1
|
Mahadevaraju S, Pal S, Bhaskar P, McDonald BD, Benner L, Denti L, Cozzi D, Bonizzoni P, Przytycka TM, Oliver B. Diverse somatic Transformer and sex chromosome karyotype pathways regulate gene expression in Drosophila gonad development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607556. [PMID: 39372789 PMCID: PMC11451611 DOI: 10.1101/2024.08.12.607556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The somatic sex determination gene transformer (tra) is required for the highly sexually dimorphic development of most somatic cells, including those of the gonads. In addition, somatic tra is required for the germline development even though it is not required for sex determination within germ cells. Germ cell autonomous gene expression is also necessary for their sex determination. To understand the interplay between these signals, we compared the phenotype and gene expression of larval wild-type gonads and the sex-transformed tra gonads. XX larval ovaries transformed into testes were dramatically smaller than wild-type, with significant reductions in germ cell number, likely due to altered geometry of the stem cell niche. Additionally, there was a defect in progression into spermatocyte stages. XY larval testes transformed into ovaries had excessive germ cells, possibly due to the earlier onset of cell division. We suggest that germ cells are neither fully female nor male following somatic sex transformation, with certain pathways characteristic of each sex expressed in tra mutants. We found multiple patterns of somatic and germline gene expression control exclusively due to tra, exclusively due to sex chromosome karyotype, but usually due to a combination of these factors showing tra and sex chromosome karyotype pathways regulate gene expression during Drosophila gonad development.
Collapse
Affiliation(s)
- Sharvani Mahadevaraju
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology. St. Mary’s College of Maryland, St. Mary’s City, Maryland, USA
| | - Soumitra Pal
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Neurobiology Neurodegeneration and Repair Lab, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pradeep Bhaskar
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brennan D. McDonald
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Denti
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Davide Cozzi
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems, and Communication, University of Milano - Bicocca, Milan, Italy
| | - Teresa M. Przytycka
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Hunter S, Hendrix J, Freeman J, Dowell RD, Allen MA. Transcription dosage compensation does not occur in Down syndrome. BMC Biol 2023; 21:228. [PMID: 37946204 PMCID: PMC10636926 DOI: 10.1186/s12915-023-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The increase in DNA copy number in Down syndrome (DS; caused by trisomy 21) has led to the DNA dosage hypothesis, which posits that the level of gene expression is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0×). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in trisomy 21, providing support to the DNA dosage hypothesis. RESULTS In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation, even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family with an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Furthermore, we link the limited apparent dosage compensation to expected allelic variation in transcription levels. CONCLUSIONS Transcription dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
Collapse
Affiliation(s)
- Samuel Hunter
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
| | - Jo Hendrix
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Computational Bioscience, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Justin Freeman
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
| | - Robin D Dowell
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, 80301, USA
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, 80309, USA.
- Linda Crnic Institute for Down Syndrome, 80045, Aurora, USA.
- Crnic Boulder Branch, BioFrontiers, Boulder, 80309, USA.
| |
Collapse
|
3
|
Hunter S, Dowell RD, Hendrix J, Freeman J, Allen MA. Transcription dosage compensation does not occur in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543933. [PMID: 37333218 PMCID: PMC10274774 DOI: 10.1101/2023.06.07.543933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Trisomy 21, also known as Down syndrome, describes the genetic condition of having an extra copy of chromosome 21. The increase in DNA copy number has led to the "DNA dosage hypothesis", which claims that the level of gene transcription is proportional to the gene's DNA copy number. Yet many reports have suggested that a proportion of chromosome 21 genes are dosage compensated back towards typical expression levels (1.0x). In contrast, other reports suggest that dosage compensation is not a common mechanism of gene regulation in Trisomy 21, providing support to the DNA dosage hypothesis. Results In our work, we use both simulated and real data to dissect the elements of differential expression analysis that can lead to the appearance of dosage compensation even when compensation is demonstrably absent. Using lymphoblastoid cell lines derived from a family of an individual with Down syndrome, we demonstrate that dosage compensation is nearly absent at both nascent transcription (GRO-seq) and steady-state RNA (RNA-seq) levels. Conclusions Transcriptional dosage compensation does not occur in Down syndrome. Simulated data containing no dosage compensation can appear to have dosage compensation when analyzed via standard methods. Moreover, some chromosome 21 genes that appear to be dosage compensated are consistent with allele specific expression.
Collapse
|
4
|
Wang F, McCulloh DH, Chan K, Wiltshire A, McCaffrey C, Grifo JA, Keefe DL. The Landscape of Telomere Length and Telomerase in Human Embryos at Blastocyst Stage. Genes (Basel) 2023; 14:1200. [PMID: 37372380 DOI: 10.3390/genes14061200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The telomere length of human blastocysts exceeds that of oocytes and telomerase activity increases after zygotic activation, peaking at the blastocyst stage. Yet, it is unknown whether aneuploid human embryos at the blastocyst stage exhibit a different profile of telomere length, telomerase gene expression, and telomerase activity compared to euploid embryos. In present study, 154 cryopreserved human blastocysts, donated by consenting patients, were thawed and assayed for telomere length, telomerase gene expression, and telomerase activity using real-time PCR (qPCR) and immunofluorescence (IF) staining. Aneuploid blastocysts showed longer telomeres, higher telomerase reverse transcriptase (TERT) mRNA expression, and lower telomerase activity compared to euploid blastocysts. The TERT protein was found in all tested embryos via IF staining with anti-hTERT antibody, regardless of ploidy status. Moreover, telomere length or telomerase gene expression did not differ in aneuploid blastocysts between chromosomal gain or loss. Our data demonstrate that telomerase is activated and telomeres are maintained in all human blastocyst stage embryos. The robust telomerase gene expression and telomere maintenance, even in aneuploid human blastocysts, may explain why extended in vitro culture alone is insufficient to cull out aneuploid embryos during in vitro fertilization.
Collapse
Affiliation(s)
- Fang Wang
- NYU Langone Fertility Center, New York, NY 10022, USA
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| | | | - Kasey Chan
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| | | | | | - James A Grifo
- NYU Langone Fertility Center, New York, NY 10022, USA
| | - David L Keefe
- NYU Langone Fertility Center, New York, NY 10022, USA
- Department of Obstetrics and Gynecology, NYU Grossman, School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
6
|
When Down Is Up: Heterochromatin, Nuclear Organization and X Upregulation. Cells 2021; 10:cells10123416. [PMID: 34943924 PMCID: PMC8700316 DOI: 10.3390/cells10123416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Organisms with highly differentiated sex chromosomes face an imbalance in X-linked gene dosage. Male Drosophila solve this problem by increasing expression from virtually every gene on their single X chromosome, a process known as dosage compensation. This involves a ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and increase expression. Interestingly, the male X chromosome is also enriched for several proteins associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the lethality of mutations that prevent normal recognition of the X chromosome. The involvement of primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly, recent work suggests that the siRNA pathway, often associated with heterochromatin formation and repression, also helps the dosage compensation machinery identify the X chromosome. In light of this finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of the male X chromosome.
Collapse
|
7
|
Kratochvíl L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, Peichel CL, Perrin N, Valenzuela N, Pokorná MJ. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200097. [PMID: 34304593 PMCID: PMC8310716 DOI: 10.1098/rstb.2020.0097] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Las Lagunillas Campus S/N, 23071 Jaén, Spain
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
8
|
Rovatsos M, Gamble T, Nielsen SV, Georges A, Ezaz T, Kratochvíl L. Do male and female heterogamety really differ in expression regulation? Lack of global dosage balance in pygopodid geckos. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200102. [PMID: 34304587 PMCID: PMC8310713 DOI: 10.1098/rstb.2020.0102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Differentiation of sex chromosomes is thought to have evolved with cessation of recombination and subsequent loss of genes from the degenerated partner (Y and W) of sex chromosomes, which in turn leads to imbalance of gene dosage between sexes. Based on work with traditional model species, theory suggests that unequal gene copy numbers lead to the evolution of mechanisms to counter this imbalance. Dosage compensation, or at least achieving dosage balance in expression of sex-linked genes between sexes, has largely been documented in lineages with male heterogamety (XX/XY sex determination), while ZZ/ZW systems are assumed to be usually associated with the lack of chromosome-wide gene dose regulatory mechanisms. Here, we document that although the pygopodid geckos evolved male heterogamety with a degenerated Y chromosome 32-72 Ma, one species in particular, Burton's legless lizard (Lialis burtonis), does not possess dosage balance in the expression of genes in its X-specific region. We summarize studies on gene dose regulatory mechanisms in animals and conclude that there is in them no significant dichotomy between male and female heterogamety. We speculate that gene dose regulatory mechanisms are likely to be related to the general mechanisms of sex determination instead of type of heterogamety. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Charles University, Prague, CZ 12844, Czech Republic
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Milwaukee Public Museum, 800 W. Wells Street, Milwaukee, WI 53233, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA
| | - Stuart V. Nielsen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Lukáš Kratochvíl
- Department of Ecology, Charles University, Prague, CZ 12844, Czech Republic
| |
Collapse
|
9
|
Rovatsos M, Kratochvíl L. Evolution of dosage compensation does not depend on genomic background. Mol Ecol 2021; 30:1836-1845. [PMID: 33606326 DOI: 10.1111/mec.15853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Organisms have evolved various mechanisms to cope with the differences in the gene copy numbers between sexes caused by degeneration of Y and W sex chromosomes. Complete dosage compensation or at least expression balance between sexes has been reported predominantly in XX/XY systems, but rarely in ZZ/ZW systems. However, this often-reported pattern is based on comparisons of lineages where sex chromosomes evolved from nonhomologous genomic regions, potentially differing in sensitivity to differences in gene copy numbers. Here we document that two reptilian lineages (XX/XY iguanas and ZZ/ZW softshell turtles), which independently co-opted the same ancestral genomic region for the function of sex chromosomes, evolved different gene dose regulatory mechanisms. The independent co-option of the same genomic region for the role of sex chromosomes as in the iguanas and the softshell turtles offers great opportunity for testing evolutionary scenarios on sex chromosome evolution under the explicit control of the genomic background and gene identity. We show that the parallel loss of functional genes from the Y chromosome of the green anole and the W chromosome of the Florida softshell turtle led to different dosage compensation mechanisms. Our approach controlling for genetic background thus does not support that the variability in the regulation of gene dose differences is a consequence of ancestral autosomal gene content.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Arnold AP. The mouse as a model of fundamental concepts related to Turner syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:76-85. [PMID: 30779420 DOI: 10.1002/ajmg.c.31681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Although XO mice do not show many of the overt phenotypic features of Turner syndrome (TS; 45,X or XO), mice and humans share different classes of genes on the X chromosome that are more or less likely to cause TS phenotypes. Based on the evolutionary history of the sex chromosomes, and the pattern of dosage balancing among sex chromosomal and autosomal genes in functional gene networks, it is possible to prioritize types of X genes for study as potential causes of features of TS. For example, X-Y gene pairs are among the most interesting because of the convergent effects of X and Y genes that both are likely to prevent the effects of TS in XX and XY individuals. Many of the high-priority genes are shared by mouse and human X chromosomes, but are easier to study in genetically tractable mouse models. Several mouse models, used primarily for the study of sex differences in physiology and disease, also produce XO mice that can be investigated to understand the effects of X monosomy. Using these models will lead to the identification of specific X genes that make a difference when present in one or two copies. These studies will help to achieve a better appreciation of the contribution of these specific X genes to the syndromic features of TS.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
11
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
12
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
13
|
Philip P, Stenberg P. Male X-linked genes in Drosophila melanogaster are compensated independently of the Male-Specific Lethal complex. Epigenetics Chromatin 2013; 6:35. [PMID: 24279328 PMCID: PMC4176495 DOI: 10.1186/1756-8935-6-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023] Open
Abstract
Background In organisms where the two sexes have unequal numbers of X-chromosomes, the expression of X-linked genes needs to be balanced not only between the two sexes, but also between X and the autosomes. In Drosophila melanogaster, the Male-Specific Lethal (MSL) complex is believed to produce a 2-fold increase in expression of genes on the male X, thus restoring this balance. Results Here we show that almost all the genes on the male X are effectively compensated. However, many genes are compensated without any significant recruitment of the MSL-complex. These genes are very weakly, if at all, affected by mutations or RNAi against MSL-complex components. In addition, even the genes that are strongly bound by MSL rely on mechanisms other than the MSL-complex for proper compensation. We find that long, non-ubiquitously expressed genes tend to rely less on the MSL-complex for their compensation and genes that in addition are far from High Affinity Sites tend to not bind the complex at all or very weakly. Conclusions We conclude that most of the compensation of X-linked genes is produced by an MSL-independent mechanism. Similar to the case of the MSL-mediated compensation we do not yet know the mechanism behind the MSL-independent compensation that appears to act preferentially on long genes. Even if we observe similarities, it remains to be seen if the mechanism is related to the buffering that is observed in autosomal aneuploidies.
Collapse
|
14
|
Ramos AI, Barolo S. Evolution of gene regulation: hybrid networks breed diversity. Curr Biol 2012; 22:R1009-11. [PMID: 23218008 DOI: 10.1016/j.cub.2012.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How do gene regulatory networks evolve? A new study in yeasts shows that cis- and trans-regulatory changes resulted in a hybrid state of coexisting ancestral and derived regulatory circuits. This hybrid state then diversified into a variety of modern networks.
Collapse
Affiliation(s)
- Andrea I Ramos
- Department of Cell and Developmental Biology and Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
15
|
Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster. Mol Biol Evol 2012. [PMID: 23204387 PMCID: PMC3603305 DOI: 10.1093/molbev/mss222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Codon usage bias (CUB) in Drosophila is higher for X-linked genes than for autosomal genes. One possible explanation is that the higher effective recombination rate for genes on the X chromosome compared with the autosomes reduces their susceptibility to Hill–Robertson effects, and thus enhances the efficacy of selection on codon usage. The genome sequence of D. melanogaster was used to test this hypothesis. Contrary to expectation, it was found that, after correcting for the effective recombination rate, CUB remained higher on the X than on the autosomes. In contrast, an analysis of polymorphism data from a Rwandan population showed that mean nucleotide site diversity at 4-fold degenerate sites for genes on the X is approximately three-quarters of the autosomal value after correcting for the effective recombination rate, compared with approximate equality before correction. In addition, these data show that selection for preferred versus unpreferred synonymous variants is stronger on the X than the autosomes, which accounts for the higher CUB of genes on the X chromosome. This difference in the strength of selection does not appear to reflect the effects of dominance of mutations affecting codon usage, differences in gene expression levels between X and autosomes, or differences in mutational bias. Its cause therefore remains unexplained. The stronger selection on CUB on the X chromosome leads to a lower rate of synonymous site divergence compared with the autosomes; this will cause a stronger upward bias for X than A in estimates of the proportion of nonsynonymous mutations fixed by positive selection, for methods based on the McDonald–Kreitman test.
Collapse
Affiliation(s)
- Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Meiklejohn CD, Landeen EL, Cook JM, Kingan SB, Presgraves DC. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol 2011; 9:e1001126. [PMID: 21857805 PMCID: PMC3156688 DOI: 10.1371/journal.pbio.1001126] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/08/2011] [Indexed: 01/24/2023] Open
Abstract
Suppression of X-linked transgene reporters versus normal expression of endogenous X-linked genes suggest a novel form of X chromosome-specific regulation in Drosophila testes, instead of sex chromosome dosage compensation or meiotic inactivation. The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females) has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation—the equalization of X chromosome gene expression in males and females— and meiotic sex chromosome inactivation (MSCI)—the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female) germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila. Many species have heteromorphic sex chromosomes (XY males or ZW females) where one sex chromosome (the Y or W) has degenerated. In the somatic cells of mammals, worms, and flies, the X-to-autosome ratio of expression is equalized between the sexes by dedicated sex chromosome-specific dosage compensation systems. In the germline cells of male mammals and worms, however, the X chromosome is transcriptionally silenced early in meiosis. Here we have analyzed gene expression in Drosophila testes and show that the X chromosome lacks both of these types of chromosomal regulation. We find that X chromosome-wide dosage compensation is absent from most cells in the Drosophila male germline, and there is little or no evidence for X chromosome-specific inactivation during meiosis. However, another kind of sex-chromosome-specific regulation occurs. Testes-specific transgene reporters show much weaker expression when inserted on the X chromosome versus the autosomes, suggesting that some other, uncharacterized mechanism limits their expression from the X during spermatogenesis. The strong suppression of X-linked transgenes—but not X-linked endogenous genes—suggests that endogenous X-linked testes-specific promoters might have adapted to a suppressive X chromosome environment in the Drosophila male germline.
Collapse
Affiliation(s)
- Colin D Meiklejohn
- Department of Biology, University of Rochester, Rochester, New York, United States of America.
| | | | | | | | | |
Collapse
|
17
|
Johansson AM, Allgardsson A, Stenberg P, Larsson J. msl2 mRNA is bound by free nuclear MSL complex in Drosophila melanogaster. Nucleic Acids Res 2011; 39:6428-39. [PMID: 21551218 PMCID: PMC3159442 DOI: 10.1093/nar/gkr236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In Drosophila, the global increase in transcription from the male X chromosome to compensate for its monosomy is mediated by the male-specific lethal (MSL) complex consisting of five proteins and two non-coding RNAs, roX1 and roX2. After an initial sequence-dependent recognition by the MSL complex of 150-300 high affinity sites, the spread to the majority of the X-linked genes depends on local MSL-complex concentration and active transcription. We have explored whether any additional RNA species are associated with the MSL complex. No additional roX RNA species were found, but a strong association was found between a spliced and poly-adenylated msl2 RNA and the MSL complex. Based on our results, we propose a model in which a non-chromatin-associated partial or complete MSL-complex titrates newly transcribed msl2 mRNA and thus regulates the amount of available MSL complex by feedback. This represents a novel mechanism in chromatin structure regulation.
Collapse
|
18
|
Lott SE, Villalta JE, Schroth GP, Luo S, Tonkin LA, Eisen MB. Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol 2011; 9:e1000590. [PMID: 21346796 PMCID: PMC3035605 DOI: 10.1371/journal.pbio.1000590] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/22/2010] [Indexed: 01/15/2023] Open
Abstract
Mmany genes from the X chromosome are expressed at the same level in female and male embryos during early Drosophila development, prior to the establishment of MSL-mediated dosage compensation, suggesting the existence of a novel mechanism. When Drosophila melanogaster embryos initiate zygotic transcription around mitotic cycle 10, the dose-sensitive expression of specialized genes on the X chromosome triggers a sex-determination cascade that, among other things, compensates for differences in sex chromosome dose by hypertranscribing the single X chromosome in males. However, there is an approximately 1 hour delay between the onset of zygotic transcription and the establishment of canonical dosage compensation near the end of mitotic cycle 14. During this time, zygotic transcription drives segmentation, cellularization, and other important developmental events. Since many of the genes involved in these processes are on the X chromosome, we wondered whether they are transcribed at higher levels in females and whether this might lead to sex-specific early embryonic patterning. To investigate this possibility, we developed methods to precisely stage, sex, and characterize the transcriptomes of individual embryos. We measured genome-wide mRNA abundance in male and female embryos at eight timepoints, spanning mitotic cycle 10 through late cycle 14, using polymorphisms between parental lines to distinguish maternal and zygotic transcription. We found limited sex-specific zygotic transcription, with a weak tendency for genes on the X to be expressed at higher levels in females. However, transcripts derived from the single X chromosome in males were more abundant that those derived from either X chromosome in females, demonstrating that there is widespread dosage compensation prior to the activation of the canonical MSL-mediated dosage compensation system. Crucially, this new system of early zygotic dosage compensation results in nearly identical transcript levels for key X-linked developmental regulators, including giant (gt), brinker (brk), buttonhead (btd), and short gastrulation (sog), in male and female embryos. Variation in gene dose can have profound effects on animal development. Yet every generation, animals must cope with differences in sex chromosome numbers. Drosophila compensate for the difference in X chromosome dosage (two in females, one in males) with a mechanism that allows for more transcription of the single X chromosome in males. But this mechanism is not established until over an hour after the embryo begins transcription, during which time a number of important events in development occur such as cellularization and segmentation. Here we use an mRNA sequencing method to characterize gene expression in individual female and male embryos before the onset of the previously characterized dosage compensation system. While we find more transcripts from X chromosomal genes in females, we also find many genes with equal transcript levels in males and females. These results indicate that there is an alternate mechanism to compensate for dosage acting earlier in development, prior to the onset of the previously characterized dosage compensation system.
Collapse
Affiliation(s)
- Susan E Lott
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America.
| | | | | | | | | | | |
Collapse
|
19
|
Baker RH, Wilkinson GS. Comparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis). PLoS Genet 2010; 6:e1001121. [PMID: 20862308 PMCID: PMC2940734 DOI: 10.1371/journal.pgen.1001121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/13/2010] [Indexed: 12/21/2022] Open
Abstract
Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2) ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.
Collapse
Affiliation(s)
- Richard H Baker
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA.
| | | |
Collapse
|
20
|
Prestel M, Feller C, Becker PB. Dosage compensation and the global re-balancing of aneuploid genomes. Genome Biol 2010; 11:216. [PMID: 20804581 PMCID: PMC2945780 DOI: 10.1186/gb-2010-11-8-216] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diploid genomes are exquisitely balanced systems of gene expression. The dosage-compensation systems that evolved along with monosomic sex chromosomes exemplify the intricacies of compensating for differences in gene copy number by transcriptional regulation.
Collapse
Affiliation(s)
- Matthias Prestel
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany
| | | | | |
Collapse
|
21
|
Zaitoun I, Downs KM, Rosa GJM, Khatib H. Upregulation of imprinted genes in mice: an insight into the intensity of gene expression and the evolution of genomic imprinting. Epigenetics 2010; 5:149-58. [PMID: 20168089 DOI: 10.4161/epi.5.2.11081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Imprinted genes are expressed monoallelically because one of the two copies is silenced epigentically in a parent-of-origin pattern. This pattern of expression is controlled by differential marking of parental alleles by DNA methylation and chromatin modifications, including both suppressive and permissive histone acetylation and methylation. Suppressive histone modifications mark silenced alleles of imprinted genes, while permissive histone modifications mark the active alleles, suggesting the possibility that imprinted genes would show upregulation in gene expression. However, it is currently unknown whether imprinted genes show such upregulation. To address this question in mice, we estimated the intensity of expression of 59 genes relative to the rest of the genome by analyzing microarray data. Expression levels of 24 genes were validated using quantitative real-time PCR (qPCR). Expression of imprinted genes was found to be upreguled in various adult and embryonic mouse tissues. Consistent with their functions in growth and development, imprinted genes were found to be highly expressed in extraembryonic tissues and progressively upregulated during early embryonic development. In conclusion, upregulation of imprinted genes found in this study is similar to the dosage compensation (twofold upregulation) recently reported for X-linked genes. It has been proposed that the twofold upregulation of X-linked genes has been coupled with low transcriptional variation (noise) which could lead to deleterious effects on the organism. Results of this study suggest a general need for imprinted genes in the mouse to be upregulated to certain levels in order to avoid deleterious effects of variation in gene expression.
Collapse
Affiliation(s)
- Ismail Zaitoun
- Department of Dairy Science, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
22
|
Abstract
This new primer, which discusses a study by Zhang et al., provides an overview of the process by which chromosomes achieve dose compensation and the mechanisms underlying this phenomenon in Drosophila S2 cells.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Abstract
Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in addition to X chromosome-specific dosage compensation. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (∼ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system “anticipates” the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal–independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. While it is widely recognized that mutations in protein coding genes can have harmful consequences, one can also have too much or too little of a good thing. Except for the sex chromosomes, genes come in sets of two in diploid organisms. Extra or missing copies of genes or chromosomes result in an imbalance that can lead to cancers, miscarriages, and disease susceptibility. We have examined what happens to gene expression in Drosophila cells with the types of gross copy number changes that are typical of cancers. We have compared the response of autosomes and sex chromosomes and show that there is some compensation for copy number change in both cases. One response is universal and acts to correct copy number changes by changing transcript abundance. The other is specific to the X chromosome and acts to increase expression regardless of gene dose. Our data highlight how important gene expression balance is for cell function.
Collapse
|
24
|
Zhang Y, Oliver B. An evolutionary consequence of dosage compensation on Drosophila melanogaster female X-chromatin structure? BMC Genomics 2010; 11:6. [PMID: 20051121 PMCID: PMC2820458 DOI: 10.1186/1471-2164-11-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 01/05/2010] [Indexed: 01/07/2023] Open
Abstract
Background X chromosomes are subject to dosage compensation in Drosophila males. Dosage compensation requires cis sequence features of the X chromosome that are present in both sexes by definition and trans acting factors that target chromatin modifying machinery to the X specifically in males. The evolution of this system could result in neutral X chromatin changes that will be apparent in females. Results We find that the general chromatin structure of female X chromosomes is distinct from autosomes. Additionally, specific histone marks associated with dosage compensation and active chromatin marks on the male X chromosome are also enriched on the X chromosomes of females, albeit to a lesser degree. Conclusions Our data indicate that X chromatin structure is fundamentally different from autosome structure in both sexes. We suggest that the differences between the X chromosomes and autosomes in females are a consequence of mechanisms that have evolved to ensure sufficient X chromosome expression in the soma of males.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8028, USA.
| | | |
Collapse
|
25
|
Abstract
In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon.
Collapse
|
26
|
Stenberg P, Lundberg LE, Johansson AM, Rydén P, Svensson MJ, Larsson J. Buffering of segmental and chromosomal aneuploidies in Drosophila melanogaster. PLoS Genet 2009; 5:e1000465. [PMID: 19412336 PMCID: PMC2668767 DOI: 10.1371/journal.pgen.1000465] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/30/2009] [Indexed: 01/17/2023] Open
Abstract
Chromosomal instability, which involves the deletion and duplication of chromosomes or chromosome parts, is a common feature of cancers, and deficiency screens are commonly used to detect genes involved in various biological pathways. However, despite their importance, the effects of deficiencies, duplications, and chromosome losses on the regulation of whole chromosomes and large chromosome domains are largely unknown. Therefore, to explore these effects, we examined expression patterns of genes in several Drosophila deficiency hemizygotes and a duplication hemizygote using microarrays. The results indicate that genes expressed in deficiency hemizygotes are significantly buffered, and that the buffering effect is general rather than being mainly mediated by feedback regulation of individual genes. In addition, differentially expressed genes in haploid condition appear to be generally more strongly buffered than ubiquitously expressed genes in haploid condition, but, among genes present in triploid condition, ubiquitously expressed genes are generally more strongly buffered than differentially expressed genes. Furthermore, we show that the 4th chromosome is compensated in response to dose differences. Our results suggest general mechanisms have evolved that stimulate or repress gene expression of aneuploid regions as appropriate, and on the 4th chromosome of Drosophila this compensation is mediated by Painting of Fourth (POF). Although deletion heterozygotes and chromosomal aneuploidies have been used in genetic studies for decades, the relationships between chromosome doses and transcript outputs have been difficult to unravel. In other words, the effects of copy changes on the regulation of entire chromosomes or large chromosomal domains are largely unknown. Hence, we studied these relationships in Drosophila using microarrays prepared from flies with a dosage series of chromosomal domains and a dosage series of the 4th chromosome. We observed significant buffering of expressed genes, i.e., on average they were expressed at >50% of wild-type levels when present in single copies instead of two copies (the normal complement of diploids). This buffering was also seen to be much stronger for differentially expressed genes than ubiquitously expressed genes. Our findings therefore support the presence of chromosome-wide buffering mechanisms. In addition, we found evidence of a chromosome-specific protein POF-mediated mechanism in the buffering of the 4th chromosome. Overall, our results suggest that a general buffering system acts on most genes present as single copies due to deletions or chromosome losses. Further work on gene buffering effects should make substantial contributions to our understanding of genome-wide gene regulation.
Collapse
Affiliation(s)
- Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | | | | | - Patrik Rydén
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Department of Statistics, Umeå University, Umeå, Sweden
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
27
|
Alekseevich LA, Lukina NA, Nikitin NS, Nekrasova AA, Smirnov AF. Problems of sex determination in birds exemplified by Gallus gallus domesticus. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Daish T, Grützner F. Location, location, location! Monotremes provide unique insights into the evolution of sex chromosome silencing in mammals. DNA Cell Biol 2009; 28:91-100. [PMID: 19196046 DOI: 10.1089/dna.2008.0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Platypus and echidnas are the only living representative of the egg-laying mammals that diverged 166 million years ago from the mammalian lineage. Despite occupying a key spot in mammalian phylogeny, research on monotremes has been limited by access to material and lack of molecular genetic resources. This has changed recently, and the sequencing of the platypus genome has promoted monotremes into a generally accessible tool in comparative genomics. The most extraordinary aspect of the monotreme genome is an amazingly complex sex chromosomes system that shares extensive homology with bird sex chromosomes and no homology with sex chromosomes of other mammals. This raises important questions about dosage compensation of the five pairs of sex chromosomes in females and meiotic silencing in males, and we are only beginning to unravel possible mechanisms and pathways that may be involved. The homology between monotreme and bird sex chromosomes makes comparison between those species worthwhile, also as they provide a well-defined example where the same sex chromosomes changed from female heterogamety (chicken) to male heterogamety (monotremes). We summarize recent research on monotreme and chicken sex chromosomes and discuss possible mechanisms that may contribute to sex chromosome silencing in monotremes.
Collapse
Affiliation(s)
- Tasman Daish
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| | | |
Collapse
|
29
|
Arnold AP, Itoh Y, Melamed E. A bird's-eye view of sex chromosome dosage compensation. Annu Rev Genomics Hum Genet 2008; 9:109-27. [PMID: 18489256 DOI: 10.1146/annurev.genom.9.081307.164220] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive study of a few genetically tractable species with XX/XY sex chromosomes has produced generalizations about the process of sex chromosome dosage compensation that do not fare well when applied to ZZ/ZW sex chromosome systems, such as those in birds. The inherent sexual imbalance in dose of sex chromosome genes has led to the evolution of sex-chromosome-wide mechanisms for balancing gene dosage between the sexes and relative to autosomal genes. Recent advances in our knowledge of avian genomes have led to a reexamination of sex-specific dosage compensation (SSDC) in birds, which is less effective than in known XX/XY systems. Insights about the mechanisms of SSDC in birds also suggest similarities to and differences from those in XX/XY species. Birds are thus offering new opportunities for studying dosage compensation in a ZZ/ZW system, which should shed light on the evolution of SSDC more broadly.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
30
|
Spierer A, Begeot F, Spierer P, Delattre M. SU(VAR)3-7 links heterochromatin and dosage compensation in Drosophila. PLoS Genet 2008; 4:e1000066. [PMID: 18451980 PMCID: PMC2320979 DOI: 10.1371/journal.pgen.1000066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 04/04/2008] [Indexed: 01/03/2023] Open
Abstract
In Drosophila, dosage compensation augments X chromosome-linked transcription in males relative to females. This process is achieved by the Dosage Compensation Complex (DCC), which associates specifically with the male X chromosome. We previously found that the morphology of this chromosome is sensitive to the amounts of the heterochromatin-associated protein SU(VAR)3-7. In this study, we examine the impact of change in levels of SU(VAR)3-7 on dosage compensation. We first demonstrate that the DCC makes the X chromosome a preferential target for heterochromatic markers. In addition, reduced or increased amounts of SU(VAR)3-7 result in redistribution of the DCC proteins MSL1 and MSL2, and of Histone 4 acetylation of lysine 16, indicating that a wild-type dose of SU(VAR)3-7 is required for X-restricted DCC targeting. SU(VAR)3-7 is also involved in the dosage compensated expression of the X-linked white gene. Finally, we show that absence of maternally provided SU(VAR)3-7 renders dosage compensation toxic in males, and that global amounts of heterochromatin affect viability of ectopic MSL2-expressing females. Taken together, these results bring to light a link between heterochromatin and dosage compensation. In Drosophila, females have two X chromosomes and males only one. The difference in the dose of X-associated genes is compensated by male-specific protein machinery, the Dosage Compensation Complex (DCC), which augments the activity of genes of the single male X. We report that the specific targeting of the DCC on the male X chromosome depends critically on the correct dose of the SU(VAR)3-7 protein. This protein was previously known to associate with condensed and silenced regions of the chromosomes called heterochromatin by contrast with the active form of chromatin called euchromatin. Loss of SU(VAR)3-7 in males causes displacement of the DCC to heterochromatin and bloating of the X chromosome. In contrast, excess of SU(VAR)3-7 leads to a delocalization of the DCC to other chromosomes and to massive shrinking of the X chromosome. We show that SU(VAR)3-7 is involved in the dosage compensated expression of the X-linked white gene and in the viability of dosage compensated flies. Altogether, these results bring to light a link between silencing mechanisms of heterochromatin and mechanisms controlling the balance of sex-chromosome activity (dosage compensation). This opens new perspectives on how complexes that control the global chromosome organisation impact the fine tuning of gene expression.
Collapse
Affiliation(s)
- Anne Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| | - Pierre Spierer
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Marion Delattre
- NCCR “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
|
32
|
Abstract
Reproductive isolation between biological species is characterized by Haldane's rule, which states that the heterogametic sex (XY or ZW) suffers the most dysfunctional effects of hybridization. It has been hypothesized that, in addition to X-linked recessive genes, Haldane's rule also reflects the faster evolution of genes related to male reproduction (faster-male evolution). We used sex-reversed hybrid Xenopus to test faster-male evolution by examining the fertility of sex-reversed individuals with the genotype of the inverse phenotypic sex. Hybrid males are sterile and hybrid females are fertile irrespective of their genotypic sex. Gene expression profiles match these adult phenotypes, and our results demonstrate that faster-male evolution is the most likely mechanism producing hybrid male sterility.
Collapse
Affiliation(s)
- John H Malone
- Department of Biology, University of Texas at Arlington, Box 19498, Arlington, TX 76019, USA
| | | |
Collapse
|
33
|
Ellegren H, Hultin-Rosenberg L, Brunström B, Dencker L, Kultima K, Scholz B. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol 2007; 5:40. [PMID: 17883843 PMCID: PMC2099419 DOI: 10.1186/1741-7007-5-40] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma. Results Here, we use a microarray approach to show that male chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4–1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci. Intriguingly, without global dosage compensation, the female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds. Conclusion The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination. Importantly, this report, together with a recent study of sex-biased expression in somatic tissue of chicken, demonstrates the first example of an organism with a lack of global dosage compensation, providing an unexpected case of a viable system with large-scale imbalance in gene expression between sexes.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Lina Hultin-Rosenberg
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Lennart Dencker
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| | - Kim Kultima
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| | - Birger Scholz
- Department of Pharmaceutical Biosciences, Uppsala University, Box 594, SE-751 24 Uppsala, Sweden
| |
Collapse
|