1
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
2
|
Abstract
Geographic patterns in human genetic diversity carry footprints of population history and provide insights for genetic medicine and its application across human populations. Summarizing and visually representing these patterns of diversity has been a persistent goal for human geneticists, and has revealed that genetic differentiation is frequently correlated with geographic distance. However, most analytical methods to represent population structure do not incorporate geography directly, and it must be considered post hoc alongside a visual summary of the genetic structure. Here, we estimate "effective migration" surfaces to visualize how human genetic diversity is geographically structured. The results reveal local patterns of differentiation in detail and emphasize that while genetic similarity generally decays with geographic distance, the relationship is often subtly distorted. Overall, the visualizations provide a new perspective on genetics and geography in humans and insight to the geographic distribution of human genetic variation.
Collapse
Affiliation(s)
- Benjamin M Peter
- Department of Human Genetics, University of Chicago, Chicago, IL
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Desislava Petkova
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL
- Department of Ecology & Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
3
|
Counting Oceanians of Non-European, Non-Asian Descent (ONENA) in the South Pacific to Make Them Count in Global Health. Trop Med Infect Dis 2019; 4:tropicalmed4030114. [PMID: 31405081 PMCID: PMC6789437 DOI: 10.3390/tropicalmed4030114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Several diseases and vulnerabilities associated with genetic or microbial factors are more frequent among populations of Oceanian, Non-European, Non-Asian descent (ONENA). ONENA are specific and have long been isolated geographically. To our knowledge, there are no published official, quantitative, aggregated data on the populations impacted by these excess vulnerabilities in Oceania. We searched official census reports for updated estimates of the total population for each of the Pacific Island Countries and Territories (including Australia) and the US State of Hawaii, privileging local official statistical or censual sources. We multiplied the most recent total population estimate by the cumulative percentage of the ONENA population as determined in official reports. Including Australia and the US State of Hawaii, Oceania counts 27 countries and territories, populated in 2016 by approximately 41 M inhabitants (17 M not counting Australia) among which approximately 12.5 M (11.6 M not counting Australia) consider themselves of entire or partial ONENA ancestry. Specific genetic and microbiome traits of ONENA may be unique and need further investigation to adjust risk estimates, risk prevention, diagnostic and therapeutic strategies, to the benefit of populations in the Pacific and beyond.
Collapse
|
4
|
Krenn VA, Fornai C, Wurm L, Bookstein FL, Haeusler M, Weber GW. Variation of 3D outer and inner crown morphology in modern human mandibular premolars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:646-663. [PMID: 31099892 PMCID: PMC6767701 DOI: 10.1002/ajpa.23858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022]
Abstract
Objectives This study explores the outer and inner crown of lower third and fourth premolars (P3, P4) by analyzing the morphological variation among diverse modern human groups. Materials and Methods We studied three‐dimensional models of the outer enamel surface and the enamel–dentine junction (EDJ) from μCT datasets of 77 recent humans using both an assessment of seven nonmetric traits and a standard geometric morphometric (GM) analysis. For the latter, the dental crown was represented by four landmarks (dentine horns and fossae), 20 semilandmarks along the EDJ marginal ridge, and pseudolandmarks along the crown and cervical outlines. Results Certain discrete traits showed significantly different regional frequencies and sexual dimorphism. The GM analyses of both P3s and P4s showed extensive overlap in shape variation of the various populations (classification accuracy 15–69%). The first principal components explained about 40% of shape variance with a correlation between 0.59 and 0.87 of the features of P3s and P4s. Shape covariation between P3s and P4s expressed concordance of high and narrow or low and broad crowns. Conclusions Due to marked intragroup and intergroup variation in GM analyses of lower premolars, discrete traits such as the number of lingual cusps and mesiolingual groove expression provide better geographic separation of modern human populations. The greater variability of the lingual region suggests a dominance of functional constraints over geographic provenience or sex. Additional information about functionally relevant aspects of the crown surface and odontogenetic data are needed to unravel the factors underlying dental morphology in modern humans.
Collapse
Affiliation(s)
- Viktoria A Krenn
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Cinzia Fornai
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Lisa Wurm
- Department for Clinical Veterinary Medicine, Ludwig-Maximilians University of Munich, 80539 Munich, Germany
| | - Fred L Bookstein
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,Department of Statistics, University of Washington, Seattle, WA-98195, Washington, USA
| | - Martin Haeusler
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,Core Facility for Micro-Computed Tomography, 1090 Vienna, Austria
| |
Collapse
|
5
|
Ohashi J, Naka I, Furusawa T, Kimura R, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Inaoka T, Matsumura Y, Ohtsuka R. Association study of CREBRF missense variant (rs373863828:G > A; p.Arg457Gln) with levels of serum lipid profile in the Pacific populations. Ann Hum Biol 2018; 45:215-219. [PMID: 29877158 DOI: 10.1080/03014460.2018.1461928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND A missense variant (rs373863828:G > A; p.Arg457Gln) of the CREBRF gene is strongly associated with a higher body mass index (BMI; kg/m2) in Polynesian populations. This variant has also been reported to be associated with lower total cholesterol in Samoans. AIM The aim of this study is to examine the association of rs373863828:G > A with levels of serum lipids in four Pacific populations. METHODS A total of 613 adult subjects were recruited from Tonga (Polynesians) and the Solomon Islands (Melanesians and Micronesians). Multiple regression analyses adjusted for age and sex were performed to examine the association of rs373863828 with levels of serum lipids in each population. RESULTS A significant association of rs373863828:G > A with lower level of HDL-cholesterol was detected in the Tonga population (β = -3.32 and p-value = 0.030). The expected change in HDL-cholesterol with respect to a single copy of the rs373863828-A allele was 3.32 mg/dL. However, the association between rs373863828-A and lower levels of HDL-cholesterol was not significant after further adjustment for BMI in the Tonga population (β = -2.32 and p-value = 0.13). CONCLUSIONS The rs373863828-A allele may not directly affect the level of serum HDL-cholesterol independent of BMI. To confirm the present findings, association studies with large sample sizes and functional analyses are required.
Collapse
Affiliation(s)
- Jun Ohashi
- a Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo , Japan
| | - Izumi Naka
- a Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo , Japan
| | - Takuro Furusawa
- b Graduate School of Asian and African Area Studies , Kyoto University , Kyoto , Japan
| | - Ryosuke Kimura
- c Department of Human Biology and Anatomy, Graduate School of Medicine , University of the Ryukyus , Nishihara , Japan
| | - Kazumi Natsuhara
- d Faculty of Nursing , The Japanese Red Cross Akita College of Nursing , Akita , Japan
| | - Taro Yamauchi
- e Faculty of Health Science , Hokkaido University , Sapporo , Japan
| | - Minato Nakazawa
- f Graduate School of Health Sciences , Kobe University , Kobe , Japan
| | - Takafumi Ishida
- a Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo , Japan
| | - Tsukasa Inaoka
- g Department of Human Ecology, Faculty of Agriculture , Saga University , Saga , Japan
| | - Yasuhiro Matsumura
- h Faculty of Health and Nutrition , Bunkyo University , Chigasaki , Japan
| | | |
Collapse
|
6
|
Rabett RJ. The success of failed Homo sapiens dispersals out of Africa and into Asia. Nat Ecol Evol 2018; 2:212-219. [PMID: 29348642 DOI: 10.1038/s41559-017-0436-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
The evidence for an early dispersal of Homo sapiens from Africa into the Levant during Marine Isotope Stage 5 (MIS-5) 126-74 ka (thousand years ago) was characterized for many years as an 'abortive' expansion: a precursor to a sustained dispersal from which all extant human populations can be traced. Recent archaeological and genetic data from both western and eastern parts of Eurasia and from Australia are starting to challenge that interpretation. This Perspective reviews the current evidence for a scenario where the MIS-5 dispersal encompassed a much greater geographic distribution and temporal duration. The implications of this for tracking and understanding early human dispersal in Southeast Asia specifically are considered, and the validity of measuring dispersal success only through genetic continuity into the present is examined.
Collapse
Affiliation(s)
- Ryan J Rabett
- Archaeology & Palaeoecology, School of Natural & Built Environment, Queen's University Belfast, Elmwood Avenue, Belfast, BT7 1NN, UK.
| |
Collapse
|
7
|
Issiki M, Naka I, Kimura R, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Ohtsuka R, Ohashi J. Mitochondrial DNA variations in Austronesian-speaking populations living in the New Georgia Islands, the Western Province of the Solomon Islands. J Hum Genet 2017; 63:101-104. [DOI: 10.1038/s10038-017-0372-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/11/2023]
|
8
|
Bergström A, Oppenheimer SJ, Mentzer AJ, Auckland K, Robson K, Attenborough R, Alpers MP, Koki G, Pomat W, Siba P, Xue Y, Sandhu MS, Tyler-Smith C. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea. Science 2017; 357:1160-1163. [PMID: 28912245 PMCID: PMC5802383 DOI: 10.1126/science.aan3842] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022]
Abstract
New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies.
Collapse
Affiliation(s)
- Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Stephen J Oppenheimer
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX2 6PE, UK
| | - Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kathryn Auckland
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kathryn Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Robert Attenborough
- Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT 2601, Australia
| | - Michael P Alpers
- International Health Research, Curtin University, Perth, WA 6845, Australia
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | - George Koki
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Manjinder S Sandhu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
9
|
Mychaleckyj JC, Havt A, Nayak U, Pinkerton R, Farber E, Concannon P, Lima AA, Guerrant RL. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions. Mol Biol Evol 2017; 34:559-574. [PMID: 28100790 PMCID: PMC5430616 DOI: 10.1093/molbev/msw249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas.
Collapse
Affiliation(s)
- Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Alexandre Havt
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil.,INCT-Instituto de Biomedicina Universidade Federal do Ceará, Fortaleza, Brazil
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Relana Pinkerton
- Center for Global Health, University of Virginia, Charlottesville, VA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL.,Department of Pathology Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Aldo A Lima
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil.,INCT-Instituto de Biomedicina Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
10
|
Gosling AL, Buckley HR, Matisoo-Smith E, Merriman TR. Pacific Populations, Metabolic Disease and 'Just-So Stories': A Critique of the 'Thrifty Genotype' Hypothesis in Oceania. Ann Hum Genet 2015; 79:470-80. [PMID: 26420513 DOI: 10.1111/ahg.12132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Pacific populations have long been observed to suffer a high burden of metabolic disease, including obesity, type 2 diabetes and gout. The 'Thrifty Genotype' hypothesis has frequently been used to explain this high prevalence of disease. Here, the 'Thrifty Genotype' hypothesis and the evolutionary background of Pacific populations are examined. We question its relevance not only in the Pacific region but more generally. Not only has the hypothesis not been explicitly tested, but most archaeological and anthropological data from the Pacific fundamentally do not support its application.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand
| | - Hallie R Buckley
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Elizabeth Matisoo-Smith
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Qin P, Stoneking M. Denisovan Ancestry in East Eurasian and Native American Populations. Mol Biol Evol 2015; 32:2665-74. [PMID: 26104010 DOI: 10.1093/molbev/msv141] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although initial studies suggested that Denisovan ancestry was found only in modern human populations from island Southeast Asia and Oceania, more recent studies have suggested that Denisovan ancestry may be more widespread. However, the geographic extent of Denisovan ancestry has not been determined, and moreover the relationship between the Denisovan ancestry in Oceania and that elsewhere has not been studied. Here we analyze genome-wide single nucleotide polymorphism data from 2,493 individuals from 221 worldwide populations, and show that there is a widespread signal of a very low level of Denisovan ancestry across Eastern Eurasian and Native American (EE/NA) populations. We also verify a higher level of Denisovan ancestry in Oceania than that in EE/NA; the Denisovan ancestry in Oceania is correlated with the amount of New Guinea ancestry, but not the amount of Australian ancestry, indicating that recent gene flow from New Guinea likely accounts for signals of Denisovan ancestry across Oceania. However, Denisovan ancestry in EE/NA populations is equally correlated with their New Guinea or their Australian ancestry, suggesting a common source for the Denisovan ancestry in EE/NA and Oceanian populations. Our results suggest that Denisovan ancestry in EE/NA is derived either from common ancestry with, or gene flow from, the common ancestor of New Guineans and Australians, indicating a more complex history involving East Eurasians and Oceanians than previously suspected.
Collapse
Affiliation(s)
- Pengfei Qin
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
12
|
Maternal ancestry and population history from whole mitochondrial genomes. INVESTIGATIVE GENETICS 2015; 6:3. [PMID: 25798216 PMCID: PMC4367903 DOI: 10.1186/s13323-015-0022-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
MtDNA has been a widely used tool in human evolutionary and population genetic studies over the past three decades. Its maternal inheritance and lack of recombination have offered the opportunity to explore genealogical relationships among individuals and to study the frequency differences of matrilineal clades among human populations at continental and regional scales. The whole mtDNA genome sequencing delivers molecular resolution that is sufficient to distinguish patterns that have arisen over thousands of years. However, mutation rate is highly variable among the functional and non-coding domains of mtDNA which makes it challenging to obtain accurate split dates of the mitochondrial clades. Due to the shallow coalescent time of mitochondrial TMRCA at approximately 100 to 200 thousand years (ky), mtDNA data have only limited power to inform us about the more distant past and the early stages of human evolutionary history. The variation shared by mitochondrial genomes of individuals drawn from different continents outside Africa has been used to illuminate the details of the colonization process of the Old World, whereas regional patterns of variation have been at the focus of studies addressing questions of a more recent time scale. In the era of whole nuclear genome sequencing, mitochondrial genomes are continuing to be informative as a unique tool for the assessment of female-specific aspects of the demographic history of human populations.
Collapse
|