1
|
Lin SK, Zhang CM, Men B, Hua Z, Ma SC, Zhang F. Bioinformatics-based screening of hub genes for prostate cancer bone metastasis and analysis of immune infiltration. Medicine (Baltimore) 2024; 103:e40570. [PMID: 39560511 PMCID: PMC11575990 DOI: 10.1097/md.0000000000040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Bioinformatics analysis of genes and immune cells that influence prostate cancer (PCa) bone metastases. Using the gene expression omnibus database, we analyzed a PCa bone metastasis dataset. Differentially expressed genes were identified through the utilization of GEO2R and weighted gene co-expression network analysis. Gene set enrichment analysis software was used to identify important pathways. In addition to creating a network of protein-protein interactions, functional enrichment analyses were conducted using Kyoto encyclopedia of genes databases. To screen hub genes, Cytoscape software was used with the CytoHubba plug-in and performed mRNA and survival curve validation analysis of key genes using the cBioPortal website and GEPIA2 database. Immune infiltration analysis was performed using the CIBERSORTx website, and finally, immune cell correlation analysis was performed for key genes according to the TIMER database. A total of 197 PCa bone metastasis risk genes were screened, "G2M_CHECKPOINT" was significantly enriched in PCa bone metastasis samples according to genomic enrichment analysis. Based on the protein interactions network, we have identified 10 alternative hub genes, and 3 hub genes, CCNA2, NUSAP1, and PBK, were validated by the cBioPortal website and the GEPIA2 database. T cells regulatory and macrophages M0 may influence PCa to metastasize to bones, according to CIBERSORTx immune cell infiltration analysis. TIMER database analysis found different degrees of correlation between 3 key genes and major immune cells. PCa bone metastasis has been associated with CCNA2, NUSAP1, and PBK. T cells regulatory and macrophages (M0) may also be involved.
Collapse
Affiliation(s)
- Shu-Kun Lin
- The Second Clinical Medical College of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | | | | | | | | | | |
Collapse
|
2
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Bacci L, Indio V, Rambaldelli G, Bugarin C, Magliocchetti F, Del Rio A, Pollutri D, Melchionda F, Pession A, Lanciotti M, Dufour C, Gaipa G, Montanaro L, Penzo M. Mutational analysis of ribosomal proteins in a cohort of pediatric patients with T-cell acute lymphoblastic leukemia reveals Q123R, a novel mutation in RPL10. Front Genet 2022; 13:1058468. [PMID: 36482893 PMCID: PMC9723238 DOI: 10.3389/fgene.2022.1058468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 07/18/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a subtype of ALL involving the malignant expansion of T-cell progenitors. It is driven by a number of different possible genetic lesions, including mutations in genes encoding for ribosomal proteins (RPs). These are structural constituents of ribosomes, ubiquitous effectors of protein synthesis. Albeit the R98S mutation in RPL10, recurring with a higher frequency among RP mutations, has been extensively studied, less is known about the contribution of mutations occurring in other RPs. Alterations affecting translational machinery may not be well tolerated by cells, and there may be a selective pressure that determines the emergence of mutations with a compensatory effect. To explore this hypothesis, we sequenced the exomes of a cohort of 37 pediatric patients affected by T-ALL, and analyzed them to explore the co-occurrence of mutations in genes involved in ribosome biogenesis (including RPs) and translational control, and in known T-ALL driver genes. We found that some of the mutations in these sub-classes of genes tend to cluster together in different patients, indicating that their co-occurrence may confer some kind of advantage to leukemia cells. In addition, our sequencing highlighted the presence of a novel mutation in RPL10, namely the Q123R, which we found associated with a defect in protein synthesis. Our findings indicate that genetic alterations involving ribosome biogenesis and translational control should be carefully considered in the context of precision medicine in T-ALL.
Collapse
Affiliation(s)
- Lorenza Bacci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Rambaldelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cristina Bugarin
- Tettamanti Research Center, M. Tettamanti Foundation, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Franco Magliocchetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna, Italy
- Innovamol Consulting Srl, Modena, Italy
| | - Daniela Pollutri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS AOU S.Orsola di Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Carlo Dufour
- Hematology Unit—IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Gaipa
- Tettamanti Research Center, M. Tettamanti Foundation, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Departmental Program of Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Ramakrishnan NK, Betts HM, Sephton SM, Zhou X, Williamson DJ, Sawiak S, Aigbirhio FI. Automated radiosynthesis and preclinical in vivo evaluation of [ 18F]Fluoroethylpuromycin as a potential radiotracer for imaging protein synthesis with PET. Nucl Med Biol 2022; 114-115:71-77. [PMID: 36242984 DOI: 10.1016/j.nucmedbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE From a series of fluorinated analogues of puromycin, we recently identified [18F]fluoroethylpuromycin (FEPURO) as a potential candidate for imaging the rate of protein synthesis in vivo. Herein, we describe the automation of the radiosynthesis, and evaluation of [18F]FEPURO in vivo. PROCEDURES [18F]FEPURO was radiosynthesised in an automated module. PET imaging was conducted in Wistar rats under control and blocking conditions using the protein synthesis inhibitor cycloheximide. Biodistribution and metabolite studies at 30, 60 and 120 min were conducted in healthy rats. RESULTS Automation of the radiosynthesis resulted in reduction of the synthesis time by half from the manual method. A steady increase in the SUV was observed in the time-activity curves for the whole brain as expected for a protein synthesis marker. However, rapid in vivo metabolism of [18F]FEPURO within 15 min in plasma as well as the brain (4 % of parent 30 min p.i.) indicated formation of the [18F]FET radio-metabolite in >90 % thus suggesting that observed increase in the brain uptake was due to the radiometabolite. CONCLUSIONS [18F]FEPURO is not a suitable PET radiotracer for imaging protein synthesis rates in brain in vivo due to its rapid metabolism. Further structural modifications to prevent in vivo metabolism are underway.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| | - Helen M Betts
- Nottingham University Hospitals NHS Trust, Department of Nuclear Medicine, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Selena Milicevic Sephton
- Molecular Imaging Chemistry Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK.
| | - Xiaoyun Zhou
- Molecular Imaging Chemistry Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| | - David J Williamson
- Molecular Imaging Chemistry Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| | - Stephen Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 65, Cambridge CB2 0QQ, UK
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Robinson Way, Cambridge CB2 0SZ, UK
| |
Collapse
|
5
|
Dreggors-Walker RE, Cohen LN, Khoshnevis S, Marchand V, Motorin Y, Ghalei H. Studies of mutations of assembly factor Hit 1 in budding yeast suggest translation defects as the molecular basis for PEHO syndrome. J Biol Chem 2022; 298:102261. [PMID: 35843310 PMCID: PMC9418376 DOI: 10.1016/j.jbc.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2′-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.
Collapse
Affiliation(s)
- R Elizabeth Dreggors-Walker
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322, USA
| | - Lauren N Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, CNRS-INSERM, Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- Université de Lorraine, UMR7365 IMoPA, CNRS- Biopôle, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
6
|
Li J, Liu L, Chen Y, Wu M, Lin X, Shen Z, Cheng Y, Chen X, Weygant N, Wu X, Wei L, Sferra TJ, Han Y, Chen X, Shen A, Shen A, Peng J. Ribosome assembly factor PNO1 is associated with progression and promotes tumorigenesis in triple‑negative breast cancer. Oncol Rep 2022; 47:108. [PMID: 35445733 PMCID: PMC9073417 DOI: 10.3892/or.2022.8319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the expression of ribosome assembly factor partner of NOB1 homolog (PNO1) and its association with the progression of breast cancer (BC) in patients, as well as its biological function and underlying mechanism of action in BC cells. Bioinformatics and immunohistochemical analyses revealed that PNO1 expression was significantly increased in BC tissues and its high mRNA expression was associated with shorter overall survival (OS) and relapse-free survival (RFS) of patients with BC, as well as multiple clinical characteristics (including advanced stage of NPI and SBR, etc.) of patients with BC. Biological functional studies revealed that transduction of lentivirus encoding sh-PNO1 significantly downregulated PNO1 expression, reduced cell confluency and the number of BC cells in vitro and inhibited tumor growth in vivo. Moreover, PNO1 knockdown decreased the cell viability and arrested cell cycle progression at the G2/M phase, as well as downregulated cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1) protein expression in BC cells. Correlation analysis demonstrated that PNO1 expression was positively correlated with both CDK1 and CCNB1 expression in BC samples. Collectively, PNO1 was upregulated in BC and associated with BC patient survival, and PNO1 knockdown suppressed tumor growth in vitro and in vivo. In addition, positive regulation of CCNB1 and CDK1 may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xi Chen
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
7
|
Zhang Y, Hua X, Shi H, Zhang L, Xiao H, Liang C. Systematic analyses of the role of prognostic and immunological EIF3A, a reader protein, in clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:680. [PMID: 34923969 PMCID: PMC8684683 DOI: 10.1186/s12935-021-02364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Eukaryotic initiation factor 3a (EIF3A), a “reader” protein for RNA methylation, has been found to be involved in promoting tumorigenesis in a variety of cancers. The impact of EIF3A in clear cell renal cell carcinoma (ccRCC) has yet to be reported. This study aimed to identify the prognostic value of EIF3A in ccRCC and investigate the relationship between EIF3A expression and immune infiltration. Methods We collected 29 m6A-related mRNA data and clinicopathological parameters from The Cancer Genome Atlas (TCGA) database. Logistic regression analyses were used to analyse the correlation between EIF3A expression and clinical characteristics. Immunohistochemistry (IHC) was applied to examine EIF3A levels in normal and ccRCC tissues. Univariate and multivariate analyses were conducted to recognize independent factors associated with overall survival (OS) and disease-free survival (DFS). The nomogram aimed to predict the 1-, 3- and 5-year survival probabilities. Gene set enrichment analysis (GSEA) was carried out to determine the potential functions and related signalling pathways of EIF3A expression. To investigate EIF3A of coexpressed genes, we used LinkedOmics, and the results were subjected to enrichment analysis. Simultaneously, LinkedOmics and STRING datasets were used to identify EIF3A coexpressed genes that were visualized via Cytoscape. Finally, we evaluated whether EIF3A expression correlated with the infiltration of immune cells and the expression of marker genes in ccRCC by Tumour Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA). Result EIF3A expression was significantly different between ccRCC tissues and normal tissues. EIF3A expression was correlated with poor prognostic clinicopathological factors, and K–M analyses revealed that low EIF3A expression was correlated with a poor prognosis. The results of univariate and multivariate analyses proved that EIF3A was a prognostic factor in ccRCC patients. GSEA results indicated that EIF3A high expression was enriched in the renal cell carcinoma pathway. EIF3A expression was significantly positively correlated with B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, and dendritic cells. Furthermore, EIF3A expression was associated with most marker genes of immune cells. Conclusions EIF3A could serve as a potential biomarker for prognostic and diagnostic stratification of ccRCC and is related to immune cell infiltrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02364-2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoliang Hua
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Haoqiang Shi
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,Institute of Urology, Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China. .,Institute of Urology, Anhui Medical University, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China. .,Institute of Urology, Anhui Medical University, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
A forward genetic screen identifies modifiers of rocaglate responsiveness. Sci Rep 2021; 11:18516. [PMID: 34531456 PMCID: PMC8445955 DOI: 10.1038/s41598-021-97765-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Rocaglates are a class of eukaryotic translation initiation inhibitors that are being explored as chemotherapeutic agents. They function by targeting eukaryotic initiation factor (eIF) 4A, an RNA helicase critical for recruitment of the 40S ribosome (and associated factors) to mRNA templates. Rocaglates perturb eIF4A activity by imparting a gain-of-function activity to eIF4A and mediating clamping to RNA. To appreciate how rocaglates could best be enabled in the clinic, an understanding of resistance mechanisms is important, as this could inform on strategies to bypass such events as well as identify responsive tumor types. Here, we report on the results of a positive selection, ORFeome screen aimed at identifying cDNAs capable of conferring resistance to rocaglates. Two of the most potent modifiers of rocaglate response identified were the transcription factors FOXP3 and NR1I3, both of which have been implicated in ABCB1 regulation-the gene encoding P-glycoprotein (Pgp). Pgp has previously been implicated in conferring resistance to silvestrol, a naturally occurring rocaglate, and we show here that this extends to additional synthetic rocaglate derivatives. In addition, FOXP3 and NR1I3 impart a multi-drug resistant phenotype that is reversed upon inhibition of Pgp, suggesting a potential therapeutic combination strategy.
Collapse
|
9
|
Carotti S, Zingariello M, Francesconi M, D'Andrea L, Latasa MU, Colyn L, Fernandez-Barrena MG, Flammia RS, Falchi M, Righi D, Pedini G, Pantano F, Bagni C, Perrone G, Rana RA, Avila MA, Morini S, Zalfa F. Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge. Oncogene 2021; 40:4033-4049. [PMID: 34017076 PMCID: PMC8195741 DOI: 10.1038/s41388-021-01824-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy of the intrahepatic biliary tract with a very poor prognosis. Although some clinicopathological parameters can be prognostic factors for iCCA, the molecular prognostic markers and potential mechanisms of iCCA have not been well investigated. Here, we report that the Fragile X mental retardation protein (FMRP), a RNA binding protein functionally absent in patients with the Fragile X syndrome (FXS) and also involved in several types of cancers, is overexpressed in human iCCA and its expression is significantly increased in iCCA metastatic tissues. The silencing of FMRP in metastatic iCCA cell lines affects cell migration and invasion, suggesting a role of FMRP in iCCA progression. Moreover, we show evidence that FMRP is localized at the invasive front of human iCCA neoplastic nests and in pseudopodia and invadopodia protrusions of migrating and invading iCCA cancer cells. Here FMRP binds several mRNAs encoding key proteins involved in the formation and/or function of these protrusions. In particular, we find that FMRP binds to and regulates the expression of Cortactin, a critical regulator of invadopodia formation. Altogether, our findings suggest that FMRP could promote cell invasiveness modulating membrane plasticity and invadopodia formation at the leading edges of invading iCCA cells.
Collapse
Affiliation(s)
- Simone Carotti
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy
- Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Maria Zingariello
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Maria Francesconi
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Laura D'Andrea
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - M Ujue Latasa
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra and IdiSNA, Pamplona, Spain
| | - Leticia Colyn
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra and IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra and IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Rocco Simone Flammia
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Righi
- Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University, Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Perrone
- Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy
- Research Unit of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Rosa Alba Rana
- Medicine and Aging Science Department, University G. D'Annunzio, Chieti-Pescara, Italy
| | - Matias A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra and IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sergio Morini
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy.
| | - Francesca Zalfa
- Research Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, Campus Bio-Medico University, Rome, Italy.
- Predictive Molecular Diagnostic Unit, Department of Pathology, Campus Bio-Medico University Hospital, Rome, Italy.
| |
Collapse
|
10
|
Heat Shock Factor 1 as a Prognostic and Diagnostic Biomarker of Gastric Cancer. Biomedicines 2021; 9:biomedicines9060586. [PMID: 34064083 PMCID: PMC8224319 DOI: 10.3390/biomedicines9060586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Identification of effective prognostic and diagnostic biomarkers is needed to improve the diagnosis and treatment of gastric cancer. Early detection of gastric cancer through diagnostic markers can help establish effective treatments. Heat shock factor 1 (HSF1), presented in this review, is known to be regulated by a broad range of transcription factors, including those characterized in various malignant tumors, including gastric cancer. Particularly, it has been demonstrated that HSF1 regulation in various cancers is correlated with different processes, such as cell death, proliferation, and metastasis. Due to the effect of HSF1 on the initiation, development, and progression of various tumors, it is considered as an important gene for understanding and treating tumors. Additionally, HSF1 exhibits high expression in various cancers, and its high expression adversely affects the prognosis of various cancer patients, thereby suggesting that it can be used as a novel, predictive, prognostic, and diagnostic biomarker for gastric cancer. In this review, we discuss the literature accumulated in recent years, which suggests that there is a correlation between the expression of HSF1 and prognosis of gastric cancer patients through public data. Consequently, this evidence also indicates that HSF1 can be established as a powerful biomarker for the prognosis and diagnosis of gastric cancer.
Collapse
|
11
|
Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102743. [PMID: 32987735 PMCID: PMC7598606 DOI: 10.3390/cancers12102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.
Collapse
|
12
|
Walker MJ, Shortridge MD, Albin DD, Cominsky LY, Varani G. Structure of the RNA Specialized Translation Initiation Element that Recruits eIF3 to the 5'-UTR of c-Jun. J Mol Biol 2020; 432:1841-1855. [PMID: 31953146 PMCID: PMC7225069 DOI: 10.1016/j.jmb.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Specialized translation initiation is a novel form of regulation of protein synthesis, whereby RNA structures within the 5'-UTR regulate translation rates of specific mRNAs. Similar to internal ribosome entry sites (IRESs), specialized translation initiation requires the recruitment of eukaryotic initiation factor 3 (eIF3), but also requires cap recognition by eIF3d, a new 5'-m7GTP recognizing protein. How these RNA structures mediate eIF3 recruitment to affect translation of specific mRNAs remains unclear. Here, we report the nuclear magnetic resonance (NMR) structure of a stem-loop within the c-JUN 5' UTR recognized by eIF3 and essential for specialized translation initiation of this well-known oncogene. The structure exhibits similarity to eIF3 recognizing motifs found in hepatitis C virus (HCV)-like IRESs, suggesting mechanistic similarities. This work establishes the RNA structural features involved in c-JUN specialized translation initiation and provides a basis to search for small molecule inhibitors of aberrant expression of the proto-oncogenic c-JUN.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA, USA 98195
| | | | - Dreycey D Albin
- Department of Chemistry, University of Washington, Seattle, WA, USA 98195
| | - Lauren Y Cominsky
- Department of Chemistry, University of Washington, Seattle, WA, USA 98195
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, USA 98195.
| |
Collapse
|
13
|
Jiang JN, Wu YY, Fang XD, Ji FJ. EIF4E regulates STEAP1 expression in peritoneal metastasis. J Cancer 2020; 11:990-996. [PMID: 31949502 PMCID: PMC6959031 DOI: 10.7150/jca.29105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the most prominent form of malignancy in China, and the high mortality associated with it is mostly due to peritoneal metastasis. We have previously elucidated that the RNA-binding protein poly r(C) binding protein 1 (PCBP1) and miR-3978 function as repressors of peritoneal metastasis, partially by downregulation of six-transmembrane epithelial antigen of the prostate 1 (STEAP1). We now show that STEAP1 is regulated at the level of cap-dependent translation initiation by phosphorylated eIF4E. Chemically inhibiting phosphorylation of eIF4E or genetic ablation of phosphorylated eIF4E inhibit translational upregulation of STEAP1 in the peritoneal metastasis mimicking cell line MKN45 in comparison to the normal mesothelial cell line HMrSV5. Thus phosphorylation of eIF4E is required for peritoneal metastasis of gastric cancer via translational control of STEAP1. Chemical inhibitors targeting phosphorylation of eIF4E or its interaction with the translation initiation complex thus might prove effective in treating patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Jun-Nan Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuan-Yu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xue-Dong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fu-Jian Ji
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
14
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
15
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
16
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, Lin J, Shen Z, Wu X, Wu M, Li Q, Qiu L, Yu N, Sferra TJ, Peng J. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res 2019; 79:2257-2270. [PMID: 30862720 DOI: 10.1158/0008-5472.can-18-3238] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein PNO1 is critical for ribosome biogenesis, but its potential role in cancer remains unknown. In this study, online data mining, cDNA, and tissue microarrays indicated that PNO1 expression was higher in colorectal cancer tissue than in noncancerous tissue, and its overexpression was associated with worse patient survival. Gain-of-function and loss-of-function studies demonstrated that PNO1 knockdown suppressed growth of colorectal cancer cells in vitro and in vivo, while PNO1 overexpression promoted colorectal cancer cell proliferation in vitro. In colorectal cancer cells expressing wild-type p53, PNO1 knockdown enhanced expression of p53 and its downstream gene p21, and reduced cell viability; these effects were prevented by p53 knockout and attenuated by the p53 inhibitor PFT-α. Moreover, PNO1 knockdown in HCT116 cells decreased levels of 18S rRNA, of 40S and 60S ribosomal subunits, and of the 80S ribosome. It also reduced global protein synthesis, increasing nuclear stress and inhibiting MDM2-mediated ubiquitination and p53 degradation. Overexpressing EBF1 suppressed PNO1 promoter activity and decreased PNO1 mRNA and protein, inhibiting cell proliferation and inducing cell apoptosis through the p53/p21 pathway. In colorectal cancer tissues, the expression of EBF1 correlated inversely with PNO1. Data mining of online breast and lung cancer databases showed increased PNO1 expression and association with poor patient survival; PNO1 knockdown reduced cell viability of cultured breast and lung cancer cells. Taken together, these findings indicate that PNO1 is overexpressed in colorectal cancer and correlates with poor patient survival, and that PNO1 exerts oncogenic effects, at least, in part, by altering ribosome biogenesis. SIGNIFICANCE: This study identifies the ribosome assembly factor PNO1 as a potential oncogene involved in tumor growth and progression of colorectal cancer.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liman Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China. .,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
17
|
Gao W, Hu Y, Zhang Z, Du G, Yin L, Yin Z. Knockdown of EIF3C promotes human U-2OS cells apoptosis through increased CASP3/7 and Chk1/2 by upregulating SAPK/JNK. Onco Targets Ther 2019; 12:1225-1235. [PMID: 30863090 PMCID: PMC6389005 DOI: 10.2147/ott.s187209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background As a component of the EIF3 complex, EIF3C is essential for several steps in protein synthesis initiation. Recently, it has been addressed that EIF3C is overexpressed in several human cancers and plays a pivotal role in cell proliferation and tumorigenesis. Materials and methods Immunohistochemistry, quantitative real-time PCR (qPCR), and Western blotting assays were employed to determine the expression of EIF3C in osteosarcoma (OsC) tissues obtained from 60 patients. The levels of EIF3C mRNA and protein were assessed by qPCR and Western blotting, respectively. The effect of EIF3C knockdown on OsC cell proliferation was detected by MTT and colony formation assays, respectively. Cell apoptosis induced by EIF3C silencing was analyzed by flow cytometric analysis. PathScan stress and apoptosis signaling antibody array kit was used to analyze the potential effects of EIF3C knockdown on OsC cells. Results The levels of EIF3C were high in OsC tissues and cell lines. In addition, EIF3C knockdown by lentivirus-mediated shRNA targeting EIF3C significantly suppressed cell proliferation and colony formation and induced apoptosis in U-2OS cells. Moreover, EIF3C knockdown led to the upregulated expression of CASP3/7, Chk1/2, and SAPK/JNK, indicating that the downregulated expression of EIF3C might be associated with pro-apoptosis of U-2OS cells. Conclusion EIF3C may be a promising target for gene therapy of human OsC. However, the precise mechanisms behind the effect of EIF3C on OsC tumorigenesis require further analysis.
Collapse
Affiliation(s)
- Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,
| | - Zhengqin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gongwen Du
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,
| | - Li Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,
| |
Collapse
|
18
|
Uttam S, Wong C, Price TJ, Khoutorsky A. eIF4E-Dependent Translational Control: A Central Mechanism for Regulation of Pain Plasticity. Front Genet 2018; 9:470. [PMID: 30459806 PMCID: PMC6232926 DOI: 10.3389/fgene.2018.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
Translational control of gene expression has emerged as a key mechanism in regulating different forms of long-lasting neuronal plasticity. Maladaptive plastic reorganization of peripheral and spinal nociceptive circuits underlies many chronic pain states and relies on new gene expression. Accordingly, downregulation of mRNA translation in primary afferents and spinal dorsal horn neurons inhibits tissue injury-induced sensitization of nociceptive pathways, supporting a central role for translation dysregulation in the development of persistent pain. Translation is primarily regulated at the initiation stage via the coordinated activity of translation initiation factors. The mRNA cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E), is involved in the recruitment of the ribosome to the mRNA cap structure, playing a central role in the regulation of translation initiation. eIF4E integrates inputs from the mTOR and ERK signaling pathways, both of which are activated in numerous painful conditions to regulate the translation of a subset of mRNAs. Many of these mRNAs are involved in the control of cell growth, proliferation, and neuroplasticity. However, the full repertoire of eIF4E-dependent mRNAs in the nervous system and their translation regulatory mechanisms remain largely unknown. In this review, we summarize the current evidence for the role of eIF4E-dependent translational control in the sensitization of pain circuits and present pharmacological approaches to target these mechanisms. Understanding eIF4E-dependent translational control mechanisms and their roles in aberrant plasticity of nociceptive circuits might reveal novel therapeutic targets to treat persistent pain states.
Collapse
Affiliation(s)
- Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood 2018; 132:2375-2388. [PMID: 30181176 DOI: 10.1182/blood-2017-09-804401] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Genomic studies have recently identified RPS15 as a new driver gene in aggressive and chemorefractory cases of chronic lymphocytic leukemia (CLL). RPS15 encodes a ribosomal protein whose conserved C-terminal domain extends into the decoding center of the ribosome. We demonstrate that mutations in highly conserved residues of this domain affect protein stability, by increasing its ubiquitin-mediated degradation, and cell-proliferation rates. On the other hand, we show that mutated RPS15 can be loaded into the ribosomes, directly impacting on global protein synthesis and/or translational fidelity in a mutation-specific manner. Quantitative mass spectrometry analyses suggest that RPS15 variants may induce additional alterations in the translational machinery, as well as a metabolic shift at the proteome level in HEK293T and MEC-1 cells. These results indicate that CLL-related RPS15 mutations might act following patterns known for other ribosomal diseases, likely switching from a hypo- to a hyperproliferative phenotype driven by mutated ribosomes. In this scenario, loss of translational fidelity causing altered cell proteostasis can be proposed as a new molecular mechanism involved in CLL pathobiology.
Collapse
|
20
|
Chellini L, Monteleone V, Lombari M, Caldarola S, Loreni F. The oncoprotein Myc controls the phosphorylation of S6 kinase and AKT through protein phosphatase 2A. J Cell Biochem 2018; 119:9878-9887. [PMID: 30132971 DOI: 10.1002/jcb.27309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
This study focuses on the effects of Myc oncoprotein on the translational apparatus of the cell. Translation is an energy consuming process that involves a large number of accessory factors. The production of components of the protein synthesis machinery can be regulated at the transcriptional level by specific factors. It has been shown that the product of the oncogene Myc, a transcription factor frequently activated in cancer, can control translational activity through an increase in the transcription of the eIF4F complex components (eIF4E, eIF4AI, and eIF4GI). However, additional effects at the posttranslational level have also been described. For instance, it has been shown that Myc upregulation can induce mammalian target of rapamycin (mTOR)-dependent 4E-binding protein 1 (4E-BP1) hyperphosphorylation. We induced overexpression or inhibition of Myc through transfection of complementary DNA constructs or specific small interfering RNA in PC3 (prostate carcinoma) and HeLa (cervical carcinoma) cells. We have observed that overexpression of Myc causes an increase in 4E-BP1 phosphorylation and activation of protein synthesis. Unexpectedly, we detected a parallel decrease in the phosphorylation level of S6 kinase (in PC3 and HeLa) and AKT (in HeLa). We report evidence that these changes are mediated by an increase in protein phosphatase 2A activity.
Collapse
Affiliation(s)
- Lidia Chellini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Malinska Lombari
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizio Loreni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Mol Cell 2018; 71:364-374. [PMID: 30075139 PMCID: PMC6092941 DOI: 10.1016/j.molcel.2018.07.018] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Muto A, Sugihara Y, Shibakawa M, Oshima K, Matsuda T, Nadano D. The mRNA-binding protein Serbp1 as an auxiliary protein associated with mammalian cytoplasmic ribosomes. Cell Biochem Funct 2018; 36:312-322. [PMID: 30039520 DOI: 10.1002/cbf.3350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 01/27/2023]
Abstract
While transcription plays an obviously important role in gene expression, translation has recently been emerged as a key step that defines the composition and quality of the proteome in the cell of higher eukaryotes including mammals. Selective translation is supposed to be regulated by the structural heterogeneity of cytoplasmic ribosomes including differences in protein composition and chemical modifications. However, the current knowledge on the heterogeneity of mammalian ribosomes is limited. Here, we report mammalian Serbp1 as a ribosome-associated protein. The translated products of Serbp1 gene, including the longest isoform, were found to be localized in the nucleolus as well as in the cytoplasm. Subcellular fractionation indicated that most of cytoplasmic Serbp1 molecules were precipitated by ultracentrifugation. Proteomic analysis identified Serbp1 in the cytoplasmic ribosomes of the rodent testis. Polysome profiling suggested that Serbp1, as a component of the small 40S subunit, was included in translating ribosomes (polysomes). Cosedimentation of Serbp1 with the 40S subunit was observed after dissociation of the ribosomal subunits. Serbp1 was also included in the ribosomes of human cancer cells, which may lead to a mechanistic understanding of an emerging link between Serbp1 and tumour progression. SIGNIFICANCE OF THE STUDY In mammalian cells, the final protein output of their genetic program is determined not only by controlling transcription but also by regulating the posttranscriptional events. Although mRNA-binding proteins and the cytoplasmic ribosome have long been recognized as central players in the posttranscriptional regulation, their physical and functional interactions are still far from a complete understanding. Here, we describe the intracellular localization of Serbp1, an mRNA-binding protein, and the inclusion of this protein in actively translating ribosomes in normal and cancer cells. These findings shed a new light into molecular mechanisms underlying Serbp1 action in translational gene regulation and tumour progression.
Collapse
Affiliation(s)
- Akiko Muto
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihiko Sugihara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Minami Shibakawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenzi Oshima
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daita Nadano
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 2018; 20:789-799. [PMID: 29941930 DOI: 10.1038/s41556-018-0127-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.
Collapse
|
24
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
25
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|
26
|
Sagar V, Caldarola S, Aria V, Monteleone V, Fuoco C, Gargioli C, Cannata S, Loreni F. PIM1 destabilization activates a p53-dependent response to ribosomal stress in cancer cells. Oncotarget 2018; 7:23837-49. [PMID: 26993775 PMCID: PMC5029667 DOI: 10.18632/oncotarget.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/29/2016] [Indexed: 01/05/2023] Open
Abstract
Defects in ribosome biogenesis triggers a stress response (ribosomal stress) that can lead to growth arrest and apoptosis. Signaling pathways activated by ribosomal stress are specifically involved in the pathological mechanism of a group of disorders defined as ribosomopathies. However, more generally, the quality control of ribosome synthesis is part of the regulatory circuits that control cell metabolism. A number of studies identified tumor suppressor p53 as a central player in ribosomal stress. We have previously reported that the kinase PIM1 plays a role as a sensor for ribosome deficiency. In this report we address the relationship between PIM1 and p53 in cancer cell lines after depletion of a ribosomal protein. We identified a novel signaling pathway that includes the kinase AKT and the ubiquitin ligase MDM2. In fact, our results indicate that the lower level of PIM1, induced by ribosomal stress, causes inactivation of AKT, inhibition of MDM2 and a consequent p53 stabilization. Therefore, we propose that activation of p53 in response to ribosomal stress, is dependent on the pathway PIM1-AKT-MDM2. In addition, we report evidence that PIM1 level may be relevant to assess the sensitivity of cancer cells to chemotherapeutic drugs that induce ribosomal stress.
Collapse
Affiliation(s)
- Vinay Sagar
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Valentina Aria
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | | | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Fabrizio Loreni
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
27
|
Bustelo XR, Dosil M. Ribosome biogenesis and cancer: basic and translational challenges. Curr Opin Genet Dev 2018; 48:22-29. [DOI: 10.1016/j.gde.2017.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023]
|
28
|
EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget 2018; 9:13193-13205. [PMID: 29568350 PMCID: PMC5862571 DOI: 10.18632/oncotarget.24149] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting tumor angiogenesis is a common strategy against human hepatocellular carcinoma (HCC). However, identification of molecular targets as biomarker for elevating therapeutic efficacy is critical to prolong HCC patient survival. Here, we showed that EIF3C (eukaryotic translation initiation factor 3 subunit C) is upregulated during HCC tumor progression and associated with poor patient survival. Expression of EIF3C did not alter proliferation and expression of other tumor progressive genes such as HIF1A, TGFβ1 and VEGF, but reduced cell migration in HCC cells. Nevertheless, expression of EIF3C in HCC cells significantly increase secretion of extracellular exosomes confirmed by increased exosomes labelling by PKH26 fluorescent dye, vesicles in exosome size detected by electronic microscopy and nanoparticle tracking analysis, and expression of divergent exosome markers. The EIF3C-increased exosomes were oncogenic to potentiate tumor angiogenesis via tube formation of HUVEC cells and growth of vessels by plugs assays on nude mice. Subcutaneous inoculation of EIF3C-exosomes mixed with Huh7 HCC cells not only promoted growth of vessels but also increased expression of EIF3C in tumors. Conversely, treatment of exosome inhibitor GW4869 reversed aforementioned oncogenic assays. We identified EIF3C activated expression of S100A11 involved in EIF3C-exosome increased tube formation in angiogenesis. Simultaneous high expression of EIF3C and S100A11 in human HCC tumors for RNA level in TCGA and protein level by IHC are associated with poor survival of HCC patients. Collectively, our results demonstrated that EIF3C overexpression is a potential target of angiogenesis for treatment with exosome inhibitor or S100A11 reduction to suppress HCC angiogenesis and tumorigenesis.
Collapse
|
29
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
30
|
Hypoxia-mediated translational activation of ITGB3 in breast cancer cells enhances TGF-β signaling and malignant features in vitro and in vivo. Oncotarget 2017; 8:114856-114876. [PMID: 29383126 PMCID: PMC5777738 DOI: 10.18632/oncotarget.23145] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and there is an urgent need for new therapeutic drugs targeting aggressive and metastatic subtypes, such as hormone-refractory triple-negative breast cancer (TNBC). Control of protein synthesis is vital to cell growth and tumour progression and permits increased resistance to therapy and cellular stress. Hypoxic cancer cells attain invasive and metastatic properties and chemotherapy resistance, but the regulation and role of protein synthesis in this setting is poorly understood. We performed a polysomal RNA-Seq screen in non-malignant breast epithelial (MCF10A) and TNBC (MDA-MB-231) cells exposed to normoxic or hypoxic conditions and/or treated with an mTOR pathway inhibitor. Analysis of both the transcriptome and the translatome identified mRNA transcripts translationally activated or repressed by hypoxia in an mTOR-dependent or -independent manner. Integrin beta 3 (ITGB3) was translationally activated in hypoxia and its knockdown increased apoptosis and reduced survival and migration, particularly under hypoxic conditions. Moreover, ITGB3 was required for sustained TGF-β pathway activation and for the induction of Snail and associated epithelial-mesenchymal transition markers. ITGB3 downregulation significantly reduced lung metastasis and improved overall survival in mice. Collectively, these data suggest that ITGB3 is translationally activated in hypoxia and regulates malignant features, including epithelial-mesenchymal transition and cell migration, through the TGF-β pathway, revealing a novel angle for the treatment of therapy-resistant hypoxic tumours.
Collapse
|
31
|
Zalfa F, Panasiti V, Carotti S, Zingariello M, Perrone G, Sancillo L, Pacini L, Luciani F, Roberti V, D'Amico S, Coppola R, Abate SO, Rana RA, De Luca A, Fiers M, Melocchi V, Bianchi F, Farace MG, Achsel T, Marine JC, Morini S, Bagni C. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Death Dis 2017; 8:e3169. [PMID: 29144507 PMCID: PMC5775405 DOI: 10.1038/cddis.2017.521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Francesca Zalfa
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Panasiti
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Simone Carotti
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Zingariello
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Perrone
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Laura Sancillo
- Department of Medicine and Science of Aging, University of Chieti 'G d'Annunzio', via dei Vestini 31, 66100 Chieti-Pescara, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Flavie Luciani
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Vincenzo Roberti
- Department of Dermatology, University of Rome 'La Sapienza', viale dell'Università 1, 00185 Rome, Italy
| | - Silvia D'Amico
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Rosa Coppola
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Osella Abate
- Department of Medical Science and Human Oncology, Section of Dermato-Oncology, University of Turin, via Verdi 8, 10124 Turin, Italy
| | - Rosa Alba Rana
- Department of Medicine and Science of Aging, University of Chieti 'G d'Annunzio', via dei Vestini 31, 66100 Chieti-Pescara, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Mark Fiers
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Valentina Melocchi
- ISBREMIT, Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, viale Padre Pio 7, 71013 San Giovanni Rotondo (FG), Italy
| | - Fabrizio Bianchi
- ISBREMIT, Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, viale Padre Pio 7, 71013 San Giovanni Rotondo (FG), Italy
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Tilmann Achsel
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Jean-Christophe Marine
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Sergio Morini
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy.,VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium.,Department of Fundamental Neuroscience, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| |
Collapse
|
32
|
Bugaud O, Barbier N, Chommy H, Fiszman N, Le Gall A, Dulin D, Saguy M, Westbrook N, Perronet K, Namy O. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy. RNA (NEW YORK, N.Y.) 2017; 23:1626-1635. [PMID: 28768714 PMCID: PMC5648031 DOI: 10.1261/rna.061523.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 05/05/2023]
Abstract
Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases.
Collapse
Affiliation(s)
- Olivier Bugaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Barbier
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Hélène Chommy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Nicolas Fiszman
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Antoine Le Gall
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - David Dulin
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Matthieu Saguy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Nathalie Westbrook
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Karen Perronet
- Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 91127 Palaiseau, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| |
Collapse
|
33
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Memet I, Doebele C, Sloan KE, Bohnsack MT. The G-patch protein NF-κB-repressing factor mediates the recruitment of the exonuclease XRN2 and activation of the RNA helicase DHX15 in human ribosome biogenesis. Nucleic Acids Res 2017; 45:5359-5374. [PMID: 28115624 PMCID: PMC5435916 DOI: 10.1093/nar/gkx013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
In eukaryotes, the synthesis of ribosomal subunits, which involves the maturation of the ribosomal (r)RNAs and assembly of ribosomal proteins, requires the co-ordinated action of a plethora of ribosome biogenesis factors. Many of these cofactors remain to be characterized in human cells. Here, we demonstrate that the human G-patch protein NF-κB-repressing factor (NKRF) forms a pre-ribosomal subcomplex with the DEAH-box RNA helicase DHX15 and the 5΄-3΄ exonuclease XRN2. Using UV crosslinking and analysis of cDNA (CRAC), we reveal that NKRF binds to the transcribed spacer regions of the pre-rRNA transcript. Consistent with this, we find that depletion of NKRF, XRN2 or DHX15 impairs an early pre-rRNA cleavage step (A’). The catalytic activity of DHX15, which we demonstrate is stimulated by NKRF functioning as a cofactor, is required for efficient A’ cleavage, suggesting that a structural remodelling event may facilitate processing at this site. In addition, we show that depletion of NKRF or XRN2 also leads to the accumulation of excised pre-rRNA spacer fragments and that NKRF is essential for recruitment of the exonuclease to nucleolar pre-ribosomal complexes. Our findings therefore reveal a novel pre-ribosomal subcomplex that plays distinct roles in the processing of pre-rRNAs and the turnover of excised spacer fragments.
Collapse
Affiliation(s)
- Indira Memet
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Carmen Doebele
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Katherine E Sloan
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
35
|
Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nat Struct Mol Biol 2017; 24:700-707. [PMID: 28759050 PMCID: PMC5777333 DOI: 10.1038/nsmb.3442] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/27/2017] [Indexed: 11/17/2022]
Abstract
We describe a novel approach to separate two ribosome populations from the same cells and use this method, and RNA-seq, to identify the mRNAs bound to S. cerevisiae ribosomes with and without Rps26, a protein linked to the pathogenesis of Diamond Blackfan Anemia (DBA). These analyses reveal that Rps26 contributes to mRNA-specific translation by recognition of the Kozak sequence in well-translated mRNAs, and that Rps26-deficient ribosomes preferentially translate mRNA from select stress response pathways. Surprisingly, exposure of yeast to these stresses leads to the formation of Rps26-deficient ribosomes and to the increased translation of their target mRNAs. These results describe a novel paradigm, the production of specialized ribosomes, which play physiological roles in augmenting the well-characterized transcriptional stress response with a heretofore unknown translational response, thereby creating a feed forward loop in gene-expression. Moreover, the simultaneous gain-of-function and loss-of-function phenotypes from Rps26-deficient ribosomes can explain the pathogenesis of DBA.
Collapse
|
36
|
Salton GD, Laurino CCFC, Mega NO, Delgado-Cañedo A, Setterblad N, Carmagnat M, Xavier RM, Cirne-Lima E, Lenz G, Henriques JAP, Laurino JP. Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth. Cancer Biol Ther 2017; 18:560-570. [PMID: 28692326 DOI: 10.1080/15384047.2017.1345383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Eukaryote initiation factor 2 subunit β (eIF2β) plays a crucial role in regulation protein synthesis, which mediates the interaction of eIF2 with mRNA. eIF2β contains evolutionarily conserved polylysine stretches in amino-terminal region and a zinc finger motif in the carboxy-terminus. METHODS The gene eIF2β was cloned under tetracycline transcription control and the polylysine stretches were deleted by site-directed mutagenesis (eIF2βΔ3K). The plasmid was transfected into HEK 293 TetR cells. These cells were analyzed for their proliferative and translation capacities as well as cell death rate. Experiments were performed using gene reporter assays, western blotting, flow cytometry, cell sorting, cell proliferation assays and confocal immunofluorescence. RESULTS eIF2βΔ3K affected negatively the protein synthesis, cell proliferation and cell survival causing G2 cell cycle arrest and increased cell death, acting in a negative dominant manner against the native protein. Polylysine stretches are also essential for eIF2β translocated from the cytoplasm to the nucleus, accumulating in the nucleolus and eIF2βΔ3K did not make this translocation. DISCUSSION eIF2β is involved in the protein synthesis process and should act in nuclear processes as well. eIF2βΔ3K reduces cell proliferation and causes cell death. Since translation control is essential for normal cell function and survival, the development of drugs or molecules that inhibit translation has become of great interest in the scenario of proliferative disorders. In conclusion, our results suggest the dominant negative eIF2βΔ3K as a therapeutic strategy for the treatment of proliferative disorders and that eIF2β polylysine stretch domains are promising targets for this.
Collapse
Affiliation(s)
- Gabrielle Dias Salton
- a Post-Graduation Program in Cellular and Molecular Biology, Molecular Radiobiology Laboratory, Biotechnology Center , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil , Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service , Hospital de Clínicas de Porto Alegre , Porto Alegre (RS) , Brazil
| | - Claudia Cilene Fernandes Correia Laurino
- b Molecular Biology for Auto-immune and Infectious Diseases Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil . Embriology and Cellular Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Faculdade de Veterinária , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil . Faculdade Nossa Senhora de Fátima , Caxias do Sul (RS) , Brazil . Instituto Brasileiro de Saúde , Porto Alegre (RS) , Brazil
| | - Nicolás Oliveira Mega
- c Animal Biology Post-Graduation Program , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Andrés Delgado-Cañedo
- d Biotechnology Research Center for Interdisciplinary Research , Universidade Federal do Pampa , São Gabriel (RS) , Brazil
| | - Niclas Setterblad
- e Imaging, Cell Selection and Genomics Platform , Institut Universitaire d'Hématologie, Hôpital Saint-Louis , Paris , France
| | - Maryvonnick Carmagnat
- f Immunology and Histocompatibility Laboratory AP-HP , INSERM UMRS 940, Institut Universitaire d'Hématologie , Paris , France
| | - Ricardo Machado Xavier
- g Molecular Biology for Auto-immune and Infectious Diseases Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Elizabeth Cirne-Lima
- h Embriology and Cellular Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre; Faculdade de Veterinária , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - Guido Lenz
- i Cell Signaling Laboratory, Biophysics Department, Biotechnology Center and Post-Graduation Program in Cellular and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) , Brazil
| | - João Antonio Pêgas Henriques
- j Molecular Radiobiology Laboratory, Biotechnology Center and Post-Graduation Program in Cellular and Molecular Biology , Universidade Federal do Rio Grande do Sul , Porto Alegre (RS) ; Biotechnology Institute , Universidade de Caxias do Sul , Caxias do Sul (RS) , Brazil
| | - Jomar Pereira Laurino
- k Biotechnology Institute , Universidade de Caxias do Sul, Caxias do Sul (RS) and Instituto Brasileiro de Saúde , Porto Alegre (RS) , Brazil
| |
Collapse
|
37
|
MicroRNA-379 inhibits the proliferation, migration and invasion of human osteosarcoma cells by targetting EIF4G2. Biosci Rep 2017; 37:BSR20160542. [PMID: 28381518 PMCID: PMC5434889 DOI: 10.1042/bsr20160542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/19/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive malignant mesenchymal neoplasm amongst adolescents. The aim of the present study was to explore the various modes of action that miR-379 has on the proliferation, migration, and invasion of human OS cells. miR-379 achieves this by targetting eukaryotic initiation factor 4GII (EIF4G2). Human OS cell lines U2OS and MG-63 were selected and assigned into blank, miR-379 mimics, miR-379 mimic negative control (NC), miR-379 inhibitors, miR-379 inhibitor NC, EIF4G2 shRNA, control shRNA, and miR-379 inhibitor + EIF4G2 shRNA group. The miR-379 expression and EIF4G2 mRNA expression were detected utilising quantitative real-time PCR (qRT-PCR) and the EIF4G2 protein expression using Western blotting. MTT assay, scratch test, Transwell assay, and flow cytometry were performed to determine the proliferation, migration, invasion, and cell cycle, respectively. In comparison with the miR-379 mimic NC group, the miR-379 mimics group had decreased EIF4G2 expression; the miR-379 inhibitors group indicated an increased EIF4G2 expression. Compared with the control shRNA group, the EIF4G2 expression was lower in the EIF4G2 shRNA group and the miR-379 expression was dropped in the miR-379 inhibitor + EIF4G2 shRNA group. The proliferation, migration, and invasion abilities of OS cells were reduced in the miR-379 mimics and EIF4G2 shRNA groups. The percentage of OS cells at the G0/G1 stage was increased, and the percentage at the S-stage was decreased in the miR-379 mimics and EIF4G2 shRNA groups. miR-379 may inhibit the proliferation, migration and invasion of OS cells through the down-regulation of EIF4G2.
Collapse
|
38
|
Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget 2017; 8:69435-69455. [PMID: 29050215 PMCID: PMC5642490 DOI: 10.18632/oncotarget.17279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target.
Collapse
|
39
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
40
|
HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression. Leukemia 2017; 31:2235-2243. [PMID: 28260789 DOI: 10.1038/leu.2017.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/21/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) basic-leucine zipper (bZIP) factor (HBZ) is a key player in proliferation and transformation of HTLV-1-infected cells, thus contributing to adult T-cell leukemia (ATL) development. HBZ deregulates gene expression within the host cell by interacting with several cellular partners. Through its C-terminal ZIP domain, HBZ is able to contact and activate JunD, a transcription factor of the AP-1 family. JunD mRNA is intronless but can generate two protein isoforms by alternative translation initiation: JunD full-length and Δ JunD, an N-terminal truncated form unresponsive to the tumor suppressor menin. Using various cell lines and primary T-lymphocytes, we show that after serum deprivation HBZ induces the expression of Δ JunD isoform. We demonstrate that, unlike JunD, Δ JunD induces proliferation and transformation of cells. To decipher the mechanisms for Δ JunD production, we looked into the translational machinery and observed that HBZ induces nuclear retention of RPS25 mRNA and loss of RPS25 protein expression, a component of the small ribosomal subunit. Therefore, HBZ bypasses translational control of JunD uORF and favors the expression of Δ JunD. In conclusion, we provide strong evidences that HBZ induces Δ JunD expression through alteration of the cellular translational machinery and that the truncated isoform Δ JunD has a central role in the oncogenic process leading to ATL.
Collapse
|
41
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
42
|
Chaudhury A, Cheema S, Fachini JM, Kongchan N, Lu G, Simon LM, Wang T, Mao S, Rosen DG, Ittmann MM, Hilsenbeck SG, Shaw CA, Neilson JR. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun 2016; 7:13362. [PMID: 27869122 PMCID: PMC5121338 DOI: 10.1038/ncomms13362] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
The importance of translational regulation in tumour biology is increasingly appreciated. Here, we leverage polyribosomal profiling to prospectively define translational regulatory programs underlying epithelial-to-mesenchymal transition (EMT) in breast epithelial cells. We identify a group of ten translationally regulated drivers of EMT sharing a common GU-rich cis-element within the 3'-untranslated region (3'-UTR) of their mRNA. These cis-elements, necessary for the regulatory activity imparted by these 3'-UTRs, are directly bound by the CELF1 protein, which itself is regulated post-translationally during the EMT program. CELF1 is necessary and sufficient for both mesenchymal transition and metastatic colonization, and CELF1 protein, but not mRNA, is significantly overexpressed in human breast cancer tissues. Our data present an 11-component genetic pathway, invisible to transcriptional profiling approaches, in which the CELF1 protein functions as a central node controlling translational activation of genes driving EMT and ultimately tumour progression.
Collapse
Affiliation(s)
- Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shebna Cheema
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joseph M. Fachini
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Guojun Lu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lukas M. Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sufeng Mao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel G. Rosen
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael M. Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Susan G. Hilsenbeck
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R. Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
43
|
4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression. Viruses 2016; 8:v8100287. [PMID: 27763553 PMCID: PMC5086619 DOI: 10.3390/v8100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5' cap with 2'-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.
Collapse
|
44
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
45
|
Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38:21-6. [PMID: 26661048 PMCID: PMC4749135 DOI: 10.1002/bies.201500131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reading frame maintenance is a critical property of ribosomes. However, a number of genetic elements have been described that can induce ribosomes to shift on mRNAs, the most well understood of which are a class that directs ribosomal slippage by one base in 5' (‐1) direction. This is referred to as programmed ‐1 ribosomal frameshifting (‐1 PRF). Recently, a new ‐1 PRF promoting element was serendipitously discovered in a study examining the effects of stretches of adenosines in the coding sequences of mRNAs. Here, we discuss this finding, recent studies describing how ‐1 PRF is used to control gene expression in eukaryotes, and how ‐1 PRF is itself regulated. The implications of dysregulation of ‐1 PRF on human health are examined, as are possible new areas in which novel ‐1 PRF promoting elements might be discovered. Also watch the https://youtu.be/1mPXIINCRcY.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
46
|
Badertscher L, Wild T, Montellese C, Alexander L, Bammert L, Sarazova M, Stebler M, Csucs G, Mayer T, Zamboni N, Zemp I, Horvath P, Kutay U. Genome-wide RNAi Screening Identifies Protein Modules Required for 40S Subunit Synthesis in Human Cells. Cell Rep 2015; 13:2879-91. [DOI: 10.1016/j.celrep.2015.11.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023] Open
|
47
|
Ferguson A, Wang L, Altman RB, Terry DS, Juette MF, Burnett BJ, Alejo JL, Dass RA, Parks MM, Vincent CT, Blanchard SC. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Mol Cell 2015; 60:475-86. [PMID: 26593721 PMCID: PMC4660248 DOI: 10.1016/j.molcel.2015.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation.
Collapse
Affiliation(s)
- Angelica Ferguson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daniel S Terry
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin J Burnett
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jose L Alejo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Randall A Dass
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology and Physiology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
48
|
Ribosomal 60S-subunit production: the final scene. Nat Struct Mol Biol 2015; 22:837-8. [DOI: 10.1038/nsmb.3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Affiliation(s)
- Tiziana Girardi
- KU Leuven Department of Oncology, Leuven, Belgium VIB Center for the Biology of Disease, Leuven, Belgium
| | - Kim De Keersmaecker
- KU Leuven Department of Oncology, Leuven, Belgium VIB Center for the Biology of Disease, Leuven, Belgium
| |
Collapse
|
50
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015; 5:1024-39. [PMID: 26382145 DOI: 10.1158/2159-8290.cd-15-0507] [Citation(s) in RCA: 900] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC's cell growth- and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. SIGNIFICANCE MYC's expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annie L Hsieh
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|