1
|
Wei G, Zhang S, Yu S, Lu W. Intravital Microscopy Reveals Endothelial Transcytosis Contributing to Significant Tumor Accumulation of Albumin Nanoparticles. Pharmaceutics 2023; 15:519. [PMID: 36839841 PMCID: PMC9960641 DOI: 10.3390/pharmaceutics15020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The principle of enhanced permeability and retention (EPR) effect has been used to design anti-cancer nanomedicines over decades. However, it is being challenged due to the poor clinical outcome of nanoparticles and controversial physiological foundation. Herein, we use a near-infrared-II (1000-1700 nm, NIR-II) fluorescence probe BPBBT to investigate the pathway for the entry of human serum albumin-bound nanoparticles (BPBBT-HSA NPs) into tumor compared with BPBBT micelles with phospholipid-poly (ethylene glycol) of the similar particle size about 110 nm. The plasma elimination half-life of BPBBT micelles was 2.8-fold of that of BPBBT-HSA NPs. However, the area under the BPBBT concentration in tumor-time curve to 48 h post-injection (AUCtumor0→48h) of BPBBT-HSA NPs was 7.2-fold of that of BPBBT micelles. The intravital NIR-II fluorescence microscopy revealed that BPBBT-HSA NPs but not BPBBT micelles were transported from the tumor vasculature into tumor parenchyma with high efficiency, and endocytosed by the tumor cells within 3 h post-injection in vivo. This effect was blocked by cross-linking BPBBT-HSA NPs to denature HSA, resulting in the AUCtumor0→48h decreased to 22% of that of BPBBT-HSA NPs. Our results demonstrated that the active process of endothelial transcytosis is the dominant pathway for albumin-bound nanoparticles' entry into tumor.
Collapse
Affiliation(s)
| | | | | | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
2
|
Multi-Modal Multi-Spectral Intravital Microscopic Imaging of Signaling Dynamics in Real-Time during Tumor-ImmuneInteractions. Cells 2021; 10:cells10030499. [PMID: 33652682 PMCID: PMC7996937 DOI: 10.3390/cells10030499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Intravital microscopic imaging (IVM) allows for the study of interactions between immune cells and tumor cells in a dynamic, physiologically relevant system in vivo. Current IVM strategies primarily use fluorescence imaging; however, with the advances in bioluminescence imaging and the development of new bioluminescent reporters with expanded emission spectra, the applications for bioluminescence are extending to single cell imaging. Herein, we describe a molecular imaging window chamber platform that uniquely combines both bioluminescent and fluorescent genetically encoded reporters, as well as exogenous reporters, providing a powerful multi-plex strategy to study molecular and cellular processes in real-time in intact living systems at single cell resolution all in one system. We demonstrate that our molecular imaging window chamber platform is capable of imaging signaling dynamics in real-time at cellular resolution during tumor progression. Importantly, we expand the utility of IVM by modifying an off-the-shelf commercial system with the addition of bioluminescence imaging achieved by the addition of a CCD camera and demonstrate high quality imaging within the reaches of any biology laboratory.
Collapse
|
3
|
Liu TW, Gammon ST, Fuentes D, Piwnica-Worms D. Multi-Modal Multi-Spectral Intravital Macroscopic Imaging of Signaling Dynamics in Real Time during Tumor-Immune Interactions. Cells 2021; 10:489. [PMID: 33668735 PMCID: PMC7996138 DOI: 10.3390/cells10030489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
A major obstacle in studying the interplay between cancer cells and the immune system has been the examination of proposed biological pathways and cell interactions in a dynamic, physiologically relevant system in vivo. Intravital imaging strategies are one of the few molecular imaging techniques that can follow biological processes at cellular resolution over long periods of time in the same individual. Bioluminescence imaging has become a standard preclinical in vivo optical imaging technique with ever-expanding versatility as a result of the development of new emission bioluminescent reporters, advances in genomic techniques, and technical improvements in bioluminescence imaging and processing methods. Herein, we describe an advance of technology with a molecular imaging window chamber platform that combines bioluminescent and fluorescent reporters with intravital macro-imaging techniques and bioluminescence spectral unmixing in real time applied to heterogeneous living systems in vivo for evaluating tumor signaling dynamics and immune cell enzyme activities concurrently.
Collapse
Affiliation(s)
- Tracy W. Liu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.W.L.); (S.T.G.)
| |
Collapse
|
4
|
Si P, Honkala A, de la Zerda A, Smith BR. Optical Microscopy and Coherence Tomography of Cancer in Living Subjects. Trends Cancer 2020; 6:205-222. [PMID: 32101724 DOI: 10.1016/j.trecan.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Intravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies. We review important progress in the fields of IVM and OCT for cancer imaging in living subjects, highlighting key technological developments and their emerging applications in fundamental cancer biology research and clinical oncology investigation.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; The Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Bryan Ronain Smith
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Lin H, Fan T, Sui J, Wang G, Chen J, Zhuo S, Zhang H. Recent advances in multiphoton microscopy combined with nanomaterials in the field of disease evolution and clinical applications to liver cancer. NANOSCALE 2019; 11:19619-19635. [PMID: 31599299 DOI: 10.1039/c9nr04902a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiphoton microscopy (MPM) is expected to become a powerful clinical tool, with its unique advantages of being label-free, high resolution, deep imaging depth, low light photobleaching and low phototoxicity. Nanomaterials, with excellent physical and chemical properties, are biocompatible and easy to prepare and functionalize. The addition of nanomaterials exactly compensates for some defects of MPM, such as the weak endogenous signal strength, limited imaging materials, insufficient imaging depth and lack of therapeutic effects. Therefore, combining MPM with nanomaterials is a promising biomedical imaging method. Here, we mainly review the principle of MPM and its application in liver cancer, especially in disease evolution and clinical applications, including monitoring tumor progression, diagnosing tumor occurrence, detecting tumor metastasis, and evaluating cancer therapy response. Then, we introduce the latest advances in the combination of MPM with nanomaterials, including the MPM imaging of gold nanoparticles (AuNPs) and carbon dots (CDs). Finally, we also propose the main challenges and future research directions of MPM technology in HCC.
Collapse
Affiliation(s)
- Hongxin Lin
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| | - Jian Sui
- Department of Gastrointestinal surgery, Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Guangxing Wang
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Jianxin Chen
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Shuangmu Zhuo
- Fujian Normal University, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fuzhou, 350007, China.
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Jana A, Nookaew I, Singh J, Behkam B, Franco AT, Nain AS. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response. FASEB J 2019; 33:10618-10632. [PMID: 31225977 PMCID: PMC6766658 DOI: 10.1096/fj.201900131r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/30/2019] [Indexed: 01/14/2023]
Abstract
Biomechanical cues within tissue microenvironments are critical for maintaining homeostasis, and their disruption can contribute to malignant transformation and metastasis. Once transformed, metastatic cancer cells can migrate persistently by adapting (plasticity) to changes in the local fibrous extracellular matrix, and current strategies to recapitulate persistent migration rely exclusively on the use of aligned geometries. Here, the controlled interfiber spacing in suspended crosshatch networks of nanofibers induces cells to exhibit plasticity in migratory behavior (persistent and random) and the associated cytoskeletal arrangement. At dense spacing (3 and 6 µm), unexpectedly, elongated cells migrate persistently (in 1 dimension) at high speeds in 3-dimensional shapes with thick nuclei, and short focal adhesion cluster (FAC) lengths. With increased spacing (18 and 36 µm), cells attain 2-dimensional morphologies, have flattened nuclei and longer FACs, and migrate randomly by rapidly detaching their trailing edges that strain the nuclei by ∼35%. At 54-µm spacing, kite-shaped cells become near stationary. Poorly developed filamentous actin stress fibers are found only in cells on 3-µm networks. Gene-expression profiling shows a decrease in transcriptional potential and a differential up-regulation of metabolic pathways. The consistency in observed phenotypes across cell lines supports using this platform to dissect hallmarks of plasticity in migration in vitro.-Jana, A., Nookaew, I., Singh, J., Behkam, B., Franco, A. T., Nain, A. S. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Intawat Nookaew
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jugroop Singh
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aime T. Franco
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 2018; 9:20165-20178. [PMID: 29732011 PMCID: PMC5929454 DOI: 10.18632/oncotarget.24957] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Intravital microscopy (IVM) is a dynamic imaging modality that allows for the real time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. In the setting of preclinical cancer models, IVM has facilitated an understanding of the tumor associated vasculature and the role of effector immune cells in the tumor microenvironment. Novel approaches to apply IVM to human malignancies have thus far focused on cancer diagnosis and tumor vessel characterization, but have the potential to provide advances in the field of personalized medicine by identifying individual patients who may respond to systemically delivered chemotherapeutic drugs or immunotherapeutic agents. In this review, we highlight the role that IVM has had in investigating tumor vasculature and the tumor microenvironment in preclinical studies and discuss its current and future applications to directly observe human tumors.
Collapse
|
8
|
Assessing multiparametric drug response in tissue engineered tumor microenvironment models. Methods 2017; 134-135:20-31. [PMID: 29258924 DOI: 10.1016/j.ymeth.2017.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment is important in promoting treatment resistance of tumor cells via multiple mechanisms. However, studying this interaction often proves difficult. In vivo animal models are costly, time-consuming, and often fail to adequately predict human response to treatment. Conversely, testing drug response on human tumor cells in vitro in 2D cell culture excludes the important contribution of stromal cells and biophysical forces seen in the in vivo tumor microenvironment. Here, we present tissue-engineered models of both human brain and breast tumor microenvironments incorporating key stromal cell populations for assessing multiple mechanisms of therapeutic response using flow cytometry. We show our physiologically-relevant systems used to interrogate a variety of parameters associated with chemotherapeutic efficacy, including cell death, proliferation, drug uptake, and invasion of cancer and stromal cell populations. The use of flow cytometry allows for single cell, quantitative, and fast assessments of multiple outcomes affecting anti-tumor therapy failure. Our system can be modified to add and remove cellular components with ease, thereby enabling the study of individual cellular contributions in the tumor microenvironment. Together, our models and analysis methods illustrate the importance of developing fast, cost-effective, and reproducible methods to model complex human systems in a physiologically-relevant manner that may prove useful for drug screening efforts in the future.
Collapse
|
9
|
Abstract
Imaging is widely used in anticancer drug development, typically for whole-body tracking of labelled drugs to different organs or to assess drug efficacy through volumetric measurements. However, increasing attention has been drawn to pharmacology at the single-cell level. Diverse cell types, including cancer-associated immune cells, physicochemical features of the tumour microenvironment and heterogeneous cell behaviour all affect drug delivery, response and resistance. This Review summarizes developments in the imaging of in vivo anticancer drug action, with a focus on microscopy approaches at the single-cell level and translational lessons for the clinic.
Collapse
Affiliation(s)
- Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA
- Department of Systems Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 2017; 10:359-371. [PMID: 28381598 PMCID: PMC5399571 DOI: 10.1242/dmm.028274] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research using animal model systems has been instrumental in delivering improved therapies for breast cancer, as well as in generating new insights into the mechanisms that underpin development of the disease. A large number of different models are now available, reflecting different types and stages of the disease; choosing which one to use depends on the specific research question(s) to be investigated. Based on presentations and discussions from leading experts who attended a recent workshop focused on in vivo models of breast cancer, this article provides a perspective on the many varied uses of these models in breast cancer research, their strengths, associated challenges and future directions. Among the questions discussed were: how well do models represent the different stages of human disease; how can we model the involvement of the human immune system and microenvironment in breast cancer; what are the appropriate models of metastatic disease; can we use models to carry out preclinical drug trials and identify pathways responsible for drug resistance; and what are the limitations of patient-derived xenograft models? We briefly outline the areas where the existing breast cancer models require improvement in light of the increased understanding of the disease process, reflecting the drive towards more personalised therapies and identification of mechanisms of drug resistance.
Collapse
Affiliation(s)
- Ingunn Holen
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield S10 2RX, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Bethny Morrissey
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| |
Collapse
|
11
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Sobolik T, Su YJ, Ashby W, Schaffer DK, Wells S, Wikswo JP, Zijlstra A, Richmond A. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging. INTRAVITAL 2016; 5:e1125562. [PMID: 28243517 DOI: 10.1080/21659087.2015.1125562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023]
Abstract
We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Tammy Sobolik
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ying-Jun Su
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Will Ashby
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David K Schaffer
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, TN, USA
| | - Sam Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - John P Wikswo
- Department of Physics and Astronomy and the Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andries Zijlstra
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
13
|
Babes L, Kubes P. Visualizing the Tumor Microenvironment of Liver Metastasis by Spinning Disk Confocal Microscopy. Methods Mol Biol 2016; 1458:203-15. [PMID: 27581024 DOI: 10.1007/978-1-4939-3801-8_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Intravital microscopy has evolved into an invaluable technique to study the complexity of tumors by visualizing individual cells in live organisms. Here, we describe a method for employing intravital spinning disk confocal microscopy to picture high-resolution tumor-stroma interactions in real time. We depict in detail the surgical procedures to image various tumor microenvironments and different cellular components in the liver.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Naumenko V, Jenne C, Mahoney DJ. Intravital Microscopy for Imaging the Tumor Microenvironment in Live Mice. Methods Mol Biol 2016; 1458:217-30. [PMID: 27581025 DOI: 10.1007/978-1-4939-3801-8_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of intravital microscopy has provided unprecedented capacity to study the tumor microenvironment in live mice. The dynamic behavior of cancer, stromal, vascular, and immune cells can be monitored in real time, in situ, in both primary tumors and metastatic lesions, allowing treatment responses to be observed at single cell resolution and therapies tracked in vivo. These features provide a unique opportunity to elucidate the cellular mechanisms underlying the biology and treatment of cancer. We describe here a method for imaging the microenvironment of subcutaneous tumors grown in mice using intravital microscopy.
Collapse
Affiliation(s)
- Victor Naumenko
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1
- Snyder Institute for Chronic Diseases, Calgary, AB, Canada, T2N 4N1
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Craig Jenne
- Snyder Institute for Chronic Diseases, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| | - Douglas J Mahoney
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada, T2N 4N1.
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada, T2N 4N1.
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
15
|
Burke K, Brown E. The Use of Second Harmonic Generation to Image the Extracellular Matrix During Tumor Progression. INTRAVITAL 2015; 3:e984509. [PMID: 28243512 DOI: 10.4161/21659087.2014.984509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
Abstract
Metastasis is the leading cause of cancer mortality, resulting from changes in the tumor microenvironment which increases tumor cell migration, dispersal to distant organs, and subsequent survival. This is accompanied by changes in tumor collagen which may allow cells to travel more efficiently away from a primary tumor and invade the surrounding tissue. Second Harmonic generation (SHG) is an intrinsic optical signal that has expanded our understanding of collagen evolution throughout tumor progression. This article addresses current research into tumor progression using SHG, as well as the future prospects of using SHG to advance our understanding of the tumor microenvironment.
Collapse
Affiliation(s)
- Kathleen Burke
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| | - Edward Brown
- Department of Biomedical Engineering; University of Rochester ; Rochester, NY USA
| |
Collapse
|
16
|
Bonnans C, Lohela M, Werb Z. Real-time imaging of myeloid cells dynamics in ApcMin/+ intestinal tumors by spinning disk confocal microscopy. J Vis Exp 2014:51916. [PMID: 25350573 DOI: 10.3791/51916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. Apc(Min/+) mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.
Collapse
Affiliation(s)
- Caroline Bonnans
- Department of Oncology, INSERM U661, Functional Genomic Institute.,Department of Anatomy, University of California
| | | | - Zena Werb
- Department of Anatomy, University of California
| |
Collapse
|
17
|
Abstract
To comprehend the complexity of cancer, the biological characteristics acquired during the initiation and progression of tumours were classified as the 'hallmarks of cancer'. Intravital microscopy techniques have been developed to study individual cells that acquire these crucial traits, by visualizing tissues with cellular or subcellular resolution in living animals. In this Review, we highlight the latest intravital microscopy techniques that have been used in living animals (predominantly mice) to unravel fundamental and dynamic aspects of various hallmarks of cancer. In addition, we discuss the application of intravital microscopy techniques to cancer therapy, as well as limitations and future perspectives for these techniques.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
18
|
Liu QR, Liu JM, Chen Y, Xie XQ, Xiong XX, Qiu XY, Pan F, Liu D, Yu SB, Chen XQ. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:653732. [PMID: 24967005 PMCID: PMC4055624 DOI: 10.1155/2014/653732] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis.
Collapse
Affiliation(s)
- Qian Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ju Mei Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Chen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Qiang Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Pan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Urology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shang Bin Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Neurological Diseases, Ministry of Education and Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
20
|
Affiliation(s)
- Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Abstract
Fibroblast migration is essential to normal wound healing and pathological matrix deposition in fibrosis. This review summarizes our understanding of how fibroblasts navigate 2D and 3D extracellular matrices, how this behavior is influenced by the architecture and mechanical properties of the matrix, and how migration is integrated with the other principle functions of fibroblasts, including matrix deposition, contraction, and degradation.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
22
|
Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 2013; 4:311. [PMID: 24204345 PMCID: PMC3817680 DOI: 10.3389/fphys.2013.00311] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023] Open
Abstract
Transient Receptor Potential (TRP) channels modulate intracellular Ca(2+) concentrations, controlling critical cytosolic and nuclear events that are involved in the initiation and progression of cancer. It is not, therefore, surprising that the expression of some TRP channels is altered during tumor growth and metastasis. Cell migration of both epithelial and endothelial cells is an essential step of the so-called metastatic cascade that leads to the spread of the disease within the body. It is in fact required for both tumor vascularization as well as for tumor cell invasion into adjacent tissues and intravasation into blood/lymphatic vessels. Studies from the last 15 years have unequivocally shown that the ion channles and the transport proteins also play important roles in cell migration. On the other hand, recent literature underlies a critical role for TRP channels in the migration process both in cancer cells as well as in tumor vascularization. This will be the main focus of our review. We will provide an overview of recent advances in this field describing TRP channels contribution to the vascular and cancer cell migration process, and we will systematically discuss relevant molecular mechanism involved.
Collapse
Affiliation(s)
- Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, Nanostructured Interfaces and Surfaces Centre of Excellence, University of Torino Torino, Italy ; Inserm U1003, Equipe labellisée par la Ligue Nationale contre le cancer, Université des Sciences et Technologies de Lille Villeneuve d'Ascq, France
| | | |
Collapse
|
23
|
Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B, Bindokas V, Bartkowiak T, Lee D, Herrmann A, Piston DW, Pittet MJ, Lin PC, Zal T, Schreiber H. Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncoimmunology 2013; 2:e26677. [PMID: 24482750 PMCID: PMC3895414 DOI: 10.4161/onci.26677] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023] Open
Abstract
A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells-all color-coded in vivo-was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region-before, during and after adoptive T cell therapy-thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies.
Collapse
Affiliation(s)
| | - Ainhoa Arina
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Rebecca B Liu
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Sam Wells
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Jianhua Huang
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Boris Engels
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Vytas Bindokas
- Integrated Microscopy Core; The University of Chicago; Chicago, IL USA
| | - Todd Bartkowiak
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David Lee
- School of Medicine; The University of Chicago; Chicago, IL USA
| | - Andreas Herrmann
- Departments of Cancer Immunotherapeutics & Tumor Immunology; City of Hope; Duarte, CA USA
| | - David W Piston
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Mikael J Pittet
- Center for Systems Biology; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | - P Charles Lin
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA ; Center for Cancer Research; National Cancer Institute, NIH; Frederick, MD USA
| | - Tomasz Zal
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Hans Schreiber
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|
24
|
Nobis M, Carragher NO, McGhee EJ, Morton JP, Sansom OJ, Anderson KI, Timpson P. Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS J 2013; 280:5177-97. [PMID: 23678945 DOI: 10.1111/febs.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The integration of signal transduction pathways plays a fundamental role in governing disease initiation, progression and outcome. It is therefore necessary to understand disease at the signalling level to enable effective treatment and to intervene in its progression. The recent extension of in vitro subcellular image-based analysis to live in vivo modelling of disease is providing a more complete picture of real-time, dynamic signalling processes or drug responses in live tissue. Intravital imaging offers alternative strategies for studying disease and embraces the biological complexities that govern disease progression. In the present review, we highlight how three-dimensional or live intravital imaging has uncovered novel insights into biological mechanisms or modes of drug action. Furthermore, we offer a prospective view of how imaging applications may be integrated further with the aim of understanding disease in a more physiological and functional manner within the framework of the drug discovery process.
Collapse
Affiliation(s)
- Max Nobis
- The Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Nakasone ES, Askautrud HA, Egeblad M. Live imaging of drug responses in the tumor microenvironment in mouse models of breast cancer. J Vis Exp 2013:e50088. [PMID: 23542634 PMCID: PMC3639729 DOI: 10.3791/50088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Collapse
|
26
|
Dubey R, Levin MD, Szabo LZ, Laszlo CF, Kushal S, Singh JB, Oh P, Schnitzer JE, Olenyuk BZ. Suppression of Tumor Growth by Designed Dimeric Epidithiodiketopiperazine Targeting Hypoxia-Inducible Transcription Factor Complex. J Am Chem Soc 2013; 135:4537-49. [DOI: 10.1021/ja400805b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ramin Dubey
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| | - Michael D. Levin
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Lajos Z. Szabo
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Csaba F. Laszlo
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Swati Kushal
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| | - Jason B. Singh
- Department
of Chemistry and
Biochemistry, University of Arizona, 1306
East University Blvd., Tucson, Arizona 85721, United States
| | - Philip Oh
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Jan E. Schnitzer
- Proteogenomics Research Institute
for Systems Medicine, 11107 Roselle St., San Diego, California 92121,
United States
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and
Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave., PSC B15C, HSC 9121, Los Angeles, California 90089,
United States
| |
Collapse
|
27
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
28
|
Ritsma L, Steller EJA, Beerling E, Loomans CJM, Zomer A, Gerlach C, Vrisekoop N, Seinstra D, van Gurp L, Schafer R, Raats DA, de Graaff A, Schumacher TN, de Koning EJP, Rinkes IHB, Kranenburg O, Rheenen JV. Intravital Microscopy Through an Abdominal Imaging Window Reveals a Pre-Micrometastasis Stage During Liver Metastasis. Sci Transl Med 2012; 4:158ra145. [DOI: 10.1126/scitranslmed.3004394] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Ito K, Smith BR, Parashurama N, Yoon JK, Song SY, Miething C, Mallick P, Lowe S, Gambhir SS. Unexpected dissemination patterns in lymphoma progression revealed by serial imaging within a murine lymph node. Cancer Res 2012; 72:6111-8. [PMID: 23033441 DOI: 10.1158/0008-5472.can-12-2579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous and highly disseminated disease, but the mechanisms of its growth and dissemination are not well understood. Using a mouse model of this disease, we used multimodal imaging, including intravital microscopy (IVM) combined with bioluminescence, as a powerful tool to better elucidate NHL progression. We injected enhanced green fluorescent protein and luciferase-expressing Eμ-Myc/Arf(-/-) (Cdkn2a(-/-)) mouse lymphoma cells (EL-Arf(-/-)) into C57BL/6NCrl mice intravenously. Long-term observation inside a peripheral lymph node was enabled by a novel lymph node internal window chamber technique that allows chronic, sequential lymph node imaging under in vivo physiologic conditions. Interestingly, during early stages of tumor progression we found that few if any lymphoma cells homed initially to the inguinal lymph node (ILN), despite clear evidence of lymphoma cells in the bone marrow and spleen. Unexpectedly, we detected a reproducible efflux of lymphoma cells from spleen and bone marrow, concomitant with a massive and synchronous influx of lymphoma cells into the ILN, several days after injection. We confirmed a coordinated efflux/influx of tumor cells by injecting EL-Arf(-/-) lymphoma cells directly into the spleen and observing a burst of lymphoma cells, validating that the burst originated in organs remote from the lymph nodes. Our findings argue that in NHL an efflux of tumor cells from one disease site to another, distant site in which they become established occurs in discrete bursts.
Collapse
Affiliation(s)
- Ken Ito
- Molecular Imaging Program, Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 2012; 109:13515-20. [PMID: 22869695 DOI: 10.1073/pnas.1210182109] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Entry of tumor cells into the blood stream is a critical step in cancer metastasis. Although significant progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism of cancer cell intravasation remains largely unknown. We developed a microfluidic-based assay to recreate the tumor-vascular interface in three-dimensions, allowing for high resolution, real-time imaging, and precise quantification of endothelial barrier function. Studies are aimed at testing the hypothesis that carcinoma cell intravasation is regulated by biochemical factors from the interacting cells and cellular interactions with macrophages. We developed a method to measure spatially resolved endothelial permeability and show that signaling with macrophages via secretion of tumor necrosis factor alpha results in endothelial barrier impairment. Under these conditions intravasation rates were increased as validated with live imaging. To further investigate tumor-endothelial (TC-EC) signaling, we used highly invasive fibrosarcoma cells and quantified tumor cell migration dynamics and TC-EC interactions under control and perturbed (with tumor necrosis factor alpha) barrier conditions. We found that endothelial barrier impairment was associated with a higher number and faster dynamics of TC-EC interactions, in agreement with our carcinoma intravasation results. Taken together our results provide evidence that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.
Collapse
|
31
|
Hodges K, Kennedy L, Meng F, Alpini G, Francis H. Mast cells, disease and gastrointestinal cancer: A comprehensive review of recent findings. TRANSLATIONAL GASTROINTESTINAL CANCER 2012; 1:138-150. [PMID: 22943044 PMCID: PMC3431027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Paul Ehrlich, a German scientist, discovered what is known as the mast cell in the late 1800's, which has proven to be an important player in the immune system of vertebrates. Mast cells are ubiquitous throughout the tissues of the human body and play numerous roles, both beneficial and destructive. We know they are important in our army of immunity warrior cells, which defend us against viruses, bacteria and parasitic invaders. They are also very well known for the havoc they wreak, causing uncomfortable symptoms due to their release of histamine and other mediators which cause the all too familiar itching, sneezing, urticaria and rhinorrhea of allergic responses. Mast cell activities are diverse and include painful inflammatory reactions in autoimmune conditions such as rheumatoid arthritis. In the gastrointestinal system, mast cells are implicated in diverse actions such as increased gastric acid secretion, polyp formation and uncomfortable conditions such as Irritable Bowel Syndrome. The role of immunology and mast cells in these areas is intriguing but less well understood than their role in allergic responses. Because mast cells have been implicated in both physiologic as well as pathogenic processes, they have been the subjects of avid study. Review of the current literature on mast cell biology reveals that there are many studies of their presence within the tumor microenvironment and evidence, which supports mast cell influence on tumor angiogenesis, tumor invasion, and immune suppression. The studies reviewed in this article concentrate largely on mast cells in human GI malignancies. This review also provides background information regarding mast cells, such as their origination, their location within the body, how they are activated and how they function as mediators.
Collapse
|
32
|
Bonapace L, Wyckoff J, Oertner T, Van Rheenen J, Junt T, Bentires-Alj M. If you don't look, you won't see: intravital multiphoton imaging of primary and metastatic breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:125-9. [PMID: 22581273 DOI: 10.1007/s10911-012-9250-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022] Open
Abstract
A fundamental hallmark of cancer is progression to metastasis and the growth of breast cancer metastases in lung, bone, liver and/or brain causes fatal complications. Unfortunately, the cellular and biochemical mechanisms of the metastatic process remain ill-defined. Recent application of intravital multiphoton microscopy (MP-IVM) to image fluorescently labeled cells in mouse models of cancer has allowed dynamic observation of this multi-step process at the cellular and subcellular levels. In this article, we discuss the use of MP-IVM in studies of breast cancer metastasis, as well as surgical techniques for exposing tumors prior to imaging. We also describe a versatile multiphoton microscope for imaging tumor-stroma interactions.
Collapse
Affiliation(s)
- Laura Bonapace
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
The dynamics of developmental and tumor angiogenesis-a comparison. Cancers (Basel) 2012; 4:400-19. [PMID: 24213317 PMCID: PMC3712694 DOI: 10.3390/cancers4020400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/12/2022] Open
Abstract
The blood vasculature in cancers has been the subject of intense interest during the past four decades. Since the original ideas of targeting angiogenesis to treat cancer were proposed in the 1970s, it has become evident that more knowledge about the role of vessels in tumor biology is needed to fully take advantage of such strategies. The vasculature serves the surrounding tissue in a multitude of ways that all must be taken into consideration in therapeutic manipulation. Aspects of delivery of conventional cytostatic drugs, induction of hypoxia affecting treatment by radiotherapy, changes in tumor cell metabolism, vascular leak and trafficking of leukocytes are affected by interventions on vascular function. Many tumors constitute a highly interchangeable milieu undergoing proliferation, apoptosis, and necrosis with abundance of growth factors, enzymes and metabolites. These aspects are reflected by the abnormal tortuous, leaky vascular bed with detached mural cells (pericytes). The vascular bed of tumors is known to be unstable and undergoing remodeling, but it is not until recently that this has been dynamically demonstrated at high resolution, facilitated by technical advances in intravital microscopy. In this review we discuss developmental genetic loss-of-function experiments in the light of tumor angiogenesis. We find this a valid comparison since many studies phenocopy the vasculature in development and tumors.
Collapse
|
34
|
Perry SW, Burke RM, Brown EB. Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 2012; 40:277-91. [PMID: 22258888 DOI: 10.1007/s10439-012-0512-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022]
Abstract
Application of two-photon microscopy (TPM) to translational and clinical cancer research has burgeoned over the last several years, as several avenues of pre-clinical research have come to fruition. In this review, we focus on two forms of TPM-two-photon excitation fluorescence microscopy, and second harmonic generation microscopy-as they have been used for investigating cancer pathology in ex vivo and in vivo human tissue. We begin with discussion of two-photon theory and instrumentation particularly as applicable to cancer research, followed by an overview of some of the relevant cancer research literature in areas that include two-photon imaging of human tissue biopsies, human skin in vivo, and the rapidly developing technology of two-photon microendoscopy. We believe these and other evolving two-photon methodologies will continue to help translate cancer research from the bench to the bedside, and ultimately bring minimally invasive methods for cancer diagnosis and treatment to therapeutic reality.
Collapse
Affiliation(s)
- Seth W Perry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
35
|
Hulit J, Kedrin D, Gligorijevic B, Entenberg D, Wyckoff J, Condeelis J, Segall JE. The use of fluorescent proteins for intravital imaging of cancer cell invasion. Methods Mol Biol 2012; 872:15-30. [PMID: 22700401 PMCID: PMC4000026 DOI: 10.1007/978-1-61779-797-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The analysis of cancer cell behavior in the primary tumor in living animals provides an opportunity to explore the process of invasion and intravasation in the complex microenvironment that is present in vivo. In this chapter, we describe the methods that we have developed for performing intravital imaging of mammary tumors. We provide procedures for generating tumors through injection of tumor cell lines, and multiphoton imaging using a skin-flap tumor dissection and a mammary imaging window.
Collapse
Affiliation(s)
- James Hulit
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. Development 2011; 138:4569-83. [PMID: 21965610 DOI: 10.1242/dev.062323] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The correct development of blood vessels is crucial for all aspects of tissue growth and physiology in vertebrates. The formation of an elaborate hierarchically branched network of endothelial tubes, through either angiogenesis or vasculogenesis, relies on a series of coordinated morphogenic events, but how individual endothelial cells adopt specific phenotypes and how they coordinate their behaviour during vascular patterning is unclear. Recent progress in our understanding of blood vessel formation has been driven by advanced imaging techniques and detailed analyses that have used a combination of powerful in vitro, in vivo and in silico model systems. Here, we summarise these models and discuss their advantages and disadvantages. We then review the different stages of blood vessel development, highlighting the cellular mechanisms and molecular players involved at each step and focusing on cell specification and coordination within the network.
Collapse
Affiliation(s)
- Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | | |
Collapse
|
37
|
Beerling E, Ritsma L, Vrisekoop N, Derksen PWB, van Rheenen J. Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 2011; 124:299-310. [PMID: 21242309 DOI: 10.1242/jcs.072728] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis, the process by which cells spread from the primary tumor to a distant site to form secondary tumors, is still not fully understood. Although histological techniques have provided important information, they give only a static image and thus compromise interpretation of this dynamic process. New advances in intravital microscopy (IVM), such as two-photon microscopy, imaging chambers, and multicolor and fluorescent resonance energy transfer imaging, have recently been used to visualize the behavior of single metastasizing cells at subcellular resolution over several days, yielding new and unexpected insights into this process. For example, IVM studies showed that tumor cells can switch between multiple invasion strategies in response to various densities of extracellular matrix. Moreover, other IVM studies showed that tumor cell migration and blood entry take place not only at the invasive front, but also within the tumor mass at tumor-associated vessels that lack an intact basement membrane. In this Commentary, we will give an overview of the recent advances in high-resolution IVM techniques and discuss some of the latest insights in the metastasis field obtained with IVM.
Collapse
Affiliation(s)
- Evelyne Beerling
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584CT, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Thrasivoulou C, Virich G, Krenacs T, Korom I, Becker DL. Optical delineation of human malignant melanoma using second harmonic imaging of collagen. BIOMEDICAL OPTICS EXPRESS 2011; 2:1282-95. [PMID: 21559140 PMCID: PMC3087585 DOI: 10.1364/boe.2.001282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/06/2011] [Accepted: 04/19/2011] [Indexed: 05/23/2023]
Abstract
Skin cancer incidence has increased exponentially over the last three decades. In 2008 skin cancer caused 2280 deaths in the UK, with 2067 due to malignant melanoma. Early diagnosis can prevent mortality, however, conventional treatment requires multiple procedures and increasing treatment times. Second harmonic generation (SHG) imaging could offer diagnosis and demarcation of melanoma borders non-invasively at presentation thereby short-cutting the excision biopsy stage. To test the efficacy and accuracy of SHG imaging of collagen in skin and to delineate the borders of skin cancers, unstained human melanoma biopsy sections were imaged using SHG microscopy. Comparisons with sister sections, stained with H&E or Melan-A were made for correlation of invasion borders. Fresh ex vivo normal human and rat skin was imaged through its whole thickness using SHG to demonstrate this technique is transferable to in vivo tissues. SHG imaging demonstrated detailed collagen distribution in normal skin, with total absence of SHG signal (fibrillar collagen) within the melanoma-invaded tissue. The presence or absence of signal changes dramatically at the borders of the melanoma, accurately demarcating the edges that strongly correlated with H&E and Melan-A defined borders (p<0.002). SHG imaging of ex vivo human and rat skin demonstrated collagen architecture could be imaged through the full thickness of the skin. We propose that SHG imaging could be used for diagnosis and accurate demarcation of melanoma borders on presentation and therefore potentially reduce mortality rates.
Collapse
Affiliation(s)
- C. Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - G. Virich
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - T. Krenacs
- First Department of Pathology & Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - I. Korom
- Department of Dermatology and Allergology, University of Szeged, Hungary
| | - D. L. Becker
- Research Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
39
|
Affiliation(s)
- Yoon-Young Jang
- From the Sidney Kimmel Comprehensive Cancer Center; Stem Cell Program, Institute for Cell Engineering; and Department of Medicine, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhaohui Ye
- From the Sidney Kimmel Comprehensive Cancer Center; Stem Cell Program, Institute for Cell Engineering; and Department of Medicine, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Linzhao Cheng
- From the Sidney Kimmel Comprehensive Cancer Center; Stem Cell Program, Institute for Cell Engineering; and Department of Medicine, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Zhou ZN, Boimel PJ, Segall JE. Tumor-stroma: In vivo assays and intravital imaging to study cell migration and metastasis. DRUG DISCOVERY TODAY. DISEASE MODELS 2011; 8:95-112. [PMID: 22081771 PMCID: PMC3212048 DOI: 10.1016/j.ddmod.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of metastatic disease is often correlated with poor patient outcome in a variety of different cancers. The metastatic cascade is a complex, multistep process that involves the growth of the primary tumor and angiogenesis, invasion into the local environment, intravasation into the vasculature, tumor cell survival in the circulation, extravasation from the vasculature and sustained growth at secondary organ sites to form metastases. Although in vitro assays of single cell types can provide information regarding cell autonomous mechanisms contributing to metastasis, the in vivo microenvironment entails a network of interactions between cells which is also important. Insight into the mechanisms underlying tumor cell migration, invasion and metastasis in vivo has been aided by development of multiphoton microscopy and in vivo assays, which we will review here.
Collapse
Affiliation(s)
| | | | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology
- Gruss Lipper Center for Biophotonics
| |
Collapse
|
41
|
Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 2010; 21:47-56. [PMID: 20870407 DOI: 10.1016/j.tcb.2010.08.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/21/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Cancer cells exist in a constantly evolving tissue microenvironment of diverse cell types within a proteinaceous extracellular matrix. As tumors evolve, the physical forces within this complex microenvironment change, with pleiotropic effects on both cell- and tissue-level behaviors. Recent work suggests that these biomechanical factors direct tissue development and modulate tissue homeostasis, and, when altered, crucially influence tumor evolution. In this review, we discuss the biomechanical regulation of cell and tissue homeostasis from the molecular, cellular and tissue levels, including how modifications of this physical dialogue could contribute to cancer etiology. Because of the broad impact of biomechanical factors on cell and tissue functions, an understanding of tumor evolution from the biomechanical perspective should improve risk assessment, clinical diagnosis and the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
42
|
The 'chemoinvasion' assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr Opin Cell Biol 2010; 22:677-89. [PMID: 20822888 DOI: 10.1016/j.ceb.2010.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/24/2022]
Abstract
Invasive and metastatic cells must cross basement membranes (BMs) in order to disseminate to distant sites. The 'chemoinvasion assay' using a reconstituted basement membrane, matrigel, in Boyden blind-well chambers was developed 25 years ago as a tool for invasion and metastasis research. Since then, it was adapted for investigation of how different cells types engage with and penetrate basement membrane, including research in angiogenesis, invasive cell migration, protease functions, and preclinical development of anti-invasive and anti-angiogenic agents. As novel mechanisms of metastasis and angiogenesis come to light and old paradigms are challenged, we examine how the assay can still provide innovative insights. We review established applications and variants of the matrigel invasion assay, highlight key findings derived from it and discuss future developments, including roles for accessory and cancer stem cells.
Collapse
|