapse
Affiliation(s)
- Diem Nguyen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Johanna Boberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Julia Koricheva
- Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| |
Collapse
|