1
|
Xiang L, Gao Z, Wang A, Shim V, Fekete G, Gu Y, Fernandez J. Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone loading, and the role of wearable sensors. Front Bioeng Biotechnol 2024; 12:1377383. [PMID: 38650752 PMCID: PMC11033368 DOI: 10.3389/fbioe.2024.1377383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
This study presents a comprehensive review of the correlation between tibial acceleration (TA), ground reaction forces (GRF), and tibial bone loading, emphasizing the critical role of wearable sensor technology in accurately measuring these biomechanical forces in the context of running. This systematic review and meta-analysis searched various electronic databases (PubMed, SPORTDiscus, Scopus, IEEE Xplore, and ScienceDirect) to identify relevant studies. It critically evaluates existing research on GRF and tibial acceleration (TA) as indicators of running-related injuries, revealing mixed findings. Intriguingly, recent empirical data indicate only a marginal link between GRF, TA, and tibial bone stress, thus challenging the conventional understanding in this field. The study also highlights the limitations of current biomechanical models and methodologies, proposing a paradigm shift towards more holistic and integrated approaches. The study underscores wearable sensors' potential, enhanced by machine learning, in transforming the monitoring, prevention, and rehabilitation of running-related injuries.
Collapse
Affiliation(s)
- Liangliang Xiang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Zixiang Gao
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprém, Hungary
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Center for Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Gusztáv Fekete
- Vehicle Industry Research Center, Széchenyi István University, Győr, Hungary
| | - Yaodong Gu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Justin Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Parr TE, Farrokhi S, Hendershot BD, Butowicz CM. Peak tibial axial acceleration during walking is related to intact-side lower limb pain in persons with unilateral transtibial amputation. Gait Posture 2024; 109:165-169. [PMID: 38310849 DOI: 10.1016/j.gaitpost.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Persons who undergo unilateral transtibial amputation are at an increased risk of secondary musculoskeletal joint pain and degeneration, which has been linked to excessive loading rates of the intact-side limb. Tibial axial acceleration, a feasible measure of loading rates with wearable sensors, would be clinically useful to relate to joint pain in persons with unilateral transtibial amputation. RESEARCH QUESTION What is the relationship between peak tibial axial accelerations and intact-side joint pain in persons with unilateral transtibial amputation during walking? METHODS Persons with unilateral transtibial amputation (n = 51) were separated into two groups based on the presence of intact-side limb pain (with pain: n = 16; without pain: n = 35). Tibial axial accelerations were measured with bilateral shank-mounted IMUs while participants completed three 10-meter walk tests. Peak tibial axial accelerations for each limb and between-limb symmetry were compared between groups using analysis of co-variance; significance was set at 0.05. RESULTS Between persons with vs. without intact-side limb pain, peak tibial axial accelerations were smaller on the prosthetic side (0.64 vs. 0.81 g; p = 0.04), similar on the intact side (0.82 vs. 0.79 g; p = 0.53), and more asymmetrical between sides (intact > prosthetic) (0.81 vs. 1.03 g; p = 0.01). SIGNIFICANCE Symmetry in peak tibial axial acceleration can assist with identifying preferential limb loading during walking and, with future research, could serve as a useful clinical target for intact-side limb unloading strategies to help mitigate secondary musculoskeletal pain in persons with unilateral transtibial amputation.
Collapse
Affiliation(s)
- Therese E Parr
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA; Naval Medical Center San Diego, San Diego, CA, USA
| | - Shawn Farrokhi
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA; Naval Medical Center San Diego, San Diego, CA, USA; Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brad D Hendershot
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA; Walter Reed National Military Medical Center, Bethesda, MD, USA; Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Courtney M Butowicz
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Falls Church, VA, USA; Walter Reed National Military Medical Center, Bethesda, MD, USA; Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
Oliveira N, Keating CJ, Chiu CY, Stavres J. Increased hip flexion gait as an exercise modality for individuals with obesity. Eur J Appl Physiol 2023; 123:2157-2165. [PMID: 37221340 DOI: 10.1007/s00421-023-05227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Exercise is a critical element for the management of body weight and improvement of quality of life of individuals with obesity. Due to its convenience and accessibility, running is a commonly used exercise modality to meet exercise guidelines. However, the weight-bearing component during high impacts of this exercise modality might limit the participation in exercise and reduce the effectiveness of running-based exercise interventions in individuals with obesity. The hip flexion feedback system (HFFS) assists participants in meeting specific exercise intensities by giving the participant specific increased hip flexion targets while walking on a treadmill. The resulting activity involves walking with increased hip flexion which removes the high impacts of running. The purpose of this study was to compare physiological and biomechanical parameters during an HFFS session and an independent treadmill walking/running session (IND). METHODS Heart rate, oxygen consumption (VO2), heart rate error, and tibia peak positive accelerations (PPA) were investigated for each condition at 40% and 60% of heart rate reserve exercise intensities. RESULTS VO2 was higher for IND despite no differences in heart rate. Tibia PPAs were reduced during the HFFS session. Heart rate error was reduced for HFFS during non-steady state exercise. CONCLUSION While demanding lower energy consumption compared to running, HFFS exercise results in lower tibia PPAs and more accurate monitoring of exercise intensity. HFFS might be a valid exercise alternative for individuals with obesity or individuals that require low-impact forces at the lower limbs.
Collapse
Affiliation(s)
- Nuno Oliveira
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive #5142, Hattiesburg, MS, 39406-0001, USA.
| | - Christopher J Keating
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive #5142, Hattiesburg, MS, 39406-0001, USA
- Facultad de Deporte, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Chuang-Yuan Chiu
- Sports Engineering Research Group, Sheffield Hallam University, Sheffield, UK
| | - Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive #5142, Hattiesburg, MS, 39406-0001, USA
| |
Collapse
|
4
|
Spech C, Paponetti M, Mansfield C, Schmitt L, Briggs M. Biomechanical variations in children who are overweight and obese during high-impact activities: A systematic review and meta-analysis. Obes Rev 2022; 23:e13431. [PMID: 35112792 DOI: 10.1111/obr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/29/2022]
Abstract
Youth who are obese or overweight demonstrate evidence of poor lower extremity joint health and alterations in gait characteristics compared with youth who are healthy weight. However, there is no consensus if altered movement patterns are still present during high-impact activities. The purpose of this review was to determine if spatiotemporal and kinematic and kinetic variables during high-impact activities were significantly different between youth who are overweight and obese compared with youth who are healthy weight. An electronic search of five databases was conducted, and a meta-analysis and qualitative evidence synthesis was performed to determine the level of evidence, analyzing three tasks: running, jumping, and hopping. The findings of this review include the following: (1) overweight/obese (OW/OB) had higher stance phase time during running, (2) OW/OB had decreased hip flexion angles during running and stationary running, (3) OW/OB had decreased knee flexion angles during landing phase of jumping and hopping, and (4) OW/OB had increased hip abduction moments during running and jumping. These altered kinematic and kinetic variables at the hip and knee may result in mechanical inefficiency with high-impact activities, as well as potentially increased risk of joint degradation and poor joint health into adulthood.
Collapse
Affiliation(s)
- Claire Spech
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Matthew Paponetti
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cody Mansfield
- Health and Rehabilitation Sciences PhD Program, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,OSU Sports Medicine, Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Laura Schmitt
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,OSU Sports Medicine, Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Matthew Briggs
- Division of Physical Therapy, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,OSU Sports Medicine, Jameson Crane Sports Medicine Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
5
|
Review of Real-Time Biomechanical Feedback Systems in Sport and Rehabilitation. SENSORS 2022; 22:s22083006. [PMID: 35458991 PMCID: PMC9028061 DOI: 10.3390/s22083006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023]
Abstract
Real-time biomechanical feedback (BMF) is a relatively new area of research. The potential of using advanced technology to improve motion skills in sport and accelerate physical rehabilitation has been demonstrated in a number of studies. This paper provides a literature review of BMF systems in sports and rehabilitation. Our motivation was to examine the history of the field to capture its evolution over time, particularly how technologies are used and implemented in BMF systems, and to identify the most recent studies showing novel solutions and remarkable implementations. We searched for papers in three research databases: Scopus, Web of Science, and PubMed. The initial search yielded 1167 unique papers. After a rigorous and challenging exclusion process, 144 papers were eventually included in this report. We focused on papers describing applications and systems that implement a complete real-time feedback loop, which must include the use of sensors, real-time processing, and concurrent feedback. A number of research questions were raised, and the papers were studied and evaluated accordingly. We identified different types of physical activities, sensors, modalities, actuators, communications, settings and end users. A subset of the included papers, showing the most perspectives, was reviewed in depth to highlight and present their innovative research approaches and techniques. Real-time BMF has great potential in many areas. In recent years, sensors have been the main focus of these studies, but new types of processing devices, methods, and algorithms, actuators, and communication technologies and protocols will be explored in more depth in the future. This paper presents a broad insight into the field of BMF.
Collapse
|
6
|
Use of Wearable Technology to Measure Activity in Orthopaedic Trauma Patients: A Systematic Review. Indian J Orthop 2022; 56:1112-1122. [PMID: 35813536 PMCID: PMC9232686 DOI: 10.1007/s43465-022-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Patient-Reported Outcome Measures (PROMs) are widely used for measurement of functional outcomes after orthopaedic trauma. However, PROMs rely on patient collaboration and suffer from various types of bias. Wearable Activity Monitors (WAMs) are increasingly used to objectify functional assessment. The objectives of this systematic review were to identify and characterise the WAMs technology and metrics currently used for orthopaedic trauma research. METHODS PubMed and Embase biomedical literature search engines were queried. Eligibility criteria included: Human clinical studies published in the English language between 2010 and 2019 involving fracture management and WAMs. Variables collected from each article included: Technology used, vendor/product, WAM body location, metrics measured, measurement time period, year of publication, study geographic location, phase of treatment studied, fractures studied, number of patients studied, sex and age of the study subjects, and study level of evidence. Six investigators reviewed the resulting papers. Descriptive statistics of variables of interest were used to analyse the data. RESULTS One hundred and thirty-six papers were available for analysis, showing an increasing trend of publications per year. Accelerometry followed by plantar pressure insoles were the most commonly employed technologies. The most common location for WAM placement was insoles, followed by the waist. The most commonly studied fracture type was hip fractures followed by fragility fractures in general, ankle, "lower extremity", and tibial fractures. The rehabilitation phase following surgery was the most commonly studied period. Sleep duration, activity time or step counts were the most commonly reported WAM metrics. A preferred, clinically validated WAM metric was not identified. CONCLUSIONS WAMs have an increasing presence in the orthopaedic trauma literature. The optimal implementation of this technology and its use to understand patients' pre-injury and post-injury functions is currently insufficiently explored and represents an area that will benefit from future study. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO ID:210344. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43465-022-00629-0.
Collapse
|
7
|
Benson LC, Räisänen AM, Clermont CA, Ferber R. Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:1722. [PMID: 35270869 PMCID: PMC8915128 DOI: 10.3390/s22051722] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023]
Abstract
Inertial measurement units (IMUs) can be used to monitor running biomechanics in real-world settings, but IMUs are often used within a laboratory. The purpose of this scoping review was to describe how IMUs are used to record running biomechanics in both laboratory and real-world conditions. We included peer-reviewed journal articles that used IMUs to assess gait quality during running. We extracted data on running conditions (indoor/outdoor, surface, speed, and distance), device type and location, metrics, participants, and purpose and study design. A total of 231 studies were included. Most (72%) studies were conducted indoors; and in 67% of all studies, the analyzed distance was only one step or stride or <200 m. The most common device type and location combination was a triaxial accelerometer on the shank (18% of device and location combinations). The most common analyzed metric was vertical/axial magnitude, which was reported in 64% of all studies. Most studies (56%) included recreational runners. For the past 20 years, studies using IMUs to record running biomechanics have mainly been conducted indoors, on a treadmill, at prescribed speeds, and over small distances. We suggest that future studies should move out of the lab to less controlled and more real-world environments.
Collapse
Affiliation(s)
- Lauren C. Benson
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Tonal Strength Institute, Tonal, San Francisco, CA 94107, USA
| | - Anu M. Räisänen
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Department of Physical Therapy Education, College of Health Sciences—Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Christian A. Clermont
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Sport Product Testing, Canadian Sport Institute Calgary, Calgary, AB T3B 6B7, Canada
| | - Reed Ferber
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.M.R.); (C.A.C.); (R.F.)
- Cumming School of Medicine, Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Running Injury Clinic, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Shafizadeh M, Parvinpour S, Balali M, Pazhuh FS, Broom D. Effects of locomotion task constraints on running in boys with overweight/obesity: The mediating role of developmental delays. Gait Posture 2021; 86:354-359. [PMID: 33862377 DOI: 10.1016/j.gaitpost.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/19/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Childhood obesity adversely affects the musculoskeletal system and is accompanied with motor development delays. Movement interventions that change the body composition and movement patterns is suggested as an effective way to minimise the childhood obesity adverse effects. RESEARCH QUESTION Whether a locomotion task constraints intervention is effective to change body composition, motor performance and running efficiency in overweight/obese boys with different levels of motor development. METHODS Forty young boys (age: 8.21 ± 1.01 years) whose body mass index (BMI) was above the 85th normative ranked score were divided into 4 independent groups according to their development and BMI: intervention-typical, intervention-delay, control-typical and control-delay. A 6-week task constraints intervention with an emphasis on improving locomotion skills such as fast walking, running, jumping, hopping, skipping and leaping were carried out in the intervention group. RESULTS The pre and post-intervention difference score on the sample dependent variables showed decreases in body mass and BMI and improvements in agility, joint kinematics and running economy in the intervention-typical group relative to other groups. SIGNIFICANCE The findings highlight that the boys with overweight/obesity and typical development can benefit more from a short-term developmentally-appropriate intervention to refine the running pattern and agility skill that was accompanied by positive changes in body composition.
Collapse
Affiliation(s)
- Mohsen Shafizadeh
- College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, UK
| | - Shahab Parvinpour
- Faculty of Physical Education and Sport Sciences, Kharazmi Univerity, Tehran, Iran.
| | - Marzie Balali
- Faculty of Physical Education and Sport Sciences, Islamic Azad Univerity, Tehran, Iran
| | | | - David Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
9
|
Argunsah Bayram H, Yalcin B. The influence of biofeedback on physiological and kinematic variables of treadmill running. INT J PERF ANAL SPOR 2020. [DOI: 10.1080/24748668.2020.1861898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Begum Yalcin
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
10
|
Giraldo-Pedroza A, Lee WCC, Lam WK, Coman R, Alici G. Effects of Wearable Devices with Biofeedback on Biomechanical Performance of Running-A Systematic Review. SENSORS 2020; 20:s20226637. [PMID: 33228137 PMCID: PMC7699362 DOI: 10.3390/s20226637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023]
Abstract
This present review includes a systematic search for peer-reviewed articles published between March 2009 and March 2020 that evaluated the effects of wearable devices with biofeedback on the biomechanics of running. The included articles did not focus on physiological and metabolic metrics. Articles with patients, animals, orthoses, exoskeletons and virtual reality were not included. Following the PRISMA guidelines, 417 articles were first identified, and nineteen were selected following the removal of duplicates and articles which did not meet the inclusion criteria. Most reviewed articles reported a significant reduction in positive peak acceleration, which was found to be related to tibial stress fractures in running. Some previous studies provided biofeedback aiming to increase stride frequencies. They produced some positive effects on running, as they reduced vertical load in knee and ankle joints and vertical displacement of the body and increased knee flexion. Some other parameters, including contact ground time and speed, were fed back by wearable devices for running. Such devices reduced running time and increased swing phase time. This article reviews challenges in this area and suggests future studies can evaluate the long-term effects in running biomechanics produced by wearable devices with biofeedback.
Collapse
Affiliation(s)
- Alexandra Giraldo-Pedroza
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Winson Chiu-Chun Lee
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Wing-Kai Lam
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
- Li Ning Sports Science Research Center, Beijing 101111, China
- Correspondence: (W.C.-C.L.); (W.-K.L.)
| | - Robyn Coman
- School of Health and Society, Faculty of Arts, Social Sciences & Humanities, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; (A.G.-P.); (G.A.)
- Applied Mechatronics and Biomedical Engineering Research (AMBER) Group, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong Innovation Campus, North Wollongong, NSW 2500, Australia
| |
Collapse
|