1
|
Dindhoria K, Manyapu V, Ali A, Kumar R. Unveiling the role of emerging metagenomics for the examination of hypersaline environments. Biotechnol Genet Eng Rev 2024; 40:2090-2128. [PMID: 37017219 DOI: 10.1080/02648725.2023.2197717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Hypersaline ecosystems are distributed all over the globe. They are subjected to poly-extreme stresses and are inhabited by halophilic microorganisms possessing multiple adaptations. The halophiles have many biotechnological applications such as nutrient supplements, antioxidant synthesis, salt tolerant enzyme production, osmolyte synthesis, biofuel production, electricity generation etc. However, halophiles are still underexplored in terms of complex ecological interactions and functions as compared to other niches. The advent of metagenomics and the recent advancement of next-generation sequencing tools have made it feasible to investigate the microflora of an ecosystem, its interactions and functions. Both target gene and shotgun metagenomic approaches are commonly employed for the taxonomic, phylogenetic, and functional analyses of the hypersaline microbial communities. This review discusses different types of hypersaline niches, their residential microflora, and an overview of the metagenomic approaches used to investigate them. Various applications, hurdles and the recent advancements in metagenomic approaches have also been focused on here for their better understanding and utilization in the study of hypersaline microbiome.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vivek Manyapu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
| | - Ashif Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
3
|
Khatri S, Chaudhary P, Shivay YS, Sharma S. Role of Fungi in Imparting General Disease Suppressiveness in Soil from Organic Field. MICROBIAL ECOLOGY 2023; 86:2047-2059. [PMID: 37010558 DOI: 10.1007/s00248-023-02211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Soil microbial communities are key players responsible for imparting suppressive potential to the soil against soil-borne phytopathogens. Fungi have an immense potential to inhibit soil-borne phytopathogens, but the fungal counterpart has been less explored in this context. We assessed the composition of fungal communities in soil under long-term organic and conventional farming practice, and control soil. The disease-suppressive potential of organic field was already established. A comparative analysis of the disease suppressiveness contributed by the fungal component of soil from conventional and organic farms was assessed using dual culture assays. The quantification of biocontrol markers and total fungi was done; the characterization of fungal community was carried out using ITS-based amplicon sequencing. Soil from organic field exhibited higher disease-suppressive potential than that from conventional farming, against the pathogens selected for the study. Higher levels of hydrolytic enzymes such as chitinase and cellulase, and siderophore production were observed in soil from the organic field compared to the conventional field. Differences in community composition were observed under conventional and organic farming, with soil from organic field exhibiting specific enrichment of key biocontrol fungal genera. The fungal alpha diversity was lower in soil from the organic field compared to the conventional field. Our results highlight the role of fungi in contributing to general disease-suppressive ability of the soil against phytopathogens. The identification of fungal taxa specifically associated with organic farming can aid in understanding the mechanism of disease suppression under such a practice, and can be exploited to induce general disease suppressiveness in otherwise conducive soil.
Collapse
Affiliation(s)
- Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Priya Chaudhary
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India
| | - Yashbir S Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
- UQ-IITD Academy of Research, IIT Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Ding C, Hu W, Zhang X, Qi X, He B, Chen X. Composition and diversity of the fungal community in the rhizosphere soil of halophytic vegetation in Ebinur Lake wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86097-86109. [PMID: 37395876 DOI: 10.1007/s11356-023-28221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The Ebinur Lake wetland in Xinjiang is a typical wetland, comprising a desert ecosystem with rich soil microbial resources, especially soil fungi in the inter-rhizosphere regions of the wetland plants. This study aimed to clarify the diversity and community structures of the inter-rhizosphere soil fungi of plants in areas of high salinity in the Ebinur Lake wetland and their correlations with environmental factors, as little is currently known on this topic. The diversity and differences in the community structures of fungi associated with 12 salt-tolerant plant species in the Ebinur Lake wetland were investigated using 16S rRNA sequencing. Correlations between the fungi and environmental factors, specifically, the physiochemical characteristics of the soil, were evaluated. The results showed that fungal diversity was highest in the rhizosphere soil of Haloxylon ammodendron, followed by H. strobilaceum. The dominant fungal groups were found to be Ascomycota and Basidiomycota, and the dominant genus was Fusarium. Redundancy analysis revealed significant associations between total nitrogen, electrical conductivity, and total potassium in the soil and both the diversity and abundance of the fungi (P < 0.05). Furthermore, the abundance of fungi of all genera in the rhizosphere soil samples were found to be strongly correlated with environmental physicochemical factors such as available nitrogen and phosphorus. These findings provide data and theoretical support for a better understanding of the ecological resources of fungi in the Ebinur Lake wetland.
Collapse
Affiliation(s)
- Cheng Ding
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenge Hu
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China.
| | - Xue Zhang
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Xiaoyun Qi
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Bo He
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Xuemei Chen
- School of Life Sciences, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| |
Collapse
|
5
|
Muñoz-García A, Arbeli Z, Boyacá-Vásquez V, Vanegas J. Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. MARINE POLLUTION BULLETIN 2022; 184:114204. [PMID: 36219973 DOI: 10.1016/j.marpolbul.2022.114204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Mangroves are often exposed to heavy metals that accumulate in the food chain, generate toxicity to mangrove plants and affect microbial diversity. This study determined the abundance of genes associated with resistance and tolerance to heavy metals in the rhizosphere microbiome of Avicennia germinans from a semi-arid mangrove of La Guajira-Colombia by metagenomics and genomics approach. Twenty-eight genes associated with tolerance and 49 genes related to resistance to heavy metals were detected. Genes associated with tolerance and resistance to Cu, especially cusA and copA, were the most abundant. The highest number of genes for tolerance and resistance were for Zn and Co, respectively. The isolate Vibrio fluvialis showed the ability to tolerate Cu, Ni, Zn, and Cd. This work used a complementary approach of metagenomics and genomics to characterize the potential of mangrove microorganisms to tolerate and resist heavy metals and the influence of salinity on their abundance.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Pontificia Universidad Javeriana, Bogotá, Colombia; Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia
| | - Ziv Arbeli
- Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Bogotá, Colombia.
| |
Collapse
|
6
|
Lin L, Jing X, Lucas-Borja ME, Shen C, Wang Y, Feng W. Rare Taxa Drive the Response of Soil Fungal Guilds to Soil Salinization in the Taklamakan Desert. Front Microbiol 2022; 13:862245. [PMID: 35677905 PMCID: PMC9168468 DOI: 10.3389/fmicb.2022.862245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Salinization poses great threats to soil fungal communities that would cause the losses of ecosystems services. Soil fungal communities are composed of different functional guilds such as saprotrophic, symbiotrophic, and pathotrophic fungi, and each guild includes many rare taxa and a few abundant taxa. Despite of low abundance, rare taxa may be crucial in determining the responses of entire soil fungal communities to salinization. However, it remains poorly understood how rare taxa mediate the impacts of soil salinization on soil fungal community structure. Here, we took advantage of a salinity gradient in a desert ecosystem ranging from 0.60 to 31.09 g kg-1 that was created by a 12-year saline-water irrigation and assessed how the rare vs. abundant taxa of soil saprotrophic, symbiotrophic, and pathotrophic fungi respond to soil salinization through changes in the community biodiversity and composition. We found that the rare taxa of soil saprotrophic, symbiotrophic, and pathographic fungi were more sensitive to changes in soil salinity compared to the abundant taxa. In addition, the community composition of rare taxa of the saprotrophic and pathotrophic fungi not the symbiotrophic fungi was positively associated with soil salinity change. However, the symbiotrophic fungi showed greater variations in the species richness along the salinity gradient. These findings highlight the importance to differentiate rare taxa in predicting how the biodiversity and functional groups of soil fungal communities respond to soil salinization.
Collapse
Affiliation(s)
- Litao Lin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Manuel Esteban Lucas-Borja
- Technical School of Agricultural and Forest Engineering (ETSIAM), University of Castilla-La Mancha (UCLM), Albacete, Spain
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yugang Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Wenting Feng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
7
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
8
|
Geochemical Behavior of Sedimentary Phosphorus Species in Northernmost Artificial Mangroves in China. FORESTS 2022. [DOI: 10.3390/f13040610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mangroves are typically found in tropical coastal areas, and these ecosystems face deterioration and loss due to threats from climate and human factors. In this study, sediment cores were collected from human-planted mangroves in sub-tropical Ximen Island, China, and were determined for sedimentary phosphorus (P) species. The objective was to investigate the ability of mangroves planted in a zone bordering their temperature limit to preserve and regulate P. Our results showed that bioavailable P (BAP), which includes exchangeable-P (Ex-P), iron-bound P (Fe-P), and organic P (OP), accounted for approximately 64% of total P (TP). Apatite P (Ca-P), which accounted for 24% of TP, most likely originated from aquaculture activities surrounding the island. The vertical distribution of sedimentary P species along the sediment cores showed a rather constant trend along the salt marsh stand but considerable fluctuations for the mangroves and bare mudflat. These results indicate that mangroves accumulated P when there was a high P discharge event, and that this P was eventually released during organic matter decomposition and contributed to Ca-P formation. Nevertheless, old and young mangroves accumulated higher sedimentary P species, OP, and BAP compared to the salt marsh stand and bare mudflat areas. This study showed the potential of mangroves planted outside their suitable climate zone to preserve and regulate P.
Collapse
|
9
|
Christmann S. Regard and protect ground-nesting pollinators as part of soil biodiversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2564. [PMID: 35138690 PMCID: PMC9286415 DOI: 10.1002/eap.2564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
While the Convention on Biological Diversity employs a habitat-oriented definition of soil biodiversity including all kinds of species living in soil, the Food and Agriculture Organization, since 2002 assigned to safeguard soil biodiversity, excludes them by focusing on species directly providing four ecosystem services contributing to soil quality and functions: nutrient cycling, regulation of water flow and storage, soil structure maintenance and erosion control, and carbon storage and regulation of atmospheric composition. Many solitary wasps and 70% of wild bees nest below ground and require protection during this long and crucial period of their lifecycle. Recent research has demonstrated the extent of threats to which ground-nesting pollinators are exposed, for example, chemicals and deep tillage. Ground-nesting pollinators change soil texture directly by digging cavities, but more importantly by their indirect contribution to soil quality and functions: 87% of all flowering plants require pollinators. Without pollinators, soil would lose all ecosystem services provided by these flowering plants, for example, litter, shade, roots for habitats, and erosion control. Above- and belowground biota are in constant interaction. Therefore, and in line with the Convention's definition, the key stakeholder, the Food and Agriculture Organization should protect ground-nesting pollinators explicitly within soil biodiversity conservation.
Collapse
Affiliation(s)
- Stefanie Christmann
- International Center for Agricultural Research in Dry Areas (ICARDA)RabatMorocco
| |
Collapse
|
10
|
Responses of the Soil Microbial Community to Salinity Stress in Maize Fields. BIOLOGY 2021; 10:biology10111114. [PMID: 34827107 PMCID: PMC8614889 DOI: 10.3390/biology10111114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
To investigate the diversity and structure of soil bacterial and fungal communities in saline soils, soil samples with three increasing salinity levels (S1, S2 and S3) were collected from a maize field in Yanqi, Xinjiang Province, China. The results showed that the K+, Na+, Ca2+ and Mg2+ values in the bulk soil were higher than those in the rhizosphere soil, with significant differences in S2 and S3 (p < 0.05). The enzyme activities of alkaline phosphatase (ALP), invertase, urease and catalase (CAT) were lower in the bulk soil than those in the rhizosphere. Principal coordinate analysis (PCoA) demonstrated that the soil microbial community structure exhibited significant differences between different salinized soils (p < 0.001). Data implied that the fungi were more susceptible to salinity stress than the bacteria based on the Shannon and Chao1 indexes. Mantel tests identified Ca2+, available phosphorus (AP), saturated electrical conductivity (ECe) and available kalium (AK) as the dominant environmental factors correlated with bacterial community structures (p < 0.001); and AP, urease, Ca2+ and ECe as the dominant factors correlated with fungal community structures (p < 0.001). The relative abundances of Firmicutes and Bacteroidetes showed positive correlations with the salinity gradient. Our findings regarding the bacteria having positive correlations with the level of salinization might be a useful biological indicator of microorganisms in saline soils.
Collapse
|
11
|
Sepúlveda-Correa A, Daza-Giraldo LV, Polanía J, Arenas NE, Muñoz-García A, Sandoval-Figueredo AV, Vanegas J. Genes associated with antibiotic tolerance and synthesis of antimicrobial compounds in a mangrove with contrasting salinities. MARINE POLLUTION BULLETIN 2021; 171:112740. [PMID: 34304060 DOI: 10.1016/j.marpolbul.2021.112740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Salinity and wastewater pollution in mangrove ecosystems can affect microorganisms and the abundance of genes involved in response to these stressors. This research aimed to identify genes associated with resistance and biosynthesis of antimicrobial compounds in mangrove soils subjected to contrasting salinities and wastewater pollution. Samples of rhizospheric soil were taken from a mangrove at the mouth of the Ranchería River in La Guajira, Colombia. A functional analysis was performed using Illumina HiSeq 2500 sequencing data obtained from total DNA extracted. Increased salt concentration influenced metabolic pathways and differential abundance of genes associated with the synthesis of antimicrobial compounds (e.g., rfbB/rffG, INO1/ISYNA1, rfbA/rffH, sat/met3, asd). Also, among 33 genes involved in intrinsic antibiotic resistance, 16 were significantly influenced by salinity (e.g., cusR/copR/silR, vgb, tolC). We concluded that salt stress tolerance and adaptive mechanisms could favor the biosynthesis of antimicrobial compounds in mangroves contaminated by sewage.
Collapse
Affiliation(s)
| | | | - Jaime Polanía
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Nelson E Arenas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia
| | | | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
12
|
Kennedy JP, Antwis RE, Preziosi RF, Rowntree JK. Evidence for the genetic similarity rule at an expanding mangrove range limit. AMERICAN JOURNAL OF BOTANY 2021; 108:1331-1342. [PMID: 34458987 DOI: 10.1002/ajb2.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Host-plant genetic variation can shape associated communities of organisms. These community-genetic effects include (1) genetically similar hosts harboring similar associated communities (i.e., the genetic similarity rule) and (2) host-plant heterozygosity increasing associated community diversity. Community-genetic effects are predicted to be less prominent in plant systems with limited genetic variation, such as those at distributional range limits. Yet, empirical evidence from such systems is limited. METHODS We sampled a natural population of a mangrove foundation species (Avicennia germinans) at an expanding range limit in Florida, USA. We measured genetic variation within and among 40 host trees with 24 nuclear microsatellite loci and characterized their foliar endophytic fungal communities with internal transcribed spacer (ITS1) gene amplicon sequencing. We evaluated relationships among host-tree genetic variation, host-tree spatial location, and the associated fungal communities. RESULTS Genetic diversity was low across all host trees (mean: 2.6 alleles per locus) and associated fungal communities were relatively homogeneous (five sequence variants represented 78% of all reads). We found (1) genetically similar host trees harbored similar fungal communities, with no detectable effect of interhost geographic distance. (2) Host-tree heterozygosity had no detectable effect, while host-tree absolute spatial location affected community alpha diversity. CONCLUSIONS This research supports the genetic similarity rule within a range limit population and helps broaden the current scope of community genetics theory by demonstrating that community-genetic effects can occur even at expanding distributional limits where host-plant genetic variation may be limited. Our findings also provide the first documentation of community-genetic effects in a natural mangrove system.
Collapse
Affiliation(s)
- John Paul Kennedy
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Richard F Preziosi
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
13
|
Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, Wang L, Guo W. Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Front Microbiol 2021; 12:698479. [PMID: 34322109 PMCID: PMC8312270 DOI: 10.3389/fmicb.2021.698479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
14
|
Shi C, Chen J, Ge Q, Sun J, Guo W, Wang J, Peng L, Xu Q, Fan G, Zhang W, Liu X. Draft Genomes and Comparative Analysis of Seven Mangrove Rhizosphere-Associated Fungi Isolated From Kandelia obovata and Acanthus ilicifolius. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:626904. [PMID: 37744136 PMCID: PMC10512393 DOI: 10.3389/ffunb.2021.626904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/16/2021] [Indexed: 09/26/2023]
Abstract
Mangroves are one of the most productive and biologically diverse ecosystems, with unique plants, animals, and microorganisms adapted to the harsh coastal environments. Although fungi are widely distributed in the mangrove ecosystem and they are playing an important role in the decomposition of organic matter, their genomic profiles are still poorly understood. In this study, we isolated seven Ascomycota fungi (Westerdykella dispersa F012, Trichoderma lixii F014, Aspergillus tubingensis F023, Penicillium brefeldianum F032, Neoroussoella solani F033, Talaromyces fuscoviridis F034, and Arthrinium marii F035) from rhizospheres of two mangroves of Kandelia obovata and Acanthus ilicifolius. We sequenced and assembled the whole genome of these fungi, resulting in size ranging from 29 to 48 Mb, while contig N50 from 112 to 833 Kb. We generated six novel fungi genomes except A. tubingensis, and the gene completeness and genome completeness of all seven genomes are higher than 94%. Comparing with non-mangrove fungi, we found Carbohydrate-Binding Modules (CBM32), a subfamily of carbohydrate active enzymes, only detected in two mangrove fungi. Another two subfamilies, Glycoside Hydrolases (GH6) and Polysaccharide Lyases (PL4), were significantly different in gene copy number between K. obovata and A. ilicifolius rhizospheres (P-value 0.041 for GH6, 0.047 for PL4). These findings may indicate an important influence of mangrove environments or hosts on the ability of decomposition in rhizosphere fungi. Secondary metabolite biosynthesis gene clusters were detected and we found the mangrove fungi averagely contain 18 Type I Polyketide (t1pks) synthase, which was significantly higher than 13 in non-mangrove fungi (P-value 0.048), suggesting their potential roles in producing bioactive compounds that important for fungi development and ecology. We reported seven mangrove-associated fungal genomes in this study and compared their carbohydrate active enzymes and secondary metabolites (SM) genes with those of non-mangrove fungi, and the results suggest that there are differences in genetic information among fungi in different habitats.
Collapse
Affiliation(s)
- Chengcheng Shi
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | - Qijin Ge
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jiahui Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Wenjie Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jie Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- BGI-Argo Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, China
| | - Ling Peng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Wenwei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
- BGI-Fuyang, BGI-Shenzhen, Fuyang, China
| |
Collapse
|
15
|
Lynn TM, Zhran M, Wang LF, Ge T, Yu SS, Kyaw EP, Latt ZK, Htwe TM. Effect of land use on soil properties, microbial abundance and diversity of four different crop lands in central Myanmar. 3 Biotech 2021; 11:154. [PMID: 33747704 PMCID: PMC7930169 DOI: 10.1007/s13205-021-02705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Changing land use systems impact on local edaphic factors and microbial abundance and diversity, however, the information on it in central Myanmar's soils is still lacking. Therefore, soils with four different land uses were analyzed; WAP (soil from perennial tree orchard), PNON (soil from crop rotation of peanut and onion), SESA (soil from mono-crop of sesame) and CHON (soil from mono-crop of onion for 3 years consecutively). Soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon (DOC), ammonium nitrogen (NH4 +-N) and pH showed the highest in PNON soil, which suggested crop rotation with high fertilizer input and irrigation had positive effect on the edaphic factors of soil. CHON soil showed the lowest in most soil properties and microbial abundance as a result of intensive use of fertilizer and irrigation, no crop rotation and no input of manures. Microbial community composition showed differences among tested soils and relative abundance of Chloroflexi was the highest in CHON soil whereas that of Basidiomycota was the highest in WAP soil. The abundances of bacteria and fungi were significantly affected by Olsen P, whereas the abundances of archaea were influenced by SOC. Our results suggested crop rotation and manure fertilization (PNON soil) enhanced soil properties and microbial abundance although long-time onion mono-crop (CHON soil) reduced soil fertility. This study can provide information to improve soil quality and sustainability of agro-ecosystems using appropriate agricultural management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02705-y.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Mostafa Zhran
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Atomic Energy Authority, Nuclear Research Center, Soil & Water Research Department, Abou-Zaabl, 13759 Egypt
| | - Liu Fang Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Tida Ge
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - San San Yu
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Ei Phyu Kyaw
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Zaw Ko Latt
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Tin Mar Htwe
- Ministry of Education, Kyaing Tong Education College, Kyaing Tong, Shan State Myanmar
| |
Collapse
|
16
|
Zhang G, Bai J, Tebbe CC, Huang L, Jia J, Wang W, Wang X, Yu L, Zhao Q. Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143667. [PMID: 33248759 DOI: 10.1016/j.scitotenv.2020.143667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 11/08/2020] [Indexed: 05/14/2023]
Abstract
Soil fungal communities drive diverse ecological processes and are critical in maintaining ecosystems' stability, but the effects of plant invasion on soil fungal diversity, community composition, and functional groups are not well understood. Here, we investigated soil fungal communities in a salt marsh ecosystem with both native (Suaeda salsa) and exotic (Spartina alterniflora) species in the Yellow River Delta. We characterized fungal diversity based on the PCR-amplified Internal Transcribed Spacer 2 (ITS2) DNA sequences from soil extracted total DNA. The plant invasion evidently decreased fungal richness and phylogenetic diversity and significantly altered the taxonomic community composition (indicated by the permutation test, P < 0.001). Co-occurrence networks between fungal species showed fewer network links but were more assembled because of the high modularity after the invasion. As indicated by the fungal Bray-Curtis and weighted UniFrac distances, the fungal community became homogenized with the invasion. FUNGuild database analyses revealed that the invaded sites had a higher proportion of saprophytic fungi, suggesting higher organic matter decomposition potential with the invasion. The plant invasion dramatically inhibited the growth of pathogenic fungi, which may facilitate the expansion of invasive plants in the intertidal habitats. Soil pH and salinity were identified as the most important edaphic factors in shaping the fungal community structures in the context of Spartina alterniflora invasion. Overall, this study elucidates the linkage between plant invasion and soil fungal communities and poses potential consequences for fungal contribution to ecosystem function, including the decomposition of soil organic substrates.
Collapse
Affiliation(s)
- Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, Braunschweig 38116, Germany
| | - Laibin Huang
- Department of Land, Air, and Water Resources, University of California-Davis, CA 95616, USA
| | - Jia Jia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lu Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qingqing Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, PR China; Ecology Institute of Shandong Academy of Sciences, Ji'nan 250103, PR China
| |
Collapse
|
17
|
Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, Sakayaroj J, Bahkali AH, Calabon MS, Sarma VV, Sutreong S, Zhang SN. Occurrence and geographical distribution of mangrove fungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00468-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|