1
|
Sun X, Sharon O, Sharon A. Distinct Features Based on Partitioning of the Endophytic Fungi of Cereals and Other Grasses. Microbiol Spectr 2023; 11:e0061123. [PMID: 37166321 PMCID: PMC10269846 DOI: 10.1128/spectrum.00611-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
Endophytic fungi form a significant part of the plant mycobiome. Defining core members is crucial to understanding the assembly mechanism of fungal endophytic communities (FECs) and identifying functionally important community members. We conducted a meta-analysis of FECs in stems of wheat and five wild cereal species and generated a landscape of the fungal endophytic assemblages in this group of plants. The analysis revealed that several Ascomycota members and basidiomycetous yeasts formed an important compartment of the FECs in these plants. We observed a weak spatial autocorrelation at the regional scale and high intrahost variations in the FECs, suggesting a space-related heterogeneity. Accordingly, we propose that the heterogeneity among subcommunities should be a criterion to define the core endophytic members. Analysis of the subcommunities and meta-communities showed that the core and noncore members had distinct roles in various assembly processes, such as stochasticity, universal dynamics, and network characteristics, within each host. The distinct features identified between the community partitions of endophytes aid in understanding the principles that govern the assembly and function of natural communities. These findings can assist in designing synthetic microbiomes. IMPORTANCE This study proposes a novel method for diagnosing core microbiotas based on prevalence of community members in a meta-community, which could be determined and supported statistically. Using this approach, the study found stratification in community assembly processes within fungal endophyte communities (FECs) in the stems of wheat and cereal-related wild species. The core and noncore partitions of the FECs exhibited certain degrees of determinism from different aspects. Further analysis revealed abundant and consistent interactions between rare taxa, which might contribute to the determinism process in noncore partitions. Despite minor differences in FEC compositions, wheat FECs showed distinct patterns in community assembly processes compared to wild species, suggesting the effects of domestication on FECs. Overall, our study provided a new approach for identifying core microbiota and provides insights into the community assembly processes within FECs in wheat and related wild species.
Collapse
Affiliation(s)
- Xiang Sun
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Or Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Macaya-Sanz D, Witzell J, Collada C, Gil L, Martín JA. Core endophytic mycobiome in Ulmus minor and its relation to Dutch elm disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1125942. [PMID: 36925756 PMCID: PMC10011445 DOI: 10.3389/fpls.2023.1125942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The core microbiota of plants exerts key effects on plant performance and resilience to stress. The aim of this study was to identify the core endophytic mycobiome in U. minor stems and disentangle associations between its composition and the resistance to Dutch elm disease (DED). We also defined its spatial variation within the tree and among distant tree populations. Stem samples were taken i) from different heights of the crown of a 168-year-old elm tree, ii) from adult elm trees growing in a common garden and representing a gradient of resistance to DED, and iii) from trees growing in two distant natural populations, one of them with varying degrees of vitality. Endophyte composition was profiled by high throughput sequencing of the first internal transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts (Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-resistant hosts. A small proportion (10%) of endophytic OTUs was almost ubiquitous throughout the crown while tree colonization by most fungal taxa followed stochastic patterns. A clear distinction in endophyte composition was found between geographical locations. By combining all surveys, we found evidence of a U. minor core mycobiome, pervasive within the tree and ubiquitous across locations, genotypes and health status.
Collapse
Affiliation(s)
- David Macaya-Sanz
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Johanna Witzell
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Carmen Collada
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis Gil
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A. Martín
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Cook K, Sharma J, Taylor AD, Herriott IC, Taylor DL. Epiphytic fungal communities vary by substrate type and at sub-meter spatial scales. Mol Ecol 2022; 31:1879-1891. [PMID: 35060231 DOI: 10.1111/mec.16358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Fungal species have numerous important environmental functions. Where these functions occur will depend on how fungi are spatially distributed, but spatial structures of fungal communities are largely unknown, especially in understudied hyperdiverse tropical tree canopy systems. We explore fungal communities in a Costa Rican tropical rainforest canopy, with a focus on local-scale spatial structure and substrate specificity of fungi. Samples of ~1 cm3 were collected from 135 points along 5 adjacent tree branches, with inter-sample distances from 1 to 800 cm, and dissected into four substrates: outer host tree bark, inner bark, dead bryophytes, and living bryophytes. We sequenced the ITS2 region to characterize total fungal communities. Fungal community composition and diversity varied among substrate types, even when multiple substrates were in direct contact. Fungi were most diverse in living bryophytes, with 39% of all OTUs found exclusively in this substrate, and the least diverse in inner bark. Fungal communities had significant positive spatial autocorrelation and distance decay of similarity only at distances less than one meter. Similarity among samples declines by half in less than ten cm, and even at these short distances, similarities are low with few OTUs shared among samples. These results indicate that community turnover is high and occurs at very small spatial scales, with any two locations sharing very few fungi in common. High heterogeneity of fungal communities in space and among substrates may have implications for the distributions, population dynamics, and diversity of other tree canopy organisms, including epiphytic plants.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska, 311 Irving I Building, Fairbanks, AK, 99775, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
4
|
Roy BA, Thomas DC, Soukup HC, Peterson IAB. Mycena citrinomarginata is associated with roots of the perennial grass Festuca roemeri in Pacific Northwest prairies. Mycologia 2021; 113:693-702. [PMID: 33956585 DOI: 10.1080/00275514.2021.1884814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Prairies in the Pacific Northwest are dominated by perennial bunchgrasses. A Mycena in the citrinomarginata complex was observed to tightly co-occur with bunchgrasses at several prairie study sites. Mapping and spatial statistics showed that it was strongly and significantly associated with Festuca roemeri tussocks. We further found that this fungus is attached to F. roemeri roots (17/17 examined) and both specific primers and next-generation DNA sequencing established that the fungus is in the roots, suggesting that M. citrinomarginata may be endophytic or biotrophic in some contexts, and not simply saprotrophic. These results combined with a literature review indicate that Mycena species are often found as endophytes in grass roots. Given the importance of grasses and grasslands for humans, this ecological association deserves further study.
Collapse
Affiliation(s)
- Bitty A Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, 5289, Oregon 97403
| | - Daniel C Thomas
- Institute of Ecology and Evolution, University of Oregon, Eugene, 5289, Oregon 97403.,Biology Department, Whitman College, Walla Walla, Washington 99362
| | - Hannah C Soukup
- Institute of Ecology and Evolution, University of Oregon, Eugene, 5289, Oregon 97403.,Horticultural Crops Research Unit, Agricultural Research Service, United States Department of Agriculture, 3420 NW Orchard Avenue, Corvallis, Oregon 97331
| | - Ian A B Peterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, 5289, Oregon 97403
| |
Collapse
|
5
|
Boraks A, Plunkett GM, Doro TM, Alo F, Sam C, Tuiwawa M, Ticktin T, Amend AS. Scale-Dependent Influences of Distance and Vegetation on the Composition of Aboveground and Belowground Tropical Fungal Communities. MICROBIAL ECOLOGY 2021; 81:874-883. [PMID: 33025061 DOI: 10.1007/s00248-020-01608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Fungi provide essential ecosystem services and engage in a variety of symbiotic relationships with trees. In this study, we investigate the spatial relationship of trees and fungi at a community level. We characterized the spatial dynamics for above- and belowground fungi using a series of forest monitoring plots, at nested spatial scales, located in the tropical South Pacific, in Vanuatu. Fungal communities from different habitats were sampled using metagenomic analysis of the nuclear ribosomal ITS1 region. Fungal communities exhibited strong distance-decay of similarity across our entire sampling range (3-110,000 m) and also at small spatial scales (< 50 m). Unexpectedly, this pattern was inverted at an intermediate scale (3.7-26 km). At large scales (80-110 km), belowground and aboveground fungal communities responded inversely to increasing geographic distance. Aboveground fungal community turnover (beta diversity) was best explained, at all scales, by geographic distance. In contrast, belowground fungal community turnover was best explained by geographic distance at small scales and tree community composition at large scales. Fungal communities from various habitats respond differently to the influences of habitat and geographic distance. At large geographic distances (80-110 km), community turnover for aboveground fungi is better explained by spatial distance, whereas community turnover for belowground fungi is better explained by plant community turnover. Future syntheses of spatial dynamics among fungal communities must explicitly consider geographic scale to appropriately contextualize community turnover.
Collapse
Affiliation(s)
- André Boraks
- Department of Botany, University of Hawai'i - Mānoa, 3190 Maile Way, Honolulu, HI, 96822, USA.
| | - Gregory M Plunkett
- New York Botanical Garden, 2900 Southern Blvd., Bronx, NY, 10458-5126, USA
| | - Thomas Morris Doro
- Vanuatu National Herbarium - Vanuatu Department of Forestry, PMB 9064, Port-Vila, Vanuatu
| | - Frazer Alo
- Vanuatu National Herbarium - Vanuatu Department of Forestry, PMB 9064, Port-Vila, Vanuatu
| | - Chanel Sam
- Vanuatu National Herbarium - Vanuatu Department of Forestry, PMB 9064, Port-Vila, Vanuatu
| | - Marika Tuiwawa
- South Pacific Regional Herbarium, University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji Islands
| | - Tamara Ticktin
- Department of Botany, University of Hawai'i - Mānoa, 3190 Maile Way, Honolulu, HI, 96822, USA
| | - Anthony S Amend
- Department of Botany, University of Hawai'i - Mānoa, 3190 Maile Way, Honolulu, HI, 96822, USA
| |
Collapse
|
6
|
Vaz ABM, Fonseca PLC, Silva FF, Quintanilha-Peixoto G, Sampedro I, Siles JA, Carmo A, Kato RB, Azevedo V, Badotti F, Ocampo JA, Rosa CA, Góes-Neto A. Foliar mycoendophytome of an endemic plant of the Mediterranean biome (Myrtus communis) reveals the dominance of basidiomycete woody saprotrophs. PeerJ 2020; 8:e10487. [PMID: 33344092 PMCID: PMC7719295 DOI: 10.7717/peerj.10487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
The true myrtle, Myrtus communis, is a small perennial evergreen tree that occurs in Europe, Africa, and Asia with a circum-Mediterranean geographic distribution. Unfortunately, the Mediterranean Forests, where M. communis occurs, are critically endangered and are currently restricted to small fragmented areas in protected conservation units. In the present work, we performed, for the first time, a metabarcoding study on the spatial variation of fungal community structure in the foliar endophytome of this endemic plant of the Mediterranean biome, using bipartite network analysis as a model. The local bipartite network of Myrtus communis individuals and their foliar endophytic fungi is very low connected, with low nestedness, and moderately high specialization and modularity. Similar network patterns were also retrieved in both culture-dependent and amplicon metagenomics of foliar endophytes in distinct arboreal hosts in varied biomes. Furthermore, the majority of putative fungal endophytes species were basidiomycete woody saprotrophs of the orders Polyporales, Agaricales, and Hymenochaetales. Altogether, these findings suggest a possible adaptation of these wood-decaying fungi to cope with moisture limitation and spatial scarcity of their primary substrate (dead wood), which are totally consistent with the predictions of the viaphytism hypothesis that wood-decomposing fungi inhabit the internal leaf tissue of forest trees in order to enhance dispersal to substrates on the forest floor, by using leaves as vectors and as refugia, during periods of environmental stress.
Collapse
Affiliation(s)
- Aline Bruna M Vaz
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Luize C Fonseca
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe F Silva
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Quintanilha-Peixoto
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Inmaculada Sampedro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Jose A Siles
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Anderson Carmo
- Department of Genetics, Ecology, and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo B Kato
- Graduate Program of Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan A Ocampo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, C.S.I.C., Granada, Spain
| | - Carlos A Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
|
8
|
|
9
|
Nelson A, Vandegrift R, Carroll GC, Roy BA. Double lives: transfer of fungal endophytes from leaves to woody substrates. PeerJ 2020; 8:e9341. [PMID: 32923176 PMCID: PMC7457945 DOI: 10.7717/peerj.9341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Fungal endophytes are a ubiquitous feature of plants, yet for many fungi the benefits of endophytism are still unknown. The Foraging Ascomycete (FA) hypothesis proposes that saprotrophic fungi can utilize leaves both as dispersal vehicles and as resource havens during times of scarcity. The presence of saprotrophs in leaf endophyte communities has been previously observed but their ability to transfer to non-foliar saprobic substrates has not been well investigated. To assess this ability, we conducted a culture study by placing surface-sterilized leaves from a single tropical angiosperm tree (Nectandra lineatifolia) directly onto sterile wood fragments and incubating them for 6 weeks. Fungi from the wood were subsequently isolated in culture and identified to the genus level by ITS sequences or morphology. Four-hundred and seventy-seven fungal isolates comprising 24 taxa were cultured from the wood. Of these, 70.8% of taxa (82.3% of isolates) belong to saprotrophic genera according to the FUNGuild database. Furthermore, 27% of OTUs (6% of isolates) were basidiomycetes, an unusually high proportion compared to typical endophyte communities. Xylaria flabelliformis, although absent in our original isolations, formed anamorphic fruiting structures on the woody substrates. We introduce the term viaphyte (literally, "by way of plant") to refer to fungi that undergo an interim stage as leaf endophytes and, after leaf senescence, colonize other woody substrates via hyphal growth. Our results support the FA hypothesis and suggest that viaphytism may play a significant role in fungal dispersal.
Collapse
Affiliation(s)
- Aaron Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Roo Vandegrift
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - George C. Carroll
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Bitty A. Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
10
|
Risely A. Applying the core microbiome to understand host-microbe systems. J Anim Ecol 2020; 89:1549-1558. [PMID: 32248522 DOI: 10.1111/1365-2656.13229] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
The host-associated core microbiome was originally coined to refer to common groups of microbes or genes that were likely to be particularly important for host biological function. However, the term has evolved to encompass variable definitions across studies, often identifying key microbes with respect to their spatial distribution, temporal stability or ecological influence, as well as their contribution to host function and fitness. A major barrier to reaching a consensus over how to define the core microbiome and its relevance to biological, ecological and evolutionary theory is a lack of precise terminology and associated definitions, as well the persistent association of the core microbiome with host function. Common, temporal and ecological core microbiomes can together generate insights into ecological processes that act independently of host function, while functional and host-adapted cores distinguish between facultative and near-obligate symbionts that differ in their effects on host fitness. This commentary summarizes five broad definitions of the core microbiome that have been applied across the literature, highlighting their strengths and limitations for advancing our understanding of host-microbe systems, noting where they are likely to overlap, and discussing their potential relevance to host function and fitness. No one definition of the core microbiome is likely to capture the range of key microbes across a host population. Applied together, they have the potential to reveal different layers of microbial organization from which we can begin to understand the ecological and evolutionary processes that govern host-microbe interactions.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|