1
|
Pagani DM, Ventura SPR, Vu D, Mendes-Pereira T, Ribeiro Tomé LM, de Carvalho DS, Costa-Rezende DH, Kato RB, García GJY, Geml J, Robert V, They NH, Brenig B, Azevedo V, Scroferneker ML, Valente P, Góes-Neto A. Unveiling Fungal Community Structure along Different Levels of Anthropic Disturbance in a South American Subtropical Lagoon. J Fungi (Basel) 2023; 9:890. [PMID: 37754998 PMCID: PMC10532596 DOI: 10.3390/jof9090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Studies of fungal communities through amplicon metagenomics in aquatic environments, particularly in freshwater ecosystems, are still relatively recent. Unfortunately, many of these water bodies are facing growing threats from human expansion, such as effluent discharge from various human activities. As a result, these effluents have the potential to significantly alter the characteristics of water bodies and, subsequently, impact the diversity of their resident microorganisms. In this context, our objective was to investigate whether the fungal community structure varies according to the presence of different anthropic disturbances. We expect (i) the diversity of fungi will be greater and (ii) more specific unique operational taxonomic units (OTUs) related to each ecotonal system will be found compared to other sites of a lagoon. The study was conducted in the Tramandaí Lagoon (subtropical southern Brazil) at four distinct sampling points (estuary, middle of the lagoon, crop field area, and near a residential area where the Tramandaí River flows into the lagoon). As expected, the estuary and residential zones, which are ecotones, exhibited greater fungal diversity and more specific OTUs compared to the middle of the lagoon and crop field area. Moreover, a substantial proportion of fungal taxa could not be identified at the genus level, with many only classified at the phylum level, indicating potential new lineages. These findings underscore our limited understanding of the subtropical freshwater mycobiota.
Collapse
Affiliation(s)
- Danielle Machado Pagani
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil; (D.M.P.); (P.V.)
| | - Stefânia P. R. Ventura
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (D.V.); (V.R.)
| | - Thairine Mendes-Pereira
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Luiz Marcelo Ribeiro Tomé
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Daniel Santana de Carvalho
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Diogo Henrique Costa-Rezende
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil;
| | - Rodrigo Bentes Kato
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - Glen Jasper Yupanqui García
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka U. 6, 3300 Eger, Hungary;
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (D.V.); (V.R.)
| | - Ng Haig They
- Laboratório de Ecologia Aquática Microbiana, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Departamento Interdisciplinar, Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, Campus Litoral Norte, Tramandaí 95590-000, RS, Brazil;
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Goettingen, 37073 Göttingen, Germany;
| | - Vasco Azevedo
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
- Laboratory of Cellular and Molecular Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria Lúcia Scroferneker
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil;
| | - Patricia Valente
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil; (D.M.P.); (P.V.)
| | - Aristóteles Góes-Neto
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| |
Collapse
|
2
|
Impact of environmental factors on diversity of fungi in sediments from the Shenzhen River Estuary. Arch Microbiol 2023; 205:96. [PMID: 36820941 PMCID: PMC9950236 DOI: 10.1007/s00203-023-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In this study, to explore the relationship between environmental factors and fungal diversity in the Shenzhen River ecosystem, multiple methods including chemical analysis, culture isolation, qPCR analysis of fungal ITS region and ITS-based Illumina next-generation-sequencing were integrated. A total of 115 isolates were finally isolated and could be classified into 23 genera. Top three abundant genera isolated were Meyerozyma (18 strains), Aspergillus (17 strains) and Penicillium (14 strains). Based on the Illumina sequencing approach, 829 OTUs were affiliated to seven phyla, 17 known classes, and 162 genera, indicating the Shenzhen estuary sediments are rich in fungal diversity. The major fungal genera were Meyerozyma, Trichoderma and Talaromyces. Environmental factors showed a gradient change in Shenzhen estuary, and fungal abundance was only significantly correlated with NH4+. Shannon index was significantly correlated with pH and IC (P < 0.05). Principal coordinate analysis based on OTU level grouped into three clusters among sampling sites along with the IC and pH gradient. Functional guilds analysis suggests most of the fungi in this studying area were almost all saprotrophs, suggesting a large number of saprophytic fungi may play a significant role in the organic matter decomposition and nutrient cycling process. In summary, this study will deepen our understanding of fungi community in Shenzhen River ecosystem and their distribution and potential function shaped by environmental factors.
Collapse
|
3
|
Guo Y, Zhang A, Qin C, Yu G, Ma H. Community assembly patterns and processes of microbiome responses to habitats and Mytilopsis sallei invasion in the tidal zones of the Pearl River Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159675. [PMID: 36280051 DOI: 10.1016/j.scitotenv.2022.159675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The sustainability of estuarine ecosystem functions depends on the stabilization of microbial ecological processes. However, due to the unique and variable habitat characteristics of estuarine areas, in-depth studies on ecological processes such as the spatial distribution and assembly patterns of microbial community structure are lacking. As methods to elucidate this structure, we used 16S rDNA, 18S rDNA and ITS sequencing technologies to study the composition, diversity, spatial pattern and aggregation mechanism of the bacterial, protist and fungal communities in the tidal zones of the Pearl River Estuary (PRETZ). The abundance of bacterial communities was much higher than that of protists and fungi, and the spatial pattern was obvious in PRETZ. The application of neutral and null models revealed the assembly process of three microbial communities dominated by stochastic processes. Among the stochastic processes, undominated processes (64.03 %, 62.45 %, and 59.29 %) were the most critical processes in the assembly of bacterial, fungal and protist communities. Meanwhile, environmental variables, geographic locations, and biological factors were associated with the composition and assembly of bacterial, protist, and fungal communities. Among the environmental variables, dissolved oxygen and salinity were the main predictors that jointly affected the differences in the community structure of the three microorganisms, and geographic location was the second predictor affecting the community structure of the three microorganisms and had a more pronounced effect on the diversity and network structure of the bacterial and fungal communities. However, biological factors exerted a weaker effect on the microbial community structure than spatial factors and only affected bacteria and protists; the invasive species Mytilopsis sallei only affected the process of protist community assembly. In addition, environmental variables affected the relative importance of stochastic processes. In summary, the formation of microbial communities in the PRETZ was affected by random processes, environmental variables, geographic location, and invasive species.
Collapse
Affiliation(s)
- Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
| | - Ankai Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongmei Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
4
|
Shang Y, Wu X, Wang X, Dou H, Wei Q, Ma S, Sun G, Wang L, Sha W, Zhang H. Environmental factors and stochasticity affect the fungal community structures in the water and sediments of Hulun Lake, China. Ecol Evol 2022; 12:e9510. [PMID: 36415879 PMCID: PMC9674472 DOI: 10.1002/ece3.9510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aquatic fungi form both morphologically and ecologically diverse communities. However, lake ecosystems are frequently overlooked as fungal habitats, despite the potentially important role of fungi in matter cycling and energy flow. Hulun Lake is a typical example of a seasonal glacial lake; however, previous studies have only focused on bacteria in this ecosystem. Therefore, in the current study, internal transcribed spacer ribosomal RNA (ITS rRNA) gene high-throughput sequencing was used to investigate the fungal communities in paired water and sediment samples from the Hulun Lake Basin in China. A significant difference was found between the fungal communities of the two sample types. Across all samples, we identified nine phyla, 30 classes, 78 orders, 177 families, and 307 genera. The dominant phyla in the lake were Ascomycota, Basidiomycota and Chytridiomycota. Our results show that both water and sediments have very high connectivity, are dominated by positive interactions, and have similar interaction patterns. The fungal community structures were found to be significantly affected by environmental factors (temperature, chemical oxygen demand, electrical conductivity, total phosphorus, and pH). In addition, the dispersal limitations of the fungi affected the structure of the fungal communities, and it was revealed that stochasticity is more important than deterministic mechanisms in influencing the structure and function of fungal communities. This study provides unique theoretical support for the study of seasonally frozen lake fungal communities and a scientific basis for the future management and protection of Hulun Lake.
Collapse
Affiliation(s)
| | - Xiaoyang Wu
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid AreasHulunbuirChina
| | - Qinguo Wei
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Shengchao Ma
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Guolei Sun
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Lidong Wang
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Weilai Sha
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life SciencesQufu Normal UniversityQufuChina
| |
Collapse
|
5
|
Liu B, Hu Y, Wang Y, Xue H, Li Z, Li M. Effects of saline-alkali stress on bacterial and fungal community diversity in Leymus chinensis rhizosphere soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70000-70013. [PMID: 35579830 DOI: 10.1007/s11356-022-20270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The salinization of grassland in arid and semi-arid areas is a serious environmental issue in China. Halophytes show extreme salt tolerance and are grown in saline-alkaline environments. Their rhizosphere microorganisms contribute significantly to plant stress tolerance. To study bacterial and fungal community structure changes in Chinese ryegrass (Leymus chinensis) rhizosphere soil under salt and alkali stress, pot experiments were conducted with different salt and alkali stress intensities. High-throughput sequencing was conducted, and the microbial diversity, community structure, and driving factors were analyzed in rhizosphere soil. The salinization of grassland in arid and semi-arid areas is a serious environmental issue in China. Halophytes show extreme salt tolerance and grow in saline-alkaline environments. A total of 549 species of bacteria from 28 phyla and 250 species from 11 phyla of fungi were detected in the rhizosphere soil of Leymus chinensis with different saline-alkali gradients. Alpha diversity analysis along saline-alkali gradients showed that bacterial community richness and diversity were the highest in the moderate saline-alkali group (pH = 8.28, EC = 160.4 μS·cm-1), while fungi had high richness and diversity in the control group (pH = 7.35, EC = 134.5 μS·cm-1). The bacteriophyta Proteobacteria, Acidobacteria, Plantomycetes, and the eumycota Ascomycota, Basidiomycota, and Glomeromycota were found with relative abundances of more than 10%. Saline-alkali gradients had significant effects on the abundance of the bacterial and fungal groups in the rhizosphere. The distribution of bacterial colony structure was not significant at the species level (P > 0.05). However, there were significant differences in the distribution of fungal structure and considerable differences in the composition of fungal species among the moderate saline-alkali group, severe saline-alkali group, and control group (P < 0.05). Correlation analysis showed that the bacterial phylum Gemmatimonadetes had a highly significant positive correlation with pH and EC (P < 0. 01). Saline-alkali stress significantly inhibited the abundance of the bacteria Latescibacteria, Cyanobacteria, and Bacteroides, and the fungi Zoopagomycota, Mortierllomycota, and Cryptomycota (P < 0. 05). Compared with fungi, bacterial community composition was most closely correlated with soil salinization. This report provided new insights into the responses of relationships between rhizosphere soil microorganisms and salt and alkali tolerance of plants.
Collapse
Affiliation(s)
- Binshuo Liu
- Disciplines Construction Office, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Yunhang Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Ying Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Zhonghe Li
- Institute of Grassland and Ecology Sciences, Jilin Academy of Agricultural Sciences, Changchun, 130033, People's Republic of China
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, People's Republic of China.
- College of New Energy and Environmental Engineering, Nanchang Institute of Technology, Nanchang, 330044, People's Republic of China.
| |
Collapse
|
6
|
Yang W, Diao L, Wang Y, Yang X, Zhang H, Wang J, Luo Y, An S, Cheng X. Responses of soil fungal communities and functional guilds to ~160 years of natural revegetation in the Loess Plateau of China. Front Microbiol 2022; 13:967565. [PMID: 36118195 PMCID: PMC9479326 DOI: 10.3389/fmicb.2022.967565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Natural revegetation has been widely confirmed to be an effective strategy for the restoration of degraded lands, particularly in terms of rehabilitating ecosystem productivity and soil nutrients. Yet the mechanisms of how natural revegetation influences the variabilities and drivers of soil residing fungal communities, and its downstream effects on ecosystem nutrient cycling are not well understood. For this study, we investigated changes in soil fungal communities along with ~160 years of natural revegetation in the Loess Plateau of China, employing Illumina MiSeq DNA sequencing analyses. Our results revealed that the soil fungal abundance was greatly enhanced during the later stages of revegetation. As revegetation progresses, soil fungal richness appeared first to rise and then decline at the climax Quercus liaotungensis forest stage. The fungal Shannon and Simpson diversity indexes were the lowest and highest at the climax forest stage among revegetation stages, respectively. Principal component analysis, Bray–Curtis similarity indices, and FUNGuild function prediction suggested that the composition, trophic modes, and functional groups for soil fungal communities gradually shifted along with natural revegetation. Specifically, the relative abundances of Basidiomycota, Agaricomycetes, Eurotiomycetes, and ectomycorrhizal fungi progressively increased, while that of Ascomycota, Sordariomycetes, Dothideomycetes, Tremellomycetes, saprotrophic, pathotrophic, arbuscular mycorrhizal fungi, and endophyte fungi gradually decreased along with natural revegetation, respectively. The most enriched members of Basidiomycota (e.g., Agaricomycetes, Agaricales, Cortinariaceae, Cortinarius, Sebacinales, Sebacinaceae, Tricholomataceae, Tricholoma, Russulales, and Russulaceae) were found at the climax forest stage. As important carbon (C) sources, the most enriched symbiotic fungi (particularly ectomycorrhizal fungi containing more recalcitrant compounds) can promote organic C and nitrogen (N) accumulation in soils of climax forest. However, the most abundant of saprotrophic fungi in the early stages of revegetation decreased soil organic C and N accumulation by expediting the decomposition of soil organic matter. Our results suggest that natural revegetation can effectively restore soil fungal abundance, and modify soil fungal diversity, community composition, trophic modes, and functional groups by altering plant properties (e.g., plant species richness, diversity, evenness, litter quantity and quality), quantity and quality of soil nutrient substrates, soil moisture and pH. These changes in soil fungal communities, particularly their trophic modes and functional groups along with natural revegetation, impact the accumulation and decomposition of soil C and N and potentially affect ecosystem C and N cycling in the Loess Plateau of China.
Collapse
Affiliation(s)
- Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Wen Yang,
| | - Longfei Diao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaqi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xitong Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoli Cheng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Xiaoli Cheng,
| |
Collapse
|
7
|
Van den Wyngaert S, Ganzert L, Seto K, Rojas-Jimenez K, Agha R, Berger SA, Woodhouse J, Padisak J, Wurzbacher C, Kagami M, Grossart HP. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. THE ISME JOURNAL 2022; 16:2242-2254. [PMID: 35764676 PMCID: PMC9381765 DOI: 10.1038/s41396-022-01267-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022]
Abstract
Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.
Collapse
Affiliation(s)
- Silke Van den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany. .,Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Lars Ganzert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany.,GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany.,Marbio, UiT- The Arctic University of Norway, Sykehusveien 23, 9019, Tromsø, Norway
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogayaku, Yokohama, Kanagawa, 240-8501, Japan.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | | | - Ramsy Agha
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Stella A Berger
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany
| | - Judit Padisak
- Research Group of Limnology, Centre of Natural Sciences, University of Pannonia, Egyetem u. 10, 8200, Veszprém, Hungary
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Maiko Kagami
- Faculty of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogayaku, Yokohama, Kanagawa, 240-8501, Japan.
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany. .,Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany.
| |
Collapse
|
8
|
Matsuoka S, Sugiyama Y, Nagano M, Doi H. Influence of DNA extraction kits on freshwater fungal DNA metabarcoding. PeerJ 2022; 10:e13477. [PMID: 35651749 PMCID: PMC9150701 DOI: 10.7717/peerj.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/01/2022] [Indexed: 01/17/2023] Open
Abstract
Background Environmental DNA (eDNA) metabarcoding is a common technique for efficient biodiversity monitoring, especially of microbes. Recently, the usefulness of aquatic eDNA in monitoring the diversity of both terrestrial and aquatic fungi has been suggested. In eDNA studies, different experimental factors, such as DNA extraction kits or methods, can affect the subsequent analyses and the results of DNA metabarcoding. However, few methodological studies have been carried out on eDNA of fungi, and little is known about how experimental procedures can affect the results of biodiversity analysis. In this study, we focused on the effect of DNA extraction method on fungal DNA metabarcoding using freshwater samples obtained from rivers and lakes. Methods DNA was extracted from freshwater samples using the DNeasy PowerSoil kit, which is mainly used to extractmicrobial DNA from soil, and the DNeasy Blood & Tissue kit, which is commonly used for eDNA studies on animals. We then compared PCR inhibition and fungal DNA metabarcoding results; i.e., operational taxonomic unit (OTU) number and composition of the extracted samples. Results No PCR inhibition was detected in any of the samples, and no significant differences in the number of OTUs and OTU compositions were detected between the samples processed using different kits. These results indicate that both DNA extraction kits may provide similar diversity results for the river and lake samples evaluated in this study. Therefore, it may be possible to evaluate the diversity of fungi using a unified experimental method, even with samples obtained for diversity studies on other taxa such as those of animals.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Mariko Nagano
- Department of Bioenvironmental Design, Kyoto University of Advanced Science, Kameoka, Japan
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
9
|
Carl S, Mohr S, Sahm R, Baschien C. Laboratory conditions can change the complexity and composition of the natural aquatic mycobiome on Alnus glutinosa leaf litter. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Torres-Garcia D, Gené J, García D. New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 2022; 86:103-145. [PMID: 35145339 PMCID: PMC8825427 DOI: 10.3897/mycokeys.86.73861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
Penicillium species are common fungi found worldwide from diverse substrates, including soil, plant debris, food products and air. Their diversity in aquatic environments is still underexplored. With the aim to explore the fungal diversity in Spanish freshwater sediments, numerous Penicillium strains were isolated using various culture-dependent techniques. A preliminary sequence analysis of the β-tubulin (tub2) gene marker allowed us to identify several interesting species of Penicillium, which were later characterized phylogenetically with the barcodes recommended for species delimitation in the genus. Based on the multi-locus phylogeny of the internal transcribed spacer region (ITS) of the ribosomal DNA, and partial fragments of tub2, calmodulin (cmdA), and the RNA polymerase II largest subunit (rpb2) genes, in combination with phenotypic analyses, five novel species are described. These are P.ausonanum in sectionLanata-Divaricata, P.guarroi in sect.Gracilenta, P.irregulare in sect.Canescentia, P.sicoris in sect.Paradoxa and P.submersum in sect.Robsamsonia. The study of several isolates from samples collected in different locations resulted in the reinstatement of P.vaccaeorum into sectionCitrina. Finally, P.heteromorphum (sect.Exilicaulis) and P.tardochrysogenum (sect.Chrysogena) are reported, previously only known from Antarctica and China, respectively.
Collapse
Affiliation(s)
- Daniel Torres-Garcia
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Josepa Gené
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Dania García
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| |
Collapse
|
11
|
Tipton L, Zahn GL, Darcy JL, Amend AS, Hynson NA. Hawaiian Fungal Amplicon Sequence Variants Reveal Otherwise Hidden Biogeography. MICROBIAL ECOLOGY 2022; 83:48-57. [PMID: 33742230 DOI: 10.1007/s00248-021-01730-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
To study biogeography and other ecological patterns of microorganisms, including fungi, scientists have been using operational taxonomic units (OTUs) as representations of species or species hypotheses. However, when defined by 97% sequence similarity cutoff at an accepted barcode locus such as 16S in bacteria or ITS in fungi, these OTUs can obscure biogeographic patterns, mask taxonomic diversity, and hinder meta-analyses. Amplicon sequence variants (ASVs) have been proposed to alleviate all of these issues and have been shown to do so in bacteria. Analyzing ASVs is just emerging as a common practice among fungal studies, and it is unclear whether the benefits found in bacterial studies of using such an approach carryover to fungi. Here, we conducted a meta-analysis of Hawaiian fungi by analyzing ITS1 amplicon sequencing data as ASVs and exploring ecological patterns. These surveys spanned three island groups and five ecosystems combined into the first comprehensive Hawaiian Mycobiome ASV Database. Our results show that ASVs can be used to combine fungal ITS surveys, increase reproducibility, and maintain the broad ecological patterns observed with OTUs, including diversity orderings. Additionally, the ASVs that comprise some of the most common OTUs in our database reveals some island specialists, indicating that traditional OTU clustering can obscure important biogeographic patterns. We recommend that future fungal studies, especially those aimed at assessing biogeography, analyze ASVs rather than OTUs. We conclude that similar to bacterial studies, ASVs improve reproducibility and data sharing for fungal studies.
Collapse
Affiliation(s)
- Laura Tipton
- School of Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | | | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony S Amend
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
12
|
McKindles KM, Manes MA, McKay RM, Davis TW, Bullerjahn GS. Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii. JOURNAL OF PLANKTON RESEARCH 2021; 43:658-672. [PMID: 34588922 PMCID: PMC8461644 DOI: 10.1093/plankt/fbab058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17-31°C), conductivity (0.226-1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7-12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.
Collapse
Affiliation(s)
- Katelyn M McKindles
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Makayla A Manes
- Department of Biological Sciences, The Ohio State University, Columbus, OH, USA
| | - R Michael McKay
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
- Great Lakes Center for Fresh Waters and Human Health, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | |
Collapse
|
13
|
Fontaine L, Khomich M, Andersen T, Hessen DO, Rasconi S, Davey ML, Eiler A. Multiple thresholds and trajectories of microbial biodiversity predicted across browning gradients by neural networks and decision tree learning. ISME COMMUNICATIONS 2021; 1:37. [PMID: 37938633 PMCID: PMC9723588 DOI: 10.1038/s43705-021-00038-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 08/20/2023]
Abstract
Ecological association studies often assume monotonicity such as between biodiversity and environmental properties although there is growing evidence that nonmonotonic relations dominate in nature. Here, we apply machine-learning algorithms to reveal the nonmonotonic association between microbial diversity and an anthropogenic-induced large-scale change, the browning of freshwaters, along a longitudinal gradient covering 70 boreal lakes in Scandinavia. Measures of bacterial richness and evenness (alpha-diversity) showed nonmonotonic trends in relation to environmental gradients, peaking at intermediate levels of browning. Depending on the statistical methods, variables indicative for browning could explain 5% of the variance in bacterial community composition (beta-diversity) when applying standard methods assuming monotonic relations and up to 45% with machine-learning methods taking non-monotonicity into account. This non-monotonicity observed at the community level was explained by the complex interchangeable nature of individual taxa responses as shown by a high degree of nonmonotonic responses of individual bacterial sequence variants to browning. Furthermore, the nonmonotonic models provide the position of thresholds and predict alternative bacterial diversity trajectories in boreal freshwater as a result of ongoing climate and land-use changes, which in turn will affect entire ecosystem metabolism and likely greenhouse gas production.
Collapse
Affiliation(s)
- Laurent Fontaine
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Maryia Khomich
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tom Andersen
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dag O Hessen
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Serena Rasconi
- Université Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Marie L Davey
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Center for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Matsuoka S, Sugiyama Y, Shimono Y, Ushio M, Doi H. Evaluation of seasonal dynamics of fungal DNA assemblages in a flow-regulated stream in a restored forest using eDNA metabarcoding. Environ Microbiol 2021; 23:4797-4806. [PMID: 34258854 DOI: 10.1111/1462-2920.15669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Investigation of seasonal variation in fungal communities is essential for understanding biodiversity and ecosystem functions. However, the conventional sampling method, with substrate removal and high spatial heterogeneity of community composition, makes surveying the seasonality of fungal communities challenging. Recently, water environmental DNA (eDNA) analysis has been explored for its utility in biodiversity surveys. In this study, we assessed whether the seasonality of fungal communities can be detected by monitoring eDNA in a forest stream. We conducted monthly water sampling in a forest stream over 2 years and used DNA metabarcoding to identify fungal eDNA. The stream water contained DNA from functionally diverse aquatic and terrestrial fungi, such as plant decomposers, parasites and mutualists. The variation in the fungal assemblage showed a regular annual periodicity, meaning that the assemblages in a given season were similar, irrespective of the year or sampling. Furthermore, the strength of the annual periodicity varied among functional groups. Our results suggest that forest streams may act as a 'trap' for terrestrial fungal DNA derived from different habitats, allowing the analysis of fungal DNA in stream water to provide information about the temporal variation in fungal communities in both the aquatic and the surrounding terrestrial ecosystems.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yoshito Shimono
- Graduate School of Bioresources, Mie University, Tsu, Japan.,Osaka Museum of Nature History, Osaka, Japan
| | - Masayuki Ushio
- Hakubi Center, Kyoto University, Kyoto, Japan.,Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
15
|
Blaalid R, Khomich M. Current knowledge of Chytridiomycota diversity in Northern Europe and future research needs. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Sen K, Bai M, Sen B, Wang G. Disentangling the structure and function of mycoplankton communities in the context of marine environmental heterogeneity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142635. [PMID: 33071110 DOI: 10.1016/j.scitotenv.2020.142635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Mycoplankton are a diverse and ubiquitous component of marine environments with a suggested role in ocean biogeochemical cycling. Thus far, the patterns of their abundance, structure, and function against spatial environmental heterogeneity remains poorly understood. Based on in silico and experimental evaluation of multiple markers, we adopted the ITS1 region to determine the composition, guilds, and metabolic potential of mycoplankton communities in contrasting marine environments. The trophic status of estuarine (SB1 and SB2) and coastal (DB1 and DB2) sites, but not oceanic (OS) site, was the major factor that determined their abundances. While ascomycetous fungi dominated the estuarine and coastal sites, basidiomycetous fungi were found to dominate the oceanic site. The zoosporic fungi were relatively more abundant in SB1 and DB2 sites compared to the other sites. The relative abundances of the core fungi, namely Cystobasidium, Phlebia, Rhodotorula, Trichoderma, Alternaria, Penicillium, Malassezia, and Aspergillus varied widely across the sites. Additionally, several fungal genera unique to each site were also identified. DB2 site exhibited the lowest fungal richness while the OS site the highest. Conversely, the diversity and evenness were the lowest for the OS site but highest for the SB1 site. Temperature, pH, and chlorophyll-a were strongly associated with spatial diversity patterns. Of the 11 assigned guilds, some guilds particularly were not detected, including plant pathogen-wood saprotroph in DB2, the endophyte-plant pathogen in OS, the animal pathogen in SB1, and fungal parasite in DB1 and SB2. Within core functions-metabolism of amino acids, carbohydrates and energy, fatty acids and lipids, nitrogen, sulfur, and other compounds-several pathways showed spatial variations. Overall, this study not just broadens the taxonomic and metabolic repertoire of marine mycoplankton but also provides the first evidence of how these are shaped by site-scale environmental heterogeneity.
Collapse
Affiliation(s)
- Kalyani Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
17
|
Sedimentary Ancient DNA (sedaDNA) Reveals Fungal Diversity and Environmental Drivers of Community Changes throughout the Holocene in the Present Boreal Lake Lielais Svētiņu (Eastern Latvia). Microorganisms 2021; 9:microorganisms9040719. [PMID: 33807307 PMCID: PMC8066534 DOI: 10.3390/microorganisms9040719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 01/16/2023] Open
Abstract
Fungi are ecologically important in several ecosystem processes, yet their community composition, ecophysiological roles, and responses to changing environmental factors in historical sediments are rarely studied. Here we explored ancient fungal DNA from lake Lielais Svētiņu sediment throughout the Holocene (10.5 kyr) using the ITS metabarcoding approach. Our data revealed diverse fungal taxa and smooth community changes during most of the Holocene with rapid changes occurring in the last few millennia. More precisely, plankton parasitic fungi became more diverse from the Late Holocene (2–4 kyr) which could be related to a shift towards a cooler climate. The Latest Holocene (~2 kyr) showed a distinct increase in the richness of plankton parasites, mycorrhizal, and plant pathogenic fungi which can be associated with an increased transfer rate of plant material into the lake and blooms of planktonic organisms influenced by increased, yet moderate, human impact. Thus, major community shifts in plankton parasites and mycorrhizal fungi could be utilized as potential paleo-variables that accompany host-substrate dynamics. Our work demonstrates that fungal aDNA with predicted ecophysiology and host specificity can be employed to reconstruct both aquatic and surrounding terrestrial ecosystems and to estimate the influence of environmental change.
Collapse
|
18
|
Seasonal Water Level Fluctuation and Concomitant Change of Nutrients Shift Microeukaryotic Communities in a Shallow Lake. WATER 2020. [DOI: 10.3390/w12092317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seasonal water level fluctuations (WLFs) impose dramatic influences on lake ecosystems. The influences of WLFs have been well studied for many lake biotas but the microeukaryotic community remains one of the least-explored features. This study employed high-throughput 18S rRNA gene sequencing to investigate the spatiotemporal patterns of microeukaryotic communities in the dry and wet seasons with concomitant change of nutrients in Poyang Lake, which experiences huge seasonal WLFs. The results showed that the dry season and wet season had distinct microeukaryotic community compositions and structures. In the dry season, Ciliophora (13.86–40.98%) and Cryptomonas (3.69–18.64%) were the dominant taxa, and the relative abundance of these taxa were significant higher in the dry season than wet season. Ochrophyta (6.88–45.67%) and Chlorophyta (6.31–22.10%) was the dominant taxa of microeukaryotic communities in the wet season. The seasonal variation of microeukaryotic communities was strongly correlated to seasonal nutrient variations. Microeukaryotic communities responded significantly to dissolved organic carbon, total nitrogen, nitrate, and soluble reactive phosphorus in the dry season, and correlated to nitrate and total phosphorus in the wet season. The microeukaryotic community showed different modular structures in two seasons, and nutrient variations were the key factors influencing seasonal variations of the modular structures. Moreover, microeukaryotic community networks based on different seasons indicated that the microeukaryotic community co-occurrence patterns were not constant but varied largely associating with the nitrogen and phosphorus variations under the effects of WLFs. Our results are important for understanding how microeukaryotic communities respond to nutrient variation under seasonal water level fluctuation.
Collapse
|
19
|
Luo Y, Wei X, Yang S, Gao YH, Luo ZH. Fungal diversity in deep-sea sediments from the Magellan seamounts as revealed by a metabarcoding approach targeting the ITS2 regions. Mycology 2020; 11:214-229. [PMID: 33062383 PMCID: PMC7534268 DOI: 10.1080/21501203.2020.1799878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent reports have revealed diverse and abundant fungal communities in the deep-sea biosphere, while their composition, distribution, and variations in seamount zones are poorly understood. Using a metabarcoding approach targeting the ITS2 regions, we present the structure of the fungal community in 18 sediment samples from the Magellan seamount area of the northwest Pacific. A total of 1,979 fungal OTUs was obtained, which were taxonomically assigned to seven phyla, 17 classes, 43 orders, 7 families, and 98 genera. The majority of these OTUs were affiliated to Basidiomycota (873 OTUs, 44.11% of total OTUs) and Ascomycota (486 OTUs, 24.56% of total OTUs), followed by other five minor phyla (Mortierellomycota, Chytridiomycota, Mucoromycota, Glomeromycota, and Monoblepharidomycota). Sordriomycetes is the most abundant class, followed by Eurotiomycetes, and Dothideomycetes. Five genera were common in most of the samples, including worldwide reported genera Aspergillus, Cladosporium, Fusarium, Chaetomium, and Penicillium. The environmental data we collected (sampling depth, sampling location latitude and longitude, organic carbon content, and organic nitrogen content in the sediment) had no significant influence on the composition and distribution of fungal communities. Our findings provide valuable information for understanding the distribution and potential ecological functions of fungi in the deep-sea sediments of the Magellan seamounts.
Collapse
Affiliation(s)
- Ye Luo
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Xu Wei
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Shuai Yang
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Yuan-Hao Gao
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
| | - Zhu-Hua Luo
- Key Laboratory of Marine Biogenetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, PR China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, PR China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang, PR China
| |
Collapse
|
20
|
Liu C, Shi X, Wu F, Zhang M, Gao G, Wu Q. Temporal patterns in the interaction between photosynthetic picoeukaryotes and their attached fungi in Lake Chaohu. FEMS Microbiol Ecol 2020; 96:5859481. [DOI: 10.1093/femsec/fiaa123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The combination of flow cytometric sorting and high-throughput sequencing revealed the broad existence of photosynthetic picoeukaryote attached fungi (PPE-attached fungi) in Lake Chaohu. The relative sequence abundance of attached fungi was negatively correlated with that of the photosynthetic picoeukaryotes (PPEs). PPE-attached fungal communities were mainly composed of Basidiomycota, Chytridiomycota and Ascomycota. Temperature, Si and PPE community structure are the most important driving factors for the temporal succession of PPE-attached fungal communities. In particular, PPE-attached fungi can be divided into three groups from high to low temperatures. Phylogenetic molecular ecological network results indicated that the connectivity and the total number of links in the network of the high-temperature group (> 21.82°C) are higher than those in the other two temperature groups (between 9.67 and 21.82°C, and < 9.67°C, respectively). Moreover, the interaction between PPE-attached fungi and the PPEs changed from antagonistic to cooperative, with the decline in temperature. The most abundant operational taxonomic units of PPE-attached fungi were affiliated with the Cladosporium, the most common saprophytic fungus, whereas most fungal hub taxa were Chytridiomycota, the main parasite fungi of phytoplankton.
Collapse
Affiliation(s)
- Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
Sudová R, Kohout P, Rydlová J, Čtvrtlíková M, Suda J, Voříšková J, Kolaříková Z. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Abstract
Fungi are phylogenetically and functionally diverse ubiquitous components of almost all ecosystems on Earth, including aquatic environments stretching from high montane lakes down to the deep ocean. Aquatic ecosystems, however, remain frequently overlooked as fungal habitats, although fungi potentially hold important roles for organic matter cycling and food web dynamics. Recent methodological improvements have facilitated a greater appreciation of the importance of fungi in many aquatic systems, yet a conceptual framework is still missing. In this Review, we conceptualize the spatiotemporal dimensions, diversity, functions and organismic interactions of fungi in structuring aquatic food webs. We focus on currently unexplored fungal diversity, highlighting poorly understood ecosystems, including emerging artificial aquatic habitats.
Collapse
|
23
|
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 2020; 17:95-109. [PMID: 30442909 DOI: 10.1038/s41579-018-0116-y] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.
Collapse
Affiliation(s)
- R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Sten Anslan
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Leho Tedersoo
- Natural History Museum of Tartu University, Tartu, Estonia
| |
Collapse
|
24
|
Wang Y, Sen K, He Y, Xie Y, Wang G. Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:822-833. [PMID: 31154160 DOI: 10.1016/j.scitotenv.2019.05.204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Fungal communities in the coastal waters have long been known to be dynamic with a significant role in organic matter cycling. However, the effects of environmental gradients on their community structures are poorly described. Here we studied three coastal sites off the South China Sea, namely Pearl River Estuary (PE), Shenzhen Bay (SB), and Daya Bay (DB) with contrasting trophic status and heterogenous local influences. Environmental analysis of these sites suggested higher nutrient and low salinity levels at PE and SB with wide variability compared to DB. Average molecular abundances (18S rRNA gene copy numbers) at sites PE (1.05 ± 0.27 × 107 copies L-1) and SB (1.2 ± 0.69 × 107 copies L-1) were similar and significantly higher (P < 0.05) than that at site DB (5.5 ± 9.5 × 105 copies L-1). Although planktonic fungi were molecularly abundant at the three sites, live fungal biomass based on ergosterol assay was detected only at some stations of PE and SB. Both molecular abundance and live biomass were significantly correlated with chemical oxygen demand, nutrients, and phytoplankton biomass, supporting their role in detritus turnover. The fungal communities were unprecedently diverse with the ubiquitous dominance of Dikarya and the occasional predominance of Glomeromycota, Mucoromycota, Mortierellomycota, and Chytridiomycota. A total of 24 classes, 46 orders, 71 families, 59 genera, and eight species were classified within the eight detected phyla, including the new finding of ascomycetous class Geoglossomycetes in coastal waters. Salinity and nitrate were the significant (r2 = 0.70, P < 0.05) factors that determined the β-diversity of fungal communities. Overall, this study suggests that although planktonic fungi are ubiquitous in coastal habitats, their molecular abundances and diversities (both α and β) are significantly determined by environmental gradients, particularly the salinity, COD and nitrate levels of coastal waters.
Collapse
Affiliation(s)
- Yaqiong Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology, Environment and Resources, Qinghai University for Nationalities, Xining, Qinghai 810007, China
| | - Kalyani Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
25
|
Vargas-Gastélum L, Chong-Robles J, Lago-Lestón A, Darcy JL, Amend AS, Riquelme M. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ Microbiol 2019; 21:4046-4061. [PMID: 31336033 DOI: 10.1111/1462-2920.14754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
Abstract
Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.
Collapse
Affiliation(s)
- Lluvia Vargas-Gastélum
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - John L Darcy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony S Amend
- Botany Department, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
26
|
Matsuoka S, Sugiyama Y, Sato H, Katano I, Harada K, Doi H. Spatial structure of fungal DNA assemblages revealed with eDNA metabarcoding in a forest river network in western Japan. METABARCODING AND METAGENOMICS 2019. [DOI: 10.3897/mbmg.3.36335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence has revealed high diversity and spatial heterogeneity of fungal communities in local habitats of terrestrial ecosystems. Recently, the analysis of environmental DNA has been undertaken to study the biodiversity of organisms, such as animals and plants, in both aquatic and terrestrial habitats. In the present study, we investigated fungal DNA assemblages and their spatial structure using environmental DNA metabarcoding targeting the internal transcribed spacer 1 (ITS1) region of the rRNA gene cluster in habitats across different branches of rivers in forest landscapes. A total of 1,956 operational taxonomic units (OTUs) were detected. Of these, 770 were assigned as Ascomycota, 177 as Basidiomycota, and 38 as Chytridiomycota. The river water was found to contain functionally diverse OTUs of both aquatic and terrestrial fungi, such as plant decomposers and mycorrhizal fungi. These fungal DNA assemblages were more similar within, rather than between, river branches. In addition, the assemblages were more similar between spatially closer branches. This spatial structuring was significantly associated with geographic distances but not with vegetation of the catchment area and the elevation at the sampling points. Our results imply that information on the terrestrial and aquatic fungal compositions of watersheds, and therefore their spatial structure, can be obtained by investigating the fungal DNA assemblages in river water.
Collapse
|
27
|
Davis WJ, Picard KT, Antonetti J, Edmonds J, Fults J, Letcher PM, Powell MJ. Inventory of chytrid diversity in two temporary forest ponds using a multiphasic approach. Mycologia 2018; 110:811-821. [DOI: 10.1080/00275514.2018.1510725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- William J. Davis
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Kathryn T. Picard
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Jonathan Antonetti
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Jennifer Edmonds
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada 89002
| | - Jessica Fults
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Peter M. Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Martha J. Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|