1
|
Russell SL, Penunuri G, Condon C. Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them. Semin Cell Dev Biol 2025; 165:1-12. [PMID: 39079455 DOI: 10.1016/j.semcdb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.
Collapse
Affiliation(s)
- Shelbi L Russell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Gabriel Penunuri
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Christopher Condon
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
2
|
Jansen G, Gebert D, Kumar TR, Simmons E, Murphy S, Teixeira FK. Tolerance thresholds underlie responses to DNA damage during germline development. Genes Dev 2024; 38:631-654. [PMID: 39054057 PMCID: PMC11368186 DOI: 10.1101/gad.351701.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Collapse
Affiliation(s)
- Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | - Emily Simmons
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah Murphy
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
3
|
Shukla HG, Chakraborty M, Emerson J. Genetic variation in recalcitrant repetitive regions of the Drosophila melanogaster genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598575. [PMID: 38915508 PMCID: PMC11195212 DOI: 10.1101/2024.06.11.598575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many essential functions of organisms are encoded in highly repetitive genomic regions, including histones involved in DNA packaging, centromeres that are core components of chromosome segregation, ribosomal RNA comprising the protein translation machinery, telomeres that ensure chromosome integrity, piRNA clusters encoding host defenses against selfish elements, and virtually the entire Y chromosome. These regions, formed by highly similar tandem arrays, pose significant challenges for experimental and informatic study, impeding sequence-level descriptions essential for understanding genetic variation. Here, we report the assembly and variation analysis of such repetitive regions in Drosophila melanogaster, offering significant improvements to the existing community reference assembly. Our work successfully recovers previously elusive segments, including complete reconstructions of the histone locus and the pericentric heterochromatin of the X chromosome, spanning the Stellate locus to the distal flank of the rDNA cluster. To infer structural changes in these regions where alignments are often not practicable, we introduce landmark anchors based on unique variants that are putatively orthologous. These regions display considerable structural variation between different D. melanogaster strains, exhibiting differences in copy number and organization of homologous repeat units between haplotypes. In the histone cluster, although we observe minimal genetic exchange indicative of crossing over, the variation patterns suggest mechanisms such as unequal sister chromatid exchange. We also examine the prevalence and scale of concerted evolution in the histone and Stellate clusters and discuss the mechanisms underlying these observed patterns.
Collapse
Affiliation(s)
- Harsh G. Shukla
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California Irvine, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
4
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
5
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
6
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
7
|
Ghanim GE, Rio DC, Teixeira FK. Mechanism and regulation of P element transposition. Open Biol 2020; 10:200244. [PMID: 33352068 PMCID: PMC7776569 DOI: 10.1098/rsob.200244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/05/2022] Open
Abstract
P elements were first discovered in the fruit fly Drosophila melanogaster as the causative agents of a syndrome of aberrant genetic traits called hybrid dysgenesis. This occurs when P element-carrying males mate with females that lack P elements and results in progeny displaying sterility, mutations and chromosomal rearrangements. Since then numerous genetic, developmental, biochemical and structural studies have culminated in a deep understanding of P element transposition: from the cellular regulation and repression of transposition to the mechanistic details of the transposase nucleoprotein complex. Recent studies have revealed how piwi-interacting small RNA pathways can act to control splicing of the P element pre-mRNA to modulate transposase production in the germline. A recent cryo-electron microscopy structure of the P element transpososome reveals an unusual DNA architecture at the transposon termini and shows that the bound GTP cofactor functions to position the transposon ends within the transposase active site. Genome sequencing efforts have shown that there are P element transposase-homologous genes (called THAP9) in other animal genomes, including humans. This review highlights recent and previous studies, which together have led to new insights, and surveys our current understanding of the biology, biochemistry, mechanism and regulation of P element transposition.
Collapse
Affiliation(s)
- George E. Ghanim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
8
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
9
|
Small RNA Function in Plants: From Chromatin to the Next Generation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:133-140. [PMID: 32518093 DOI: 10.1101/sqb.2019.84.040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small RNA molecules can target a particular virus, gene, or transposable element (TE) with a high degree of specificity. Their ability to move from cell to cell and recognize targets in trans also allows building networks capable of regulating a large number of related targets at once. In the case of epigenetic silencing, small RNA may use the widespread distribution of TEs in eukaryotic genomes to coordinate many loci across developmental and generational time. Here, we discuss the intriguing role of plant small RNA in targeting transposons and repeats in pollen and seeds. Epigenetic reprogramming in the germline and early seed development provides a mechanism to control genome dosage, imprinted gene expression, and incompatible hybridizations via the "triploid block."
Collapse
|
10
|
Bachtrog D. The Y Chromosome as a Battleground for Intragenomic Conflict. Trends Genet 2020; 36:510-522. [PMID: 32448494 DOI: 10.1016/j.tig.2020.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Y chromosomes are typically viewed as genetic wastelands with few intact genes. Recent genomic analyses in Drosophila, however, show that gene gain is prominent on young Y chromosomes. Meiosis- and RNAi-related genes often coamplify on recently formed X and Y chromosomes, are testis-expressed, and produce antisense transcripts and short RNAs. RNAi pathways are also involved in suppressing sex ratio drive in Drosophila. These observations paint a dynamic picture of sex chromosome differentiation, suggesting that rapidly evolving genomic battles over segregation are rampant on young sex chromosomes and utilize RNAi to defend the genome against selfish elements that manipulate fair meiosis. Recurrent sex chromosome drive can have profound ecological, evolutionary, and cellular impacts and account for unique features of sex chromosomes.
Collapse
Affiliation(s)
- Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Myc plays an important role in Drosophila P-M hybrid dysgenesis to eliminate germline cells with genetic damage. Commun Biol 2020; 3:185. [PMID: 32322015 PMCID: PMC7176646 DOI: 10.1038/s42003-020-0923-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic damage in the germline induced by P-element mobilization causes a syndrome known as P-M hybrid dysgenesis (HD), which manifests as elevated mutation frequency and loss of germline cells. In this study, we found that Myc plays an important role in eliminating germline cells in the context of HD. P-element mobilization resulted in downregulation of Myc expression in the germline. Myc knockdown caused germline elimination; conversely, Myc overexpression rescued the germline loss caused by P-element mobilization. Moreover, restoration of fertility by Myc resulted in the production of gametes with elevated mutation frequency and reduced ability to undergo development. Our results demonstrate that Myc downregulation mediates elimination of germline cells with accumulated genetic damage, and that failure to remove these cells results in increased production of aberrant gametes. Therefore, we propose that elimination of germline cells mediated by Myc downregulation is a quality control mechanism that maintains the genomic integrity of the germline.
Collapse
|
12
|
Feng JX, Riddle NC. Epigenetics and genome stability. Mamm Genome 2020; 31:181-195. [PMID: 32296924 DOI: 10.1007/s00335-020-09836-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Maintaining genome stability is essential to an organism's health and survival. Breakdown of the mechanisms protecting the genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.
Collapse
Affiliation(s)
- Justina X Feng
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
14
|
Ellison C, Bachtrog D. Recurrent gene co-amplification on Drosophila X and Y chromosomes. PLoS Genet 2019; 15:e1008251. [PMID: 31329593 PMCID: PMC6690552 DOI: 10.1371/journal.pgen.1008251] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/12/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Y chromosomes often contain amplified genes which can increase dosage of male fertility genes and counteract degeneration via gene conversion. Here we identify genes with increased copy number on both X and Y chromosomes in various species of Drosophila, a pattern that has previously been associated with sex chromosome drive involving the Slx and Sly gene families in mice. We show that recurrent X/Y co-amplification appears to be an important evolutionary force that has shaped gene content evolution of sex chromosomes in Drosophila. We demonstrate that convergent acquisition and amplification of testis expressed gene families are common on Drosophila sex chromosomes, and especially on recently formed ones, and we carefully characterize one putative novel X/Y co-amplification system. We find that co-amplification of the S-Lap1/GAPsec gene pair on both the X and the Y chromosome occurred independently several times in members of the D. obscura group, where this normally autosomal gene pair is sex-linked due to a sex chromosome-autosome fusion. We explore several evolutionary scenarios that would explain this pattern of co-amplification. Investigation of gene expression and short RNA profiles at the S-Lap1/GAPsec system suggest that, like Slx/Sly in mice, these genes may be remnants of a cryptic sex chromosome drive system, however additional transgenic experiments will be necessary to validate this model. Regardless of whether sex chromosome drive is responsible for this co-amplification, our findings suggest that recurrent gene duplications between X and Y sex chromosomes could have a widespread effect on genomic and evolutionary patterns, including the epigenetic regulation of sex chromosomes, the distribution of sex-biased genes, and the evolution of hybrid sterility.
Collapse
Affiliation(s)
- Christopher Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
15
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
16
|
Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the Drosophila melanogaster Y Chromosome. Genetics 2018; 211:333-348. [PMID: 30420487 PMCID: PMC6325706 DOI: 10.1534/genetics.118.301765] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Heterochromatic regions of the genome are repeat-rich and poor in protein coding genes, and are therefore underrepresented in even the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment of heterochromatic long single-molecule reads and use these reads to create targeted de novo assemblies of heterochromatic sequences. We assigned contigs to the Y chromosome using Illumina reads to identify male-specific sequences. Our pipeline extends the D. melanogaster reference genome by 11.9 Mb, closes 43.8% of the gaps, and improves overall contiguity. The addition of 10.6 MB of Y-linked sequence permitted us to study the organization of repeats and genes along the Y chromosome. We detected a high rate of duplication to the pericentric regions of the Y chromosome from other regions in the genome. Most of these duplicated genes exist in multiple copies. We detail the evolutionary history of one sex-linked gene family, crystal-Stellate While the Y chromosome does not undergo crossing over, we observed high gene conversion rates within and between members of the crystal-Stellate gene family, Su(Ste), and PCKR, compared to genome-wide estimates. Our results suggest that gene conversion and gene duplication play an important role in the evolution of Y-linked genes.
Collapse
|
17
|
Kelleher ES, Jaweria J, Akoma U, Ortega L, Tang W. QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biol 2018; 16:e2006040. [PMID: 30376574 PMCID: PMC6207299 DOI: 10.1371/journal.pbio.2006040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are obligate genetic parasites that propagate in host genomes by replicating in germline nuclei, thereby ensuring transmission to offspring. This selfish replication not only produces deleterious mutations—in extreme cases, TE mobilization induces genotoxic stress that prohibits the production of viable gametes. Host genomes could reduce these fitness effects in two ways: resistance and tolerance. Resistance to TE propagation is enacted by germline-specific small-RNA-mediated silencing pathways, such as the Piwi-interacting RNA (piRNA) pathway, and is studied extensively. However, it remains entirely unknown whether host genomes may also evolve tolerance by desensitizing gametogenesis to the harmful effects of TEs. In part, the absence of research on tolerance reflects a lack of opportunity, as small-RNA-mediated silencing evolves rapidly after a new TE invades, thereby masking existing variation in tolerance. We have exploited the recent historical invasion of the Drosophila melanogaster genome by P-element DNA transposons in order to study tolerance of TE activity. In the absence of piRNA-mediated silencing, the genotoxic stress imposed by P-elements disrupts oogenesis and, in extreme cases, leads to atrophied ovaries that completely lack germline cells. By performing quantitative trait locus (QTL) mapping on a panel of recombinant inbred lines (RILs) that lack piRNA-mediated silencing of P-elements, we uncovered multiple QTL that are associated with differences in tolerance of oogenesis to P-element transposition. We localized the most significant QTL to a small 230-kb euchromatic region, with the logarithm of the odds (LOD) peak occurring in the bruno locus, which codes for a critical and well-studied developmental regulator of oogenesis. Genetic, cytological, and expression analyses suggest that bruno dosage modulates germline stem cell (GSC) loss in the presence of P-element activity. Our observations reveal segregating variation in TE tolerance for the first time, and implicate gametogenic regulators as a source of tolerant variants in natural populations. Transposable elements (TEs), or “jumping genes,” are mobile fragments of selfish DNA that leave deleterious mutations and DNA damage in their wake as they spread through host genomes. Their harmful effects are known to select for resistance by the host, in which the propagation of TEs is regulated and reduced. Here, we study for the first time whether host cells might also exhibit tolerance to TEs, by reducing their harmful effects without directly controlling their movement. By taking advantage of a panel of wild-type Drosophila melanogaster that lack resistance to P-element DNA transposons, we identified a small region of the genome that influences tolerance of P-element activity. We further demonstrate that a gene within that region, bruno, strongly influences the negative effects of P-element mobilization on the fly. When bruno dosage is reduced, the fertility of females carrying mobile P-elements is enhanced. The bruno locus encodes a protein with no known role in TE regulation but multiple well-characterized functions in oogenesis. We propose that bruno function reduces tolerance of the developing oocyte to DNA damage that is caused by P-elements.
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- * E-mail:
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Uchechukwu Akoma
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lily Ortega
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Wenpei Tang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| |
Collapse
|
18
|
p53 is required for female germline stem cell maintenance in P-element hybrid dysgenesis. Dev Biol 2017; 434:215-220. [PMID: 29294306 DOI: 10.1016/j.ydbio.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/01/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
Hybrid dysgenesis is a sterility syndrome resulting from the mobilization of certain transposable elements in the Drosophila germline. Particularly extreme is the hybrid dysgenesis syndrome caused by P-element DNA transposons, in which dysgenic female ovaries often contain few or no germline cells. Those offspring that are produced from dysgenic germlines exhibit high rates of de novo mutation and recombination, implicating transposition-associated DNA damage as the cause of germline loss. However, how this loss occurs, in terms of the particular cellular response that is triggered (cell cycle arrest, senescence, or cell death) remains poorly understood. We demonstrate that two components of the DNA damage response, Checkpoint kinase 2 and its downstream target p53, determine the frequency of ovarian atrophy that is associated with P-element hybrid dysgenesis. We further show that p53 is strongly induced in the germline stem cells (GSCs) of dysgenic females, and is required for their maintenance. Our observations support the critical role for p53 in conferring tolerance of transposable element activity in stem cells.
Collapse
|
19
|
piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 2017; 552:268-272. [PMID: 29211718 PMCID: PMC5933846 DOI: 10.1038/nature25018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated1. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs2. Here, we show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. Unexpectedly, we show that the piRNA pathway components do not act to reduce P-element transposon transcript levels during P-M hybrid dysgenesis, a syndrome that affects germline development in Drosophila3,4. Instead, splicing regulation is mechanistically achieved in concert with piRNA-mediated changes to repressive chromatin states, and relies on the function of the Piwi-piRNA complex proteins Asterix/Gtsf15–7 and Panoramix/Silencio8,9, as well as Heterochromatin Protein 1a (Su(var)205/HP1a). Furthermore, we show that this machinery, together with the piRNA Flamenco cluster10, not only controls the accumulation of Gypsy retrotransposon transcripts11 but also regulates splicing of Gypsy mRNAs in cultured ovarian somatic cells, a process required for the production of infectious particles that can lead to heritable transposition events12,13. Our findings identify splicing regulation as a new role and essential function for the Piwi pathway in protecting the genome against transposon mobility, and provide a model system for studying the role of chromatin structure in modulating alternative splicing during development.
Collapse
|
20
|
Jiang H, Moreno-Romero J, Santos-González J, De Jaeger G, Gevaert K, Van De Slijke E, Köhler C. Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in Arabidopsis thaliana. Genes Dev 2017; 31:1272-1287. [PMID: 28743695 PMCID: PMC5558928 DOI: 10.1101/gad.299347.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022]
Abstract
Hybrid seed lethality as a consequence of interspecies or interploidy hybridizations is a major mechanism of reproductive isolation in plants. This mechanism is manifested in the endosperm, a dosage-sensitive tissue supporting embryo growth. Deregulated expression of imprinted genes such as ADMETOS (ADM) underpin the interploidy hybridization barrier in Arabidopsis thaliana; however, the mechanisms of their action remained unknown. In this study, we show that ADM interacts with the AT hook domain protein AHL10 and the SET domain-containing SU(VAR)3-9 homolog SUVH9 and ectopically recruits the heterochromatic mark H3K9me2 to AT-rich transposable elements (TEs), causing deregulated expression of neighboring genes. Several hybrid incompatibility genes identified in Drosophila encode for dosage-sensitive heterochromatin-interacting proteins, which has led to the suggestion that hybrid incompatibilities evolve as a consequence of interspecies divergence of selfish DNA elements and their regulation. Our data show that imbalance of dosage-sensitive chromatin regulators underpins the barrier to interploidy hybridization in Arabidopsis, suggesting that reproductive isolation as a consequence of epigenetic regulation of TEs is a conserved feature in animals and plants.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent 9052, Belgium
- VIB Center for Medical Biotechnology, Ghent 9052, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
21
|
Specchia V, D'Attis S, Puricella A, Bozzetti MP. dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int J Mol Sci 2017; 18:ijms18051066. [PMID: 28509881 PMCID: PMC5454977 DOI: 10.3390/ijms18051066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
Fragile-X syndrome is the most common form of inherited mental retardation accompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmed role in the miRNA pathway, a function for dFmr1 in the piRNA pathway, operating in Drosophila gonads, has been established. In this review we report a summary of the piRNA pathways occurring in gonads with a special emphasis on the relationship between the piRNA genes and the crystal-Stellate system; we also analyze the roles of dFmr1 in the Drosophila gonads, exploring their genetic and biochemical interactions to reveal some unexpected connections.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA)-University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
22
|
Dorogova NV, Bolobolova EU, Zakharenko LP. Cellular aspects of gonadal atrophy in Drosophila P-M hybrid dysgenesis. Dev Biol 2017; 424:105-112. [DOI: 10.1016/j.ydbio.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 02/01/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
23
|
RNA helicase Spn-E is required to maintain Aub and AGO3 protein levels for piRNA silencing in the germline of Drosophila. Eur J Cell Biol 2016; 95:311-22. [PMID: 27320195 DOI: 10.1016/j.ejcb.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
Germline-specific RNA helicase Spindle-E (Spn-E) is known to be essential for piRNA silencing in Drosophila that takes place mainly in the perinuclear nuage granules. Loss-of-function spn-E mutations lead to tandem Stellate genes derepression in the testes and retrotransposon mobilization in the ovaries. However, Spn-E functions in the piRNA pathway are still obscure. Analysis of total library of short RNAs from the testes of spn-E heterozygous flies revealed the presence of abundant piRNA ping-pong pairs originating from Su(Ste) transcripts. The abundance of these ping-pong pairs were sharply reduced in the library from the testes of spn-E mutants. Thus we found that ping-pong mechanism contributed to Su(Ste) piRNA generation in the testes. The lack of Spn-E caused a significant drop of protein levels of key ping-pong participants, Aubergine (Aub) and AGO3 proteins of PIWI subfamily, in the germline of both males and females, but did not disrupt of their assembly in nuage granules. We found that observed decline of the protein expression was not caused by suppression of aub and ago3 transcription as well as total transcription, indicating possible contribution of Spn-E to post-transcriptional regulation.
Collapse
|