1
|
Wang Y, Chen X, Wang M, Pan Y, Li S, He M, Lin F, Jiang Z. Repetitive Transcranial Magnetic Stimulation Coupled With Visual-Feedback Cycling Exercise Improves Walking Ability and Walking Stability After Stroke: A Randomized Pilot Study. Neural Plast 2024; 2024:8737366. [PMID: 39629474 PMCID: PMC11614519 DOI: 10.1155/np/8737366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Stroke survivors exhibit persistent abnormal gait patterns, particularly in diminished walking ability and stability, limiting mobility and increasing the risk of falling. The purpose of the study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) coupled with cycling exercise on walking ability and stability in patients with stroke and explore the potential mechanisms underlying motor cortex recovery. Methods: In this double-blinded randomized pilot trial, 32 stroke patients were randomly separated into the real-rTMS group (RG, receiving rTMS during active cycling exercise) and the sham-rTMS group (SG, receiving sham rTMS during active cycling exercise). Participants completed 10 exercise sessions (5 times per week). Lower extremity function was measured using the Fugl-Meyer assessment of lower extremity (FMA-LE), and functional balance ability was measured by the Berg balance scale (BBS). The 2-min walk test (2MWT) and standing balance test were employed to evaluate walking and balance ability. Motor evoked potentials (MEPs) were measured to evaluate cortical excitability. The above assessments were administered at baseline and after the intervention. Additionally, the cycling exercise performance was recorded after the initial and final exercise sessions to evaluate the motor control during exercise. Results: The RG showed significant improvements in lower extremity function (FMA-LE) and functional balance ability (BBS) compared to the SG at postintervention. The walking and balance abilities, as well as the motor asymmetry of cycling exercise, significantly improved in RG. Additionally, participants in RG exhibited a higher elicitation rate of ipsilesional MEPs than that in SG. The improvements in motor asymmetry of cycling exercise in RG were significantly associated with increases in FMA-LE scores and walking ability. Conclusion: The combination of rTMS and cycling exercise effectively improves walking ability and walking stability in patients with stroke, which may be related to the excitability modulation of the motor cortex induced by rTMS. Trial Registration: Clinical Trial Registry identifier: ChiCTR2400079360.
Collapse
Affiliation(s)
- Yixiu Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Chen
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Nanjing Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Menghuan Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Pan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shiyi Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengfei He
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Lin
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongli Jiang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Barsotti E, Goodman B, Samuelson R, Carvour ML. A Scoping Review of Wearable Technologies for Use in Individuals With Intellectual Disabilities and Diabetic Peripheral Neuropathy. J Diabetes Sci Technol 2024:19322968241231279. [PMID: 38439547 PMCID: PMC11571371 DOI: 10.1177/19322968241231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
BACKGROUND Individuals with intellectual disabilities (IDs) are at risk of diabetes mellitus (DM) and diabetic peripheral neuropathy (DPN), which can lead to foot ulcers and lower-extremity amputations. However, cognitive differences and communication barriers may impede some methods for screening and prevention of DPN. Wearable and mobile technologies-such as smartphone apps and pressure-sensitive insoles-could help to offset these barriers, yet little is known about the effectiveness of these technologies among individuals with ID. METHODS We conducted a scoping review of the databases Embase, PubMed, and Web of Science using search terms for DM, DPN, ID, and technology to diagnose or monitor DPN. Finding a lack of research in this area, we broadened our search terms to include any literature on technology to diagnose or monitor DPN and then applied these findings within the context of ID. RESULTS We identified 88 articles; 43 of 88 (48.9%) articles were concerned with gait mechanics or foot pressures. No articles explicitly included individuals with ID as the target population, although three articles involved individuals with other cognitive impairments (two among patients with a history of stroke, one among patients with hemodialysis-related cognitive changes). CONCLUSIONS Individuals with ID are not represented in studies using technology to diagnose or monitor DPN. This is a concern given the risk of DM complications among patients with ID and the potential for added benefit of such technologies to reduce barriers to screening and prevention. More studies should investigate how wearable devices can be used among patients with ID.
Collapse
Affiliation(s)
- Ercole Barsotti
- College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bailey Goodman
- College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Riley Samuelson
- Hardin Library for the Health Sciences, University of Iowa, Iowa City, IA, USA
| | - Martha L. Carvour
- College of Public Health, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Hagerman R, Tassone F, Rivera SM. FMR1 Carriers Report Executive Function Changes Prior to Fragile X-Associated Tremor/Ataxia Syndrome: A Longitudinal Study. Mov Disord 2024; 39:519-525. [PMID: 38124331 PMCID: PMC11268876 DOI: 10.1002/mds.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies has made it difficult to address this hypothesis. OBJECTIVE To determine whether executive function deterioration experienced by premutation carriers (PC) in daily life precedes and predicts FXTAS. METHODS This study included 66 FMR1 PC ranging from 40 to 78 years (mean, 59.5) and 31 well-matched healthy controls (HC) ages 40 to 75 (mean, 57.7) at baseline. Eighty-four participants returned for 2 to 5 follow up visits over a duration of 1 to 9 years (mean, 4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. RESULTS Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, increased self-report executive function problems at baseline significantly predicted later development of FXTAS. CONCLUSIONS Executive function changes experienced by male PC represent a prodrome of the later movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Robertson-Dick EE, Timm EC, Pal G, Ouyang B, Liu Y, Berry-Kravis E, Hall DA, O’Keefe JA. Digital gait markers to potentially distinguish fragile X-associated tremor/ataxia syndrome, Parkinson's disease, and essential tremor. Front Neurol 2023; 14:1308698. [PMID: 38162443 PMCID: PMC10755476 DOI: 10.3389/fneur.2023.1308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be given an incorrect initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. It is critical to characterize distinct phenotypes in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible (FP) speed and dual-task (DT) paradigms have the potential to distinguish differences in gait performance between the three movement disorders. Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative measures of functional mobility and gait under self-selected (SS) speed, FP, and DT conditions. Methods Participants with FXTAS (n = 22), PD (n = 23), ET (n = 20), and controls (n = 20) underwent gait testing with an inertial sensor system (APDM™). An instrumented Timed Up and Go test (i-TUG) was used to measure movement transitions, and a 2-min walk test (2MWT) was used to measure gait and turn variables under SS, FP, and DT conditions, and dual-task costs (DTC) were calculated. ANOVA and multinomial logistic regression analyses were performed. Results PD participants had reduced stride lengths compared to FXTAS and ET participants under SS and DT conditions, longer turn duration than ET participants during the FP task, and less arm symmetry than ET participants in SS gait. They also had greater DTC for stride length and velocity compared to FXTAS participants. On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared to FXTAS and ET participants. Stride length and arm symmetry index during the DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants with shorter stride lengths were more likely to have a diagnosis of PD and those with greater arm asymmetry were more likely to be diagnosed with PD. No gait or i-TUG parameters distinguished FXTAS from ET participants in the regression model. Conclusion This is the first quantitative study demonstrating distinct gait and functional mobility profiles in FXTAS, PD, and ET which may assist in more accurate and timely diagnosis.
Collapse
Affiliation(s)
- Erin E. Robertson-Dick
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Emily C. Timm
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, United States
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Joan A. O’Keefe
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Hessl D, Rojas KM, Ferrer E, Espinal G, Famula J, Schneider A, Elagerman R, Tassone F, Rivera SM. A Longitudinal Study of Executive Function in Daily Life in Male Fragile X Premutation Carriers and Association with FXTAS Conversion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294855. [PMID: 37693384 PMCID: PMC10491369 DOI: 10.1101/2023.08.31.23294855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Men with fragile X-associated tremor/ataxia syndrome (FXTAS) often develop executive dysfunction, characterized by disinhibition, frontal dyscontrol of movement, and working memory and attention changes. Although cross-sectional studies have suggested that earlier executive function changes may precede FXTAS, the lack of longitudinal studies have made it difficult to address this hypothesis. Methods This study included 66 FMR1 premutation carriers (PC) ranging from 40-78 years (Mean=59.5) and 31 well-matched healthy controls (HC) ages 40-75 (Mean 57.7) at baseline. Eighty-four participants returned for 2-5 follow up visits over a duration of 1 to 9 years (Mean=4.6); 28 of the PC developed FXTAS. The Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) was completed by participants and their spouses/partners at each visit. Results Longitudinal mixed model regression analyses showed a greater decline with age in PC compared to HC on the Metacognition Index (MI; self-initiation, working memory, organization, task monitoring). Conversion to FXTAS was associated with worsening MI and Behavioral Regulation Index (BRI; inhibition, flexibility, emotion modulation). For spouse/partner report, FXTAS conversion was associated with worsening MI. Finally, BRIEF-A executive function problems at baseline significantly predicted later development of FXTAS. Conclusions These findings suggest that executive function changes represent a prodrome of the later movement disorder.
Collapse
Affiliation(s)
- David Hessl
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Karina Mandujano Rojas
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
| | - Emilio Ferrer
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Glenda Espinal
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jessica Famula
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
- Family Caregiving Institute, Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Randi Elagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, California, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Psychology, University of California Davis, Davis, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, California, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
7
|
Poleur M, Markati T, Servais L. The use of digital outcome measures in clinical trials in rare neurological diseases: a systematic literature review. Orphanet J Rare Dis 2023; 18:224. [PMID: 37533072 PMCID: PMC10398976 DOI: 10.1186/s13023-023-02813-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Developing drugs for rare diseases is challenging, and the precision and objectivity of outcome measures is critical to this process. In recent years, a number of technologies have increasingly been used for remote monitoring of patient health. We report a systematic literature review that aims to summarize the current state of progress with regard to the use of digital outcome measures for real-life motor function assessment of patients with rare neurological diseases. Our search of published literature identified 3826 records, of which 139 were included across 27 different diseases. This review shows that use of digital outcome measures for motor function outside a clinical setting is feasible and employed in a broad range of diseases, although we found few outcome measures that have been robustly validated and adopted as endpoints in clinical trials. Future research should focus on validation of devices, variables, and algorithms to allow for regulatory qualification and widespread adoption.
Collapse
Affiliation(s)
- Margaux Poleur
- Department of Neurology, Liege University Hospital Center, Liège, Belgium.
- Neuromuscular Reference Center, Division of Paediatrics University, Hospital University of Liège, Liège, Belgium.
- Centre de Référence des Maladies Neuromusculaires, Centre Hospitalier Régional de la Citadelle, Boulevard du 12eme de Ligne 1, 4000, Liège, Belgium.
| | - Theodora Markati
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Neuromuscular Reference Center, Division of Paediatrics University, Hospital University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Suo J, Shen X, He J, Sun H, Shi Y, He R, Zhang X, Wang X, Xi Y, Liang W. Exploring cognitive trajectories and their association with physical performance: evidence from the China Health and Retirement Longitudinal Study. Epidemiol Health 2023; 45:e2023064. [PMID: 37448124 PMCID: PMC10667582 DOI: 10.4178/epih.e2023064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES The long-term trends of cognitive function and its associations with physical performance remain unclear, particularly in Asian populations. The study objectives were to determine cognitive trajectories in middle-aged and elderly Chinese individuals, as well as to examine differences in physical performance across cognitive trajectory groups. METHODS Data were extracted from the China Health and Retirement Longitudinal Study. A total of 5,701 participants (47.7% male) with a mean age of 57.8 (standard deviation, 8.4) years at enrollment were included. A group-based trajectory model was used to identify cognitive trajectory groups for each sex. Grip strength, repeated chair stand, and standing balance tests were used to evaluate physical performance. An ordered logistic regression model was employed to analyze differences in physical performance across cognitive trajectory groups. RESULTS Three cognitive trajectory groups were identified for each sex: low, middle, and high. For both sexes, higher cognitive trajectory groups exhibited smaller declines with age. In the fully adjusted model, relative to the low trajectory group, the odds ratios (ORs) of better physical performance in the middle cognitive group were 1.37 (95% confidence interval [CI], 1.17 to 1.59; p<0.001) during follow-up and 1.40 (95% CI, 1.20 to 1.64; p<0.001) at the endpoint. The ORs in the high trajectory group were 1.94 (95% CI, 1.61 to 2.32; p<0.001) during follow-up and 2.04 (95% CI, 1.69 to 2.45; p<0.001) at the endpoint. CONCLUSIONS Cognitive function was better preserved in male participants and individuals with higher baseline cognitive function. A higher cognitive trajectory was associated with better physical performance over time.
Collapse
Affiliation(s)
- Jingdong Suo
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xianlei Shen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Jinyu He
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Haoran Sun
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yu Shi
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Rongxin He
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiao Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xijie Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yuandi Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wannian Liang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Gore S, Blackwood J, Ziccardi T. Associations Between Cognitive Function, Balance, and Gait Speed in Community-Dwelling Older Adults with COPD. J Geriatr Phys Ther 2023; 46:46-52. [PMID: 34334706 DOI: 10.1519/jpt.0000000000000323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Older adults with chronic obstructive pulmonary disease (COPD) are at risk for physical and cognitive impairment. Cognitive function is associated with falls in older adults. However, it is unknown whether a relationship exists between cognitive function and falls in patients with COPD. The aim of this study was to examine the relationships between cognitive function, balance, and gait speed in older adults with COPD. PATIENTS AND METHODS A secondary analysis was performed using data from the 2010 wave of the Health and Retirement Study (HRS). Cognitive (immediate and delayed recall, executive function) and physical (gait speed, tandem balance time) measure data were extracted for older adults with COPD (n = 382) and an age-matched control group without COPD (n = 382) who met inclusion/exclusion criteria. Multivariate linear regression modeling was performed to examine associations between cognitive function and mobility or balance while controlling for age, gender, body mass index, grip strength, and education. RESULTS In older adults with COPD, delayed recall was significantly associated with tandem balance performance (β= 1.42, P < .05). Other cognitive measures were not associated with gait speed or balance. CONCLUSION In older adults with COPD, one of four cognitive functions was associated with a static standing balance task. Screening of cognitive function, specifically delayed recall, should be a part of the management of falls in this population.
Collapse
Affiliation(s)
- Shweta Gore
- Physical Therapy Department, MGH Institute of Health Professionals, Boston, Massachusetts
| | | | - Tyler Ziccardi
- Department of Physical Therapy, University of Michigan-Flint, Flint
| |
Collapse
|
10
|
Kalu ME, Bello-Haas VD, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Abrahim S, Richardson TK, Savatteri N, Wang Y, Tkachyk C. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics 2022; 22:553-573. [PMID: 35535013 DOI: 10.1111/psyg.12848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Although many factors have been associated with mobility among older adults, there is paucity of research that explores the complexity of factors that influence mobility. This review aims to synthesise the available evidence for factors comprising the cognitive, psychological, and social mobility determinants and their associations with mobility self-reported and performance-based outcomes in older adults (60 years). We followed Arksey and O'Malley's five stages of a scoping review and searched PubMed, EMBASE, PsychINFO, Web of Science, AgeLine, Allied and Complementary Medicine Database, Cumulative Index to Nursing and Allied Health Literature and Sociological Abstract databases. Reviewers in pairs independently conducted title, abstract, full-text screening and data extraction. We reported associations by analyses rather than articles because articles reported multiple associations for factors and several mobility outcomes. Associations were categorised as significantly positive, negative, or not significant. We included 183 peer-reviewed articles published in 27 countries, most of which were cross-sectional studies and conducted among community-dwelling older adults. The 183 articles reported 630 analyses, of which 381 (60.5%) were significantly associated with mobility outcomes in the expected direction. For example, older adults with higher cognitive functioning such as better executive functioning had better mobility outcomes (e.g., faster gait speed), and those with poor psychological outcomes, such as depressive symptoms, or social outcomes such as reduced social network, had poorer mobility outcomes (e.g., slower gait speed) compared to their counterparts. Studies exploring the association between cognitive factors, personality (a psychological factor) and self-reported mobility outcomes (e.g., walking for transportation or driving), and social factors and performance-based mobility outcomes in older adults are limited. Understanding the additive relationships between cognitive, psychological, and social factors highlights the complexity of older adults' mobility across different forms of mobility, including independence, use of assistive devices, transportation, and driving.
Collapse
Affiliation(s)
- Michael E Kalu
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Vanina Dal Bello-Haas
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Meridith Griffin
- Department of Health, Aging & Society, Faculty of Social Science, McMaster University, Hamilton, Ontario, Canada
| | - Sheila Boamah
- School of Nursing, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jocelyn Harris
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Mashal Zaide
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Rayner
- Department of Health Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nura Khattab
- Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Salma Abrahim
- Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Yimo Wang
- Myodetox Markham, Markham, Ontario, Canada
| | | |
Collapse
|
11
|
Shieh V, Zampieri C, Sansare A, Collins J, Bulea TC, Jain M. Validation of Body-Worn Sensors for Gait Analysis During a 2-min Walk Test in Children. JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR 2022; 5:111-119. [PMID: 37538346 PMCID: PMC10398795 DOI: 10.1123/jmpb.2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Introduction Instrumented gait mat systems have been regarded as one of the gold standard methods for measuring spatiotemporal gait parameters. However, their portable walkways confine walking to a restricted area and limit the number of gait cycles collected. Wearable inertial sensors are a potential alternative that allow more natural walking behavior and have fewer space restrictions. The objective of this pilot study was to establish the concurrent validity of body-worn sensors against the portable walkway system in older children. Methods Twenty-one participants (10 males) 7-17 years old performed 2-min walk tests at a self-selected and fast pace in a 25-m-long hallway, while wearing three inertial sensors. Data collection were synchronized between devices and the portions of the walk when subjects passed on the walkway were used to compare gait speed, stride length, gait cycle duration, cadence, and double support time. Regression models and Bland-Altman analysis were completed to determine agreement between systems for the selected gait parameters. Results Gait speed, cadence, gait cycle duration, and stride length as measured by inertial sensors demonstrated strong agreement overall. Double support time was found to have lower validity due to a combined bias of age, height, weight, and walking pace. Conclusion These results support the validity of wearable inertial sensors in measuring gait speed, cadence, gait cycle duration, and stride length in children 7 years old and above during a 2-min walking test. Future studies are warranted with a broader age range to thoroughly represent the pediatric population.
Collapse
Affiliation(s)
- Vincent Shieh
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Cris Zampieri
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ashwini Sansare
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - John Collins
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Thomas C Bulea
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Minal Jain
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
13
|
Motor Competence–Related Age and Living Environment in Girls: A Cross-Sectional Study. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aims to investigate the effect of age and urban and rural living environments on children’s actual and perceived motor competence. To that end, 320 female students aged 8–12 years were selected through random cluster sampling. The perceived motor competence of the participants was assessed using Marsh’s Physical Self-Description Questionnaire, and their actual motor competence was measured by the Test of Gross Motor Development-3. The results showed significant differences between urban and rural girls in perceived and actual motor competence (p < .05). However, age did not make any significant difference in motor competence (p > .05). The most significant differences in actual and perceived motor competence between urban and rural girls were observed in girls aged 8 and 10 (p < .05). The findings also indicated that rural children performed better in actual motor skills, especially ball skills. Therefore, based on the findings, it was concluded that the rural environment could have a greater impact on actual motor competence.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review the prevalence, pathophysiology, and management of fragile X-associated tremor/ataxia syndrome (FXTAS). RECENT FINDINGS The pathophysiology of FXTAS involves ribonucleic acid (RNA) toxicity due to elevated levels of the premutation-expanded CGG (eoxycytidylate-deoxyguanylate-deoxyguanylate)-repeat FMR1 mRNA, which can sequester a variety of proteins important for neuronal function. A recent analysis of the inclusions in FXTAS demonstrates elevated levels of several proteins, including small ubiquitin-related modifiers 1/2 (SUMO1/2), that target molecules for the proteasome, suggesting that some aspect(s) of proteasomal function may be altered in FXTAS. Recent neuropathological studies show that Parkinson disease and Alzheimer disease can sometimes co-occur with FXTAS. Lewy bodies can be found in 10% of the brains of patients with FXTAS. Microbleeds and iron deposition are also common in the neuropathology, in addition to white matter disease (WMD) and atrophy. SUMMARY The premutation occurs in 1:200 females and 1:400 males. Penetrance for FXTAS increases with age, though lower in females (16%) compared to over 60% of males by age 70. To diagnose FXTAS, an MRI is essential to document the presence of WMD, a primary component of the diagnostic criteria. Pain can be a significant feature of FXTAS and is seen in approximately 50% of patients.
Collapse
|
15
|
Hocking DR, Loesch DZ, Stimpson P, Tassone F, Atkinson A, Storey E. Delineating the Relationships Between Motor, Cognitive-Executive and Psychiatric Symptoms in Female FMR1 Premutation Carriers. Front Psychiatry 2021; 12:742929. [PMID: 34925088 PMCID: PMC8678043 DOI: 10.3389/fpsyt.2021.742929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Premutation expansions (55-200 CGG repeats) of the Fragile X Mental Retardation 1 (FMR1) gene on the X chromosome are associated with a range of clinical features. Apart from the most severe - Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) - where the most typical white matter changes affect cerebellar peduncles, more subtle changes may include impairment of executive functioning, affective disorders and/or subtle motor changes. Here we aimed to examine whether performance in selected components of executive functioning is associated with subclinical psychiatric symptoms in non-FXTAS, adult females carrying the FMR1 premutation. Methods and Sample: A total of 47 female premutation carriers (sub-symptomatic for FXTAS) of wide age range (26-77 years; M = 50.3; SD = 10.9) were assessed using standard neuropsychological tests, three motor rating scales and self-reported measures of psychiatric symptoms using the Symptom Checklist-90-Revised (SCL-90-R). Results: After adjusting for age and educational level where appropriate, both non-verbal reasoning and response inhibition as assessed on the Stroop task (i.e., the ability to resolve cognitive interference) were associated with a range of primary psychiatric symptom dimensions, and response inhibition uniquely predicted some primary symptoms and global psychiatric features. Importantly, lower scores (worse performance) in response inhibition were also strongly correlated with higher (worse) scores on standard motor rating scales for tremor-ataxia and for parkinsonism. Conclusion: These results provide evidence for the importance of response inhibition in the manifestation of psychiatric symptoms and subtle tremor-ataxia motor features, suggestive of the presence of early cerebellar changes in female premutation carriers.
Collapse
Affiliation(s)
- Darren R Hocking
- Developmental Neuromotor and Cognition Lab, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paige Stimpson
- Psychology Department, Monash Health, Clayton, VIC, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine and M.I.N.D. Institute, University of California Davis Medical Center, University of California, Davis, Davis, CA, United States
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
17
|
Wang Z, Lane C, Terza M, Khemani P, Lui S, McKinney WS, Mosconi MW. Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers. Brain Sci 2020; 11:E13. [PMID: 33374331 PMCID: PMC7823457 DOI: 10.3390/brainsci11010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation cytosine-guanine-guanine (CGG) trinucleotide repeat expansion of the FMR1 gene. FXTAS is estimated to be the most common single-gene form of ataxia in the aging population. Gait ataxia and intention tremor are the primary behavioral symptoms of FXTAS, though clinical evaluation of these symptoms often is subjective, contributing to difficulties in reliably differentiating individuals with FXTAS and asymptomatic premutation carriers. This study aimed to clarify the extent to which quantitative measures of gait and upper limb kinematics may serve as biobehavioral markers of FXTAS degeneration. Nineteen premutation carriers (aged 46-77 years), including 9 with possible, probable, or definite FXTAS and 16 sex- and IQ-matched healthy controls, completed tests of non-constrained walking and reaching while both standing (static reaching) and walking (dynamic reaching) to quantify gait and upper limb control, respectively. For the non-constrained walking task, participants wore reflective markers and walked at their preferred speed on a walkway. During the static reaching task, participants reached and lifted boxes of different sizes while standing. During the dynamic reaching task, participants walked to reach and lift the boxes. Movement kinematics were examined in relation to clinical ratings of neuromotor impairments and CGG repeat length. During non-constrained walking, individuals with FXTAS showed decreased stride lengths and stride velocities, increased percentages of double support time, and increased variabilities of cadence and center of mass relative to both asymptomatic premutation carriers and controls. While individuals with FXTAS did not show any static reaching differences relative to the other two groups, they showed multiple differences during dynamic reaching trials, including reduced maximum reaching velocity, prolonged acceleration time, and jerkier movement of the shoulder, elbow, and hand. Gait differences during non-constrained walking were associated with more severe clinically rated posture and gait symptoms. Reduced maximum reaching velocity and increased jerkiness during dynamic reaching were each related to more severe clinically rated kinetic dysfunction and overall neuromotor symptoms in FMR1 premutation carriers. Our findings suggest kinematic alterations consistent with gait ataxia and upper limb bradykinesia are each selectively present in individuals with FXTAS, but not asymptomatic aging premutation carriers. Consistent with neuropathological and magnetic resonance imaging (MRI) studies of FXTAS, these findings implicate cerebellar and basal ganglia degeneration associated with neuromotor decline. Our results showing associations between quantitative kinematic differences in FXTAS and clinical ratings suggest that objective assessments of gait and reaching behaviors may serve as critical and reliable targets for detecting FXTAS risk and monitoring progression.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, FL 32611-0164, USA;
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Callie Lane
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Matthew Terza
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, USA;
| | - Pravin Khemani
- Department of Neurology, Swedish Neuroscience Institute, Seattle, WA 98121, USA;
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China;
| | - Walker S. McKinney
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew W. Mosconi
- Kansas Center for Autism Research and Training (K−CART) and Life Span Institute, University of Kansas, Lawrence, KS 66045, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
18
|
O'Keefe JA, Guan J, Robertson E, Biskis A, Joyce J, Ouyang B, Liu Y, Carnes D, Purcell N, Berry-Kravis E, Hall DA. The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS. THE CEREBELLUM 2020; 20:212-221. [PMID: 33118140 DOI: 10.1007/s12311-020-01199-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a genetic neurodegenerative disorder characterized by cerebellar ataxia, tremor, and cognitive dysfunction. We examined the impact of dual-task (DT) cognitive-motor interference and fast-paced (FP) gait on gait and turning in FXTAS. Thirty participants with FXTAS and 35 age-matched controls underwent gait analysis using an inertial sensor-based 2-min walk test under three conditions: (1) self-selected pace (ST), (2) FP, and (3) DT with a concurrent verbal fluency task. Linear regression analyses were performed to assess the association between FXTAS diagnosis and gait and turn outcomes. Correlations between gait variables and fall frequency were also calculated. FXTAS participants had reduced stride length and velocity, swing time, and peak turn velocity and greater double limb support time and number of steps to turn compared to controls under all three conditions. There was greater dual task cost of the verbal fluency task on peak turn velocity in men with FXTAS compared to controls. Additionally, stride length variability was increased and cadence was reduced in FXTAS participants in the FP condition. Stride velocity variability under FP gait was significantly associated with the number of self-reported falls in the last year. Greater motor control requirements for turning likely made men with FXTAS more susceptible to the negative effects of DT cognitive interference. FP gait exacerbated gait deficits in the domains of rhythm and variability, and increased gait variability with FP was associated with increased falls. These data may inform the design of rehabilitation strategies in FXTAS.
Collapse
Affiliation(s)
- Joan A O'Keefe
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Joseph Guan
- Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Alexandras Biskis
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jessica Joyce
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Danielle Carnes
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Nicollette Purcell
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
- Departments of Pediatrics and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
19
|
O'Keefe JA, Bang D, Robertson EE, Biskis A, Ouyang B, Liu Y, Pal G, Berry‐Kravis E, Hall DA. Prodromal Markers of Upper Limb Deficits in FMR1 Premutation Carriers and Quantitative Outcome Measures for Future Clinical Trials in Fragile X-associated Tremor/Ataxia Syndrome. Mov Disord Clin Pract 2020; 7:810-819. [PMID: 33043077 PMCID: PMC7533995 DOI: 10.1002/mdc3.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a rare, late-onset neurodegenerative disorder characterized by tremor and cerebellar gait ataxia, affecting premutation carriers (PMC) of CGG expansions (range, 55-200) in the fragile X mental retardation 1 (FMR1) gene. Discovery of early predictors for FXTAS and quantitative characterization of motor deficits are critical for identifying disease onset, monitoring disease progression, and determining efficacy of interventions. METHODS A total of 39 PMC with FXTAS, 20 PMC without FXTAS, and 27 healthy controls performed a series of upper extremity (UE) motor tasks assessing tremor, bradykinesia, and rapid alternating movements that were quantified using an inertial-based sensor system (Kinesia One; Great Lakes NeuroTechnologies, Cleveland, OH, USA). Sub-scores from the clinician-rated FXTAS Rating Scale were correlated with the severity scores generated by the sensor system to determine its validity in FXTAS. RESULTS PMC with FXTAS had significantly worse postural and kinetic tremor compared with PMC without FXTAS (P = 0.02, 0.03) and controls (P = 0.001, 0.0001), respectively, and slower finger tap (P = 0.001), hand movement (P = 0.0001), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.04) than controls. PMC without FXTAS had significantly worse right finger tap (P = 0.004), hand movement (P = 0.01), and rapid alternating movement speed (P = 0.003) and amplitude (P = 0.02) than controls. FXTAS Rating Scale subscores significantly correlated with all tremorography scores except for finger taps and left rapid alternating movement. CONCLUSIONS These findings support the use of inertial sensor quantification systems as promising measures for preclinical FXTAS symptom detection in PMC, characterization of the natural history of FXTAS, assessment of medication responses, and outcome assessment in clinical trials.
Collapse
Affiliation(s)
- Joan A. O'Keefe
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Deborah Bang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Erin E. Robertson
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Alexandras Biskis
- Department of Cell & Molecular MedicineRush University Medical CenterChicagoIllinoisUSA
- Department of PediatricsRush University Medical CenterChicagoIllinoisUSA
| | - Bichun Ouyang
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Yuanqing Liu
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Gian Pal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Elizabeth Berry‐Kravis
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of BiochemistryRush University Medical CenterChicagoIllinoisUSA
| | - Deborah A. Hall
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
20
|
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int J Mol Sci 2020; 21:ijms21124391. [PMID: 32575683 PMCID: PMC7352421 DOI: 10.3390/ijms21124391] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in older premutation (55-200 CGG repeats) carriers of FMR1. The premutation has excessive levels of FMR1 mRNA that lead to toxicity and mitochondrial dysfunction. The clinical features usually begin in the 60 s with an action or intention tremor followed by cerebellar ataxia, although 20% have only ataxia. MRI features include brain atrophy and white matter disease, especially in the middle cerebellar peduncles, periventricular areas, and splenium of the corpus callosum. Neurocognitive problems include memory and executive function deficits, although 50% of males can develop dementia. Females can be less affected by FXTAS because of a second X chromosome that does not carry the premutation. Approximately 40% of males and 16% of female carriers develop FXTAS. Since the premutation can occur in less than 1 in 200 women and 1 in 400 men, the FXTAS diagnosis should be considered in patients that present with tremor, ataxia, parkinsonian symptoms, neuropathy, and psychiatric problems. If a family history of a fragile X mutation is known, then FMR1 DNA testing is essential in patients with these symptoms.
Collapse
|
21
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Tassanakijpanich N, McLennan YA, Hagerman RJ. Ataxia as the Major Manifestation of Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Case Series. Biomedicines 2020; 8:E136. [PMID: 32466255 PMCID: PMC7277845 DOI: 10.3390/biomedicines8050136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Fragile X-associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disease developed by carriers of a premutation in the fragile X mental retardation 1 (FMR1) gene. The core clinical symptoms usually manifest in the early 60s, typically beginning with intention tremor followed by cerebellar ataxia. Ataxia can be the only symptom in approximately 20% of the patients. FXTAS has a slow progression, and patients usually experience advanced deterioration 15 to 25 years after the initial diagnosis. Common findings in brain imaging include substantial brain atrophy and white matter disease (WMD). We report three cases with an atypical clinical presentation, all presenting with gait problems as their initial manifestation and with ataxia as the dominant symptom without significant tremor, as well as a faster than usual clinical progression. Magnetic resonance imaging (MRI) was remarkable for severe brain atrophy, ventriculomegaly, thinning of the corpus callosum, and periventricular WMD. Two cases were diagnosed with definite FXTAS on the basis of clinical and radiological findings, with one individual also developing moderate dementia. Factors such as environmental exposure and general anesthesia could have contributed to their clinical deterioration. FXTAS should be considered in the differential diagnosis of patients presenting with ataxia, even in the absence of tremor, and FMR1 DNA testing should be sought in those with a family history of fragile X syndrome or premutation disorders.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| | - Ana Maria Cabal-Herrera
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
- Group on Congenital Malformations and Dysmorphology (MACOS), Faculty of Health, Universidad del Valle, Cali, Valle del Cauca 760041, Colombia
| | - Nattaporn Tassanakijpanich
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yingratana A. McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (M.J.S.-A.); (Y.A.M.)
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA; (A.M.C.-H.); (N.T.)
| |
Collapse
|
22
|
Wilson RB, Elashoff D, Gouelle A, Smith BA, Wilson AM, Dickinson A, Safari T, Hyde C, Jeste SS. Quantitative Gait Analysis in Duplication 15q Syndrome and Nonsyndromic ASD. Autism Res 2020; 13:1102-1110. [PMID: 32282133 DOI: 10.1002/aur.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023]
Abstract
Motor impairments occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD) and in individuals with ASD without a genetic diagnosis (nonsyndromic ASD). In particular, abnormalities in gait in ASD have been linked to language delay, ASD severity, and likelihood of having a genetic disorder. Quantitative measures of motor function can improve our ability to evaluate motor differences in individuals with syndromic and nonsyndromic ASD with varying levels of intellectual disability and adaptive skills. To evaluate this methodology, we chose to use quantitative gait analysis to study duplication 15q syndrome (dup15q syndrome), a genetic disorder highly penetrant for motor delays, intellectual disability, and ASD. We evaluated quantitative gait variables in individuals with dup15q syndrome (n = 39) and nonsyndromic ASD (n = 21) and compared these data to a reference typically developing cohort. We found a gait pattern of slow pace, poor postural control, and large gait variability in dup15q syndrome. Our findings improve characterization of motor function in dup15q syndrome and nonsyndromic ASD. Quantitative gait analysis can be used as a translational method and can improve our identification of clinical endpoints to be used in treatment trials for these syndromes. Autism Res 2020, 13: 1102-1110. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Motor impairments, particularly abnormalities in walking, occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD). Here, using quantitative gait analysis, we find that individuals with duplication 15q syndrome have an atypical gait pattern that differentiates them from typically developing and nonsyndromic ASD individuals. Our findings improve motor characterization in dup15q syndrome and nonsyndromic ASD.
Collapse
Affiliation(s)
- Rujuta B Wilson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, Los Angeles, California, USA
| | - Arnaud Gouelle
- Gait and Balance Academy, Protokinetics, Havertown, Pennsylvania, USA.,Laboratory Performance, Sante, Metrologie, Societe (PSMS), UFR STAPS, Reims, France
| | - Beth A Smith
- Division of Biokinesiology and Physical Therapy and Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Andrew M Wilson
- Greater Los Angeles VA HealthCare System, Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tabitha Safari
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Carly Hyde
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shafali S Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
23
|
Statistical analysis of the 180 degree walking turn: Common patterns, repeatability and prediction bands of turn signals. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Viteckova S, Krupicka R, Cejka V, Kutilek P, Szabo Z, Růžička E, Dusek P. Waveform skewness: Parameter for timed Up & Go turn assessment. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|