1
|
Abstract
It is well known that electrical signals are deeply associated with living entities. Much of our understanding of excitable tissues is derived from studies of specialized cells of neurons or myocytes. However, electric potential is present in all cell types and results from the differential partitioning of ions across membranes. This electrical potential correlates with cell behavior and tissue organization. In recent years, there has been exciting, and broadly unexpected, evidence linking the regulation of development to bioelectric signals. However, experimental modulation of electrical potential can have multifaceted and pleiotropic effects, which makes dissecting the role of electrical signals in development difficult. Here, I review evidence that bioelectric cues play defined instructional roles in orchestrating development and regeneration, and further outline key areas in which to refine our understanding of this signaling mechanism.
Collapse
Affiliation(s)
- Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue Enders 260, Boston MA 02115, USA
| |
Collapse
|
2
|
Wu X, Hu J, Li G, Li Y, Li Y, Zhang J, Wang F, Li A, Hu L, Fan Z, Lü S, Ding G, Zhang C, Wang J, Long M, Wang S. Biomechanical stress regulates mammalian tooth replacement via the integrin β1-RUNX2-Wnt pathway. EMBO J 2020; 39:e102374. [PMID: 31830314 PMCID: PMC6996503 DOI: 10.15252/embj.2019102374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022] Open
Abstract
Renewal of integumentary organs occurs cyclically throughout an organism's lifetime, but the mechanism that initiates each cycle remains largely unknown. In a miniature pig model of tooth development that resembles tooth development in humans, the permanent tooth did not begin transitioning from the resting to the initiation stage until the deciduous tooth began to erupt. This eruption released the accumulated mechanical stress inside the mandible. Mechanical stress prevented permanent tooth development by regulating expression and activity of the integrin β1-ERK1-RUNX2 axis in the surrounding mesenchyme. We observed similar molecular expression patterns in human tooth germs. Importantly, the release of biomechanical stress induced downregulation of RUNX2-wingless/integrated (Wnt) signaling in the mesenchyme between the deciduous and permanent tooth and upregulation of Wnt signaling in the epithelium of the permanent tooth, triggering initiation of its development. Consequently, our findings identified biomechanical stress-associated Wnt modulation as a critical initiator of organ renewal, possibly shedding light on the mechanisms of integumentary organ regeneration.
Collapse
Affiliation(s)
- Xiaoshan Wu
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Department of Oral and Maxillofacial SurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Jinrong Hu
- Center of Biomechanics and BioengineeringKey Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijingChina
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Guoqing Li
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Yan Li
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Fortune Link Triones Scitech Co., Ltd.BeijingChina
| | - Yang Li
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Jing Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Fu Wang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Department of Oral Basic ScienceSchool of StomatologyDalian Medical UniversityDalianChina
| | - Ang Li
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anChina
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Shouqin Lü
- Center of Biomechanics and BioengineeringKey Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijingChina
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Gang Ding
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Department of StomatologyYidu Central HospitalWeifang Medical UniversityWeifangChina
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
| | - Jinsong Wang
- Department of Biochemistry and Molecular BiologyCapital Medical University School of Basic Medical SciencesBeijingChina
| | - Mian Long
- Center of Biomechanics and BioengineeringKey Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijingChina
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of StomatologyBeijingChina
- Department of Biochemistry and Molecular BiologyCapital Medical University School of Basic Medical SciencesBeijingChina
| |
Collapse
|
3
|
Peña‐Jimenez D, Fontenete S, Megias D, Fustero‐Torre C, Graña‐Castro O, Castellana D, Loewe R, Perez‐Moreno M. Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J 2019; 38:e101688. [PMID: 31475747 PMCID: PMC6769427 DOI: 10.15252/embj.2019101688] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Lymphatic vessels are essential for skin fluid homeostasis and immune cell trafficking. Whether the lymphatic vasculature is associated with hair follicle regeneration is, however, unknown. Here, using steady and live imaging approaches in mouse skin, we show that lymphatic vessels distribute to the anterior permanent region of individual hair follicles, starting from development through all cycle stages and interconnecting neighboring follicles at the bulge level, in a stem cell-dependent manner. Lymphatic vessels further connect hair follicles in triads and dynamically flow across the skin. At the onset of the physiological stem cell activation, or upon pharmacological or genetic induction of hair follicle growth, lymphatic vessels transiently expand their caliber suggesting an increased tissue drainage capacity. Interestingly, the physiological caliber increase is associated with a distinct gene expression correlated with lymphatic vessel reorganization. Using mouse genetics, we show that lymphatic vessel depletion blocks hair follicle growth. Our findings point toward the lymphatic vasculature being important for hair follicle development, cycling, and organization, and define lymphatic vessels as stem cell niche components, coordinating connections at tissue-level, thus provide insight into their functional contribution to skin regeneration.
Collapse
Affiliation(s)
- Daniel Peña‐Jimenez
- Epithelial Cell Biology GroupCancer Cell Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
| | - Silvia Fontenete
- Epithelial Cell Biology GroupCancer Cell Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
- Section of Cell Biology and PhysiologyDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Diego Megias
- Confocal Microscopy Core UnitBiotechnology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
| | - Coral Fustero‐Torre
- Bioinformatics UnitStructural Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
| | - Osvaldo Graña‐Castro
- Bioinformatics UnitStructural Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
| | - Donatello Castellana
- Epithelial Cell Biology GroupCancer Cell Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
- Center for Cooperative Research Biosciences (CIC bioGUNE)Derio BizkaiaSpain
| | - Robert Loewe
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Mirna Perez‐Moreno
- Epithelial Cell Biology GroupCancer Cell Biology ProgrammeSpanish Cancer Research Centre (CNIO)MadridSpain
- Section of Cell Biology and PhysiologyDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Wu XS, Yeh CY, Harn HIC, Jiang TX, Wu P, Widelitz RB, Baker RE, Chuong CM. Self-assembly of biological networks via adaptive patterning revealed by avian intradermal muscle network formation. Proc Natl Acad Sci U S A 2019; 116:10858-10867. [PMID: 31072931 PMCID: PMC6561168 DOI: 10.1073/pnas.1818506116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Networked structures integrate numerous elements into one functional unit, while providing a balance between efficiency, robustness, and flexibility. Understanding how biological networks self-assemble will provide insights into how these features arise. Here, we demonstrate how nature forms exquisite muscle networks that can repair, regenerate, and adapt to external perturbations using the feather muscle network in chicken embryos as a paradigm. The self-assembled muscle networks arise through the implementation of a few simple rules. Muscle fibers extend outward from feather buds in every direction, but only those muscle fibers able to connect to neighboring buds are eventually stabilized. After forming such a nearest-neighbor configuration, the network can be reconfigured, adapting to perturbed bud arrangement or mechanical cues. Our computational model provides a bioinspired algorithm for network self-assembly, with intrinsic or extrinsic cues necessary and sufficient to guide the formation of these regenerative networks. These robust principles may serve as a useful guide for assembling adaptive networks in other contexts.
Collapse
Affiliation(s)
- Xiao-Shan Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050 Beijing, China
| | - Chao-Yuan Yeh
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
- Integrative Stem Cell Center, China Medical University, 40402 Taichung, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
- International Research Center of Wound Repair and Regeneration, National Cheng Kung University, 701 Tainan, Taiwan
| | - Ting-Xing Jiang
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, CA 90033
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, OX2 6GG Oxford, United Kingdom
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033;
- Integrative Stem Cell Center, China Medical University, 40402 Taichung, Taiwan
- International Research Center of Wound Repair and Regeneration, National Cheng Kung University, 701 Tainan, Taiwan
| |
Collapse
|
5
|
Bhat R, Glimm T, Linde-Medina M, Cui C, Newman SA. Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton. Mech Dev 2019; 156:41-54. [DOI: 10.1016/j.mod.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
6
|
Harries MJ, Jimenez F, Izeta A, Hardman J, Panicker SP, Poblet E, Paus R. Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases. Trends Mol Med 2018; 24:435-448. [DOI: 10.1016/j.molmed.2018.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/06/2023]
|
7
|
Bentzon JF, Majesky MW. Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. Cardiovasc Res 2018; 114:492-500. [PMID: 29293902 PMCID: PMC5852531 DOI: 10.1093/cvr/cvx251] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Advances in lineage-tracking techniques have provided new insights into the origins and fates of smooth muscle cells (SMCs) in atherosclerosis. Yet new tools present new challenges for data interpretation that require careful consideration of the strengths and weaknesses of the methods employed. At the same time, discoveries in other fields have introduced new perspectives on longstanding questions about steps in atherogenesis that remain poorly understood. In this article, we address both the challenges and opportunities for a better understanding of the mechanisms by which cells appearing as or deriving from SMCs accumulate in atherosclerosis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Physiologic
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Room 525, M/S C9S-5, Seattle, WA 98011, USA
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Dobreva A, Paus R, Cogan NG. Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:387-407. [DOI: 10.1093/imammb/dqx009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - N G Cogan
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|