1
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Carpio Alvarez M, Cintado Benitez A, Diaz Argudin T, Nodarse Cuni H, Dominguez Horta MDC, Fernández Massó JR. Association between COMMD1 gene polymorphism rs11125908 and rheumatoid arthritis in the Cuban population. Reumatismo 2024; 76. [PMID: 38916163 DOI: 10.4081/reumatismo.2024.1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/09/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE To evaluate the association of the rs11125908 polymorphism in the COMMD1 gene in the Cuban population with rheumatoid arthritis (RA). METHODS In this case-control study, 161 RA patients and 150 control subjects were genotyped for rs11125908 by the allele-specific polymerase chain reaction method. DNA sequencing was used to verify the assignation of the polymorphism. The odds ratios (OR) and their 95% confidence interval were calculated by logistic regression to determine the associations between genotypes and RA using the SNPStats software. RESULTS An association of the single nucleotide polymorphism with the disease was found in the overdominant model (p=0.025; OR=1.91) for the AG genotype. Our analyses revealed an association between rs11125908 and the subgroup of patients with swollen joints < median under the codominant model for AG (p=0.034; OR=2.30) and GG genotype (p=0.034; OR=0.82) and with the overdominant model (p=0.01; OR=2.38). The subgroup of patients with an age of onset lower than the mean and AG genotype showed an association in the overdominant model (p=0.027; OR=2.27). Disease activity score 28 with erythrocyte sedimentation rate and disease duration variables were not associated with the rs11125908 polymorphism. CONCLUSIONS rs11125908 was associated with RA and with the number of swollen joints and age of onset subgroup analyses. We provide concepts for treatments for RA, based on pharmacological management of COMMD1 expression.
Collapse
Affiliation(s)
- M Carpio Alvarez
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana.
| | - A Cintado Benitez
- Pharmacogenomics Department, Center for Genetic Engineering and Biotechnology, Havana.
| | - T Diaz Argudin
- Pharmacogenomics Department, Center for Genetic Engineering and Biotechnology, Havana.
| | - H Nodarse Cuni
- Clinical Research Direction, Center for Genetic Engineering and Biotechnology, Havana.
| | - M D C Dominguez Horta
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana.
| | - J R Fernández Massó
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana.
| |
Collapse
|
3
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Büki G, Bekő A, Bödör C, Urbán P, Németh K, Hadzsiev K, Fekete G, Kehrer-Sawatzki H, Bene J. Identification of an NF1 Microdeletion with Optical Genome Mapping. Int J Mol Sci 2023; 24:13580. [PMID: 37686382 PMCID: PMC10487413 DOI: 10.3390/ijms241713580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a clinically heterogeneous neurocutaneous disorder inherited in autosomal dominant manner. Approximately 5-10% of the cases are caused by NF1 microdeletions involving the NF1 gene and its flanking regions. Microdeletions, which lead to more severe clinical manifestations, can be subclassified into four different types (type 1, 2, 3 and atypical) according to their size, the genomic location of the breakpoints and the number of genes included within the deletion. Besides the prominent hallmarks of NF1, patients with NF1 microdeletions frequently exhibit specific additional clinical manifestations like dysmorphic facial features, macrocephaly, overgrowth, global developmental delay, cognitive disability and an increased risk of malignancies. It is important to identify the genes co-deleted with NF1, because they are likely to have an effect on the clinical manifestation. Multiplex ligation-dependent probe amplification (MLPA) and microarray analysis are the primary techniques for the investigation of NF1 microdeletions. However, based on previous research, optical genome mapping (OGM) could also serve as an alternative method to identify copy number variations (CNVs). Here, we present a case with NF1 microdeletion identified by means of OGM and demonstrate that this novel technology is a suitable tool for the identification and classification of the NF1 microdeletions.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (A.B.); (C.B.)
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (A.B.); (C.B.)
| | - Péter Urbán
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
| | - Krisztina Németh
- Pediatric Center, Tűzoltó Street Department, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.N.); (G.F.)
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| | - György Fekete
- Pediatric Center, Tűzoltó Street Department, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.N.); (G.F.)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
5
|
Buki G, Szalai R, Pinter A, Hadzsiev K, Melegh B, Rauch T, Bene J. Correlation between large FBN1 deletions and severe cardiovascular phenotype in Marfan syndrome: Analysis of two novel cases and analytical review of the literature. Mol Genet Genomic Med 2023:e2166. [PMID: 36945115 DOI: 10.1002/mgg3.2166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a clinically heterogeneous hereditary connective tissue disorder. Severe cardiovascular manifestations (i.e., aortic aneurysm and dissection) are the most life-threatening complications. Most of the cases are caused by mutations, a minor group of which are copy number variations (CNV), in the FBN1 gene. METHODS Multiplex ligation-dependent probe amplification test was performed to detect CNVs in 41 MFS patients not carrying disease-causing mutations in FBN1 gene. Moreover, the association was analyzed between the localization of CNVs, the affected regulatory elements and the cardiovascular phenotypes among all cases known from the literature. RESULTS A large two-exon deletion (exon 46 and 47) was identified in two related patients, which was associated with a mild form of cardiovascular phenotype. Severe cardiovascular symptoms were found significantly more frequent in patients with FBN1 large deletion compared to our patients with intragenic small scale FBN1 mutation. Bioinformatic data analyses of regulatory elements located within the FBN1 gene revealed an association between the deletion of STAT3 transcription factor-binding site and cardiovascular symptoms in five out of 25 patients. CONCLUSION Our study demonstrated that large CNVs are often associated with severe cardiovascular manifestations in MFS and the localization of these CNVs affect the phenotype severity.
Collapse
Affiliation(s)
- Gergely Buki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Renata Szalai
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Adrienn Pinter
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Rauch
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
MacKenzie A, Hay EA, McEwan AR. Context-dependant enhancers as a reservoir of functional polymorphisms and epigenetic markers linked to alcohol use disorders and comorbidities. ADDICTION NEUROSCIENCE 2022; 2:None. [PMID: 35712020 PMCID: PMC9101288 DOI: 10.1016/j.addicn.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 10/25/2022]
|
7
|
Ni P, Su Z. Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans. NAR Genom Bioinform 2021; 3:lqab052. [PMID: 34159315 PMCID: PMC8210889 DOI: 10.1093/nargab/lqab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Abdallah AM, Abu-Madi M. The Genetic Control of the Rheumatic Heart: Closing the Genotype-Phenotype Gap. Front Med (Lausanne) 2021; 8:611036. [PMID: 33842495 PMCID: PMC8024521 DOI: 10.3389/fmed.2021.611036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatic heart disease (RHD) is a heritable inflammatory condition characterized by carditis, arthritis, and systemic disease. Although remaining neglected, the last 3 years has seen some promising advances in RHD research. Whilst it is clear that RHD can be triggered by recurrent group A streptococcal infections, the mechanisms driving clinical progression are still poorly understood. This review summarizes our current understanding of the genetics implicated in this process and the genetic determinants that predispose some people to RHD. The evidence demonstrating the importance of individual cell types and cellular states in delineating causal genetic variants is discussed, highlighting phenotype/genotype correlations where possible. Genetic fine mapping and functional studies in extreme phenotypes, together with large-scale omics studies including genomics, transcriptomics, epigenomics, and metabolomics, are expected to provide new information not only on RHD but also on the mechanisms of other autoimmune diseases and facilitate future clinical translation.
Collapse
Affiliation(s)
- Atiyeh M Abdallah
- Biomedical and Pharmaceutical Research Unit, Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Marawan Abu-Madi
- Biomedical and Pharmaceutical Research Unit, Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Wagner M, Jasek M, Karabon L. Immune Checkpoint Molecules-Inherited Variations as Markers for Cancer Risk. Front Immunol 2021; 11:606721. [PMID: 33519815 PMCID: PMC7840570 DOI: 10.3389/fimmu.2020.606721] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, immunotherapy has been revolutionized by a new approach that works by blocking receptors called immune checkpoints (IC). These molecules play a key role in maintaining immune homeostasis, mainly by suppressing the immune response and by preventing its overactivation. Since inhibition of the immune response by IC can be used by cancer to avoid recognition and destruction by immune system, blocking them enhances the anti-tumor response. This therapeutic approach has brought spectacular clinical effects. The ICs present heterogeneous expression patterns on immune cells, which may affect the effectiveness of immunotherapy. The inherited genetic variants in regulatory regions of ICs genes can be considered as potential factors responsible for observed inter-individual differences in ICs expression levels on immune cells. Additionally, polymorphism located in exons may introduce changes to ICs amino acid sequences with potential impact on functional properties of these molecules. Since genetic variants may affect both expression and structure of ICs, they are considered as risk factors of cancer development. Inherited genetic markers such as SNPs may also be useful in stratification patients into groups which will benefit from particular immunotherapy. In this review, we have comprehensively summarized the current understanding of the relationship between inherited variations of CTLA-4, PDCD1, PD-L1, BTLA, TIM-3, and LAG-3 genes in order to select SNPs which can be used as predictive biomarkers in personalized evaluation of cancer risk development and outcomes as well as possible response to immunotherapy.
Collapse
Affiliation(s)
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | |
Collapse
|
10
|
Association of Common Variants of TNFSF13 and TNFRSF13B Genes with CLL Risk and Clinical Picture, as Well as Expression of Their Products-APRIL and TACI Molecules. Cancers (Basel) 2020; 12:cancers12102873. [PMID: 33036273 PMCID: PMC7601931 DOI: 10.3390/cancers12102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Interactions between APRIL (TNFSF13) and its receptor TACI (TNFRSF13B) are implicated in providing survival benefits for chronic lymphocytic leukaemia (CLL) cells. Here we explored the relationship between TNFSF13 and TNFRSF13B SNPs and expression of APRIL and TACI molecules and performed extended case-control study to evaluate earlier observations. Expression of APRIL and TACI was detected by FACS for 72 and 145 patients, respectively, and soluble APRIL was measured by ELISA in plasma of 122 patients. Genotypes were determined in 439 CLL patients and 477 control subjects with TaqMan Assays or restriction fragment length polymorphism (RFLP). The rs4968210GG genotype of TNFSF13 was associated with a lower percentage of CD19+APRIL+ cells in CLL patients when compared to (AA + GA) genotypes (p-value = 0.027). Homozygosity at rs11078355 TNFRSF13B was associated with higher CD19+ TACI+ cell percentage in CLL patients (p-value = 0.036). The analysis of extended groups of patients and healthy controls confirmed the association of TNFSF13 rs3803800AA genotype with a higher CLL risk (OR = 2.13; CI95% = 1.21; 3.75; p-value = 0.007), while the possession of TNFRSF13B rs4985726G allele (CG + GG) genotype was associated with lower risk of CLL (OR = 0.69; CI95% = 0.51; 0.95; p-value = 0.02). Genetic variants of TNFSF13 and TNFRSF13B may have an impact on APRIL and TACI expression and may be considered as possible CLL risk factors.
Collapse
|
11
|
Moradifard S, Hoseinbeyki M, Emam MM, Parchiniparchin F, Ebrahimi-Rad M. Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 786:108339. [PMID: 33339581 DOI: 10.1016/j.mrrev.2020.108339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
As a complex disease, osteoporosis is influenced by several genetic markers. Many studies have examined the link between the Sp1 binding site +1245 G > T (rs1800012) and -1997 G > T (rs1107946) variations in the COL1A1 gene with osteoporosis risk. However, the findings of these studies have been contradictory; therefore, we performed a meta-analysis to aggregate additional information and obtain increased statistical power to more efficiently estimate this correlation. A meta-analysis was conducted with studies published between 1991-2020 that were identified by a systematic electronic search of the Scopus and Clarivate Analytics databases. Studies with bone mineral density (BMD) data and complete genotypes of the single-nucleotide variations (SNVs) for the overall and postmenopausal female population were included in this meta-analysis and analyzed using the R metaphor package. A relationship between rs1800012 and significantly decreased BMD values at the lumbar spine and femoral neck was found in individuals carrying the "ss" versus the "SS" genotype in the overall population according to a random effects model (p < 0.0001). Similar results were also found in the postmenopausal female population (p = 0.003 and 0.0002, respectively). Such findings might be an indication of increased osteoporosis risk in both studied groups in individuals with the "ss" genotype. Although no association was identified between the -1997 G > T and low BMD in the overall population, those individuals with the "GT" genotype showed a higher level of BMD than those with "GG" in the subgroup analysis (p = 0.007). To determine which transcription factor (TF) might bind to the -1997 G > T in COL1A1, 45 TFs were identified based on bioinformatics predictions. According to the GSE35958 microarray dataset, 16 of 45 TFs showed differential expression profiles in osteoporotic human mesenchymal stem cells relative to normal samples from elderly donors. By identifying candidate TFs for the -1997 G > T site, our study offers a new perspective for future research.
Collapse
Affiliation(s)
| | | | - Mohammad Mehdi Emam
- Rheumatology Ward, Loghman Hospital, Shahid Beheshti Medical University (SBMU), Tehran, Iran
| | | | | |
Collapse
|
12
|
Lancaster BR, McGhee JD. How affinity of the ELT-2 GATA factor binding to cis-acting regulatory sites controls Caenorhabditis elegans intestinal gene transcription. Development 2020; 147:dev190330. [PMID: 32586978 PMCID: PMC7390640 DOI: 10.1242/dev.190330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.
Collapse
Affiliation(s)
- Brett R Lancaster
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
13
|
Barajas-Mora EM, Feeney AJ. Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure. Transcription 2019; 11:37-51. [PMID: 31829768 DOI: 10.1080/21541264.2019.1699383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.
Collapse
Affiliation(s)
- E Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
14
|
Cohen DM, Lim HW, Won KJ, Steger DJ. Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Res 2019; 46:8371-8384. [PMID: 30085281 PMCID: PMC6144830 DOI: 10.1093/nar/gky681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Sequence-specific DNA binding recruits transcription factors (TFs) to the genome to regulate gene expression. Here, we perform high resolution mapping of CEBP proteins to determine how sequence dictates genomic occupancy. We demonstrate a fundamental difference between the sequence repertoire utilized by CEBPs in vivo versus the palindromic sequence preference reported by classical in vitro models, by identifying a palindromic motif at <1% of the genomic binding sites. On the native genome, CEBPs bind a diversity of related 10 bp sequences resulting from the fusion of degenerate and canonical half-sites. Altered DNA specificity of CEBPs in cells occurs through heterodimerization with other bZip TFs, and approximately 40% of CEBP-binding sites in primary human cells harbor motifs characteristic of CEBP heterodimers. In addition, we uncover an important role for sequence bias at core-motif-flanking bases for CEBPs and demonstrate that flanking bases regulate motif function across mammalian bZip TFs. Favorable flanking bases confer efficient TF occupancy and transcriptional activity, and DNA shape may explain how the flanks alter TF binding. Importantly, motif optimization within the 10-mer is strongly correlated with cell-type-independent recruitment of CEBPβ, providing key insight into how sequence sub-optimization affects genomic occupancy of widely expressed CEBPs across cell types.
Collapse
Affiliation(s)
- Daniel M Cohen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David J Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kundaje A. Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS One 2019; 14:e0218073. [PMID: 31206543 PMCID: PMC6576758 DOI: 10.1371/journal.pone.0218073] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/24/2019] [Indexed: 11/19/2022] Open
Abstract
The relationship between noncoding DNA sequence and gene expression is not well-understood. Massively parallel reporter assays (MPRAs), which quantify the regulatory activity of large libraries of DNA sequences in parallel, are a powerful approach to characterize this relationship. We present MPRA-DragoNN, a convolutional neural network (CNN)-based framework to predict and interpret the regulatory activity of DNA sequences as measured by MPRAs. While our method is generally applicable to a variety of MPRA designs, here we trained our model on the Sharpr-MPRA dataset that measures the activity of ∼500,000 constructs tiling 15,720 regulatory regions in human K562 and HepG2 cell lines. MPRA-DragoNN predictions were moderately correlated (Spearman ρ = 0.28) with measured activity and were within range of replicate concordance of the assay. State-of-the-art model interpretation methods revealed high-resolution predictive regulatory sequence features that overlapped transcription factor (TF) binding motifs. We used the model to investigate the cell type and chromatin state preferences of predictive TF motifs. We explored the ability of our model to predict the allelic effects of regulatory variants in an independent MPRA experiment and fine map putative functional SNPs in loci associated with lipid traits. Our results suggest that interpretable deep learning models trained on MPRA data have the potential to reveal meaningful patterns in regulatory DNA sequences and prioritize regulatory genetic variants, especially as larger, higher-quality datasets are produced.
Collapse
Affiliation(s)
- Rajiv Movva
- The Harker School, San Jose, CA, United States of America
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Peyton Greenside
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, United States of America
| | - Georgi K. Marinov
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States of America
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
16
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
17
|
Gajbhiye R, Fung JN, Montgomery GW. Complex genetics of female fertility. NPJ Genom Med 2018; 3:29. [PMID: 30345074 PMCID: PMC6185946 DOI: 10.1038/s41525-018-0068-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023] Open
Abstract
Variation in reproductive lifespan and female fertility have implications for health, population size and ageing. Fertility declines well before general signs of menopause and is also adversely affected by common reproductive diseases, including polycystic ovarian syndrome (PCOS) and endometriosis. Understanding the factors that regulate the timing of puberty and menopause, and the relationships with fertility are important for individuals and for policy. Substantial genetic variation exists for common traits associated with reproductive lifespan and for common diseases influencing female fertility. Genetic studies have identified mutations in genes contributing to disorders of reproduction, and in the last ten years, genome-wide association studies (GWAS) have transformed our understanding of common genetic contributions to these complex traits and diseases. These studies have made great progress towards understanding the genetic factors contributing to variation in traits and diseases influencing female fertility. The data emerging from GWAS demonstrate the utility of genetics to explain epidemiological observations, revealing shared biological pathways linking puberty timing, fertility, reproductive ageing and health outcomes. Many variants implicate DNA damage/repair genes in variation in the age at menopause with implications for follicle health and ageing. In addition to the discovery of individual genes and pathways, the increasingly powerful studies on common genetic risk factors help interpret the underlying relationships and direction of causation in the regulation of reproductive lifespan, fertility and related traits.
Collapse
Affiliation(s)
- Rahul Gajbhiye
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive Health, J. M. Street, Parel Mumbai, 400012 India
| | - Jenny N. Fung
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Grant W. Montgomery
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
18
|
Ostrovsky O, Grushchenko-Polaq AH, Beider K, Mayorov M, Canaani J, Shimoni A, Vlodavsky I, Nagler A. Identification of strong intron enhancer in the heparanase gene: effect of functional rs4693608 variant on HPSE enhancer activity in hematological and solid malignancies. Oncogenesis 2018; 7:51. [PMID: 29955035 PMCID: PMC6023935 DOI: 10.1038/s41389-018-0060-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/03/2018] [Accepted: 05/20/2018] [Indexed: 01/10/2023] Open
Abstract
Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of heparan sulfate (HS) proteoglycans and releases HS-bound cytokines, chemokines, and bioactive growth-promoting factors. Heparanase plays an important role in the nucleus as part of an active chromatin complex. Our previous studies revealed that rs4693608 correlates with heparanase levels and increased risk of acute and extensive chronic graft vs. host disease (GVHD). Discrepancy between recipient and donor in this SNP significantly affected the risk of acute GVHD. In the present study, we analyzed the HPSE gene region, including rs4693608, and demonstrated that this region exhibits SNPs-dependent enhancer activity. Analysis of nuclear proteins from normal leukocytes revealed their binding to DNA probe of both alleles with higher affinity to allele G. All malignant cell lines and leukemia samples disclosed a shift of the main bands in comparison to normal leukocytes. At least five additional shifted bands were bound to allele A while allele G probe was bound to only one main DNA/protein complex. Additional SNPs rs4693083, rs4693084, and rs4693609 were found in strong linkage disequilibrium (LD) with rs11099592 (exon 7). Only rs4693084 affected protein binding to DNA in cell lines and leukemia samples. As a result of the short distance between rs4693608 and rs4693084, both SNPs may be included in a common DNA/protein complex. DNA pull-down assay revealed that heparanase is involved in self-regulation by negative feedback in rs4693608-dependent manner. During carcinogenesis, heparanase self-regulation is discontinued and the helicase-like transcription factor begins to regulate this enhancer region. Altogether, our study elucidates conceivable mechanism(s) by which rs4693608 SNP regulates HPSE gene expression and the associated disease outcome.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Margarita Mayorov
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Canaani
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
19
|
Vuckovic D, Mezzavilla M, Cocca M, Morgan A, Brumat M, Catamo E, Concas MP, Biino G, Franzè A, Ambrosetti U, Pirastu M, Gasparini P, Girotto G. Whole-genome sequencing reveals new insights into age-related hearing loss: cumulative effects, pleiotropy and the role of selection. Eur J Hum Genet 2018; 26:1167-1179. [PMID: 29725052 PMCID: PMC6057993 DOI: 10.1038/s41431-018-0126-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly. Although not directly life threatening, it contributes to loss of autonomy and is associated with anxiety, depression and cognitive decline. To search for genetic risk factors underlying ARHL, a large whole-genome sequencing (WGS) approach has been carried out in a cohort of 212 cases and controls, both older than 50 years to select genes characterized by a burden of variants specific to cases or controls. Accordingly, the total variation load per gene was compared and two groups were detected: 375 genes more variable in cases and 371 more variable in controls. In both cases, Gene Ontology analysis showed that the largest enrichment for biological processes (fold > 5, p-value = 0.042) was the “sensory perception of sound”, suggesting cumulative genetic effects were involved. Replication confirmed 141 genes, while additional analysis based on natural selection led to a prioritization of 21 genes. The majority of them (20 out of 21) showed positive expression in mouse cochlea cDNA and were associated with two functional pathways. Among them, two genes were previously associated with hearing (CSMD1 and PTRPD) and re-sequenced in a large Italian cohort of ARHL patients (N = 389). Results led to the identification of six coding variants not detected in cases so far, suggesting a possible protective role, which requires investigation. In conclusion, we show that this multistep strategy (WGS, selection, expression, pathway analysis and targeted re-sequencing) can provide major insights into the molecular characterization of complex diseases such as ARHL.
Collapse
Affiliation(s)
- Dragana Vuckovic
- Medical Sciences, Chirurgical and Health Department, University of Trieste, Trieste, Italy. .,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Massimo Mezzavilla
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Massimiliano Cocca
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Anna Morgan
- Medical Sciences, Chirurgical and Health Department, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Medical Sciences, Chirurgical and Health Department, University of Trieste, Trieste, Italy
| | - Eulalia Catamo
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Maria Pina Concas
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Annamaria Franzè
- Ceinge Advanced Biotechnology, Naples, Italy.,Neuroscience, Reproductive and Odontology Sciences Department, University of Naples "Federico II", Naples, Italy
| | - Umberto Ambrosetti
- UO Audiology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.,Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Paolo Gasparini
- Medical Sciences, Chirurgical and Health Department, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giorgia Girotto
- Medical Sciences, Chirurgical and Health Department, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
20
|
Abstract
Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects
in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and
in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between
in vitro and
in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.
Collapse
|
21
|
Zeng P, Wang T, Huang S. Cis-SNPs Set Testing and PrediXcan Analysis for Gene Expression Data using Linear Mixed Models. Sci Rep 2017; 7:15237. [PMID: 29127305 PMCID: PMC5681585 DOI: 10.1038/s41598-017-15055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding the functional mechanism of SNPs identified in GWAS on complex diseases is currently a challenging task. The studies of expression quantitative trait loci (eQTL) have shown that regulatory variants play a crucial role in the function of associated SNPs. Detecting significant genes (called eGenes) in eQTL studies and analyzing the effect sizes of cis-SNPs can offer important implications on the genetic architecture of associated SNPs and interpretations of the molecular basis of diseases. We applied linear mixed models (LMM) to the gene expression level and constructed likelihood ratio tests (LRT) to test for eGene in the Geuvadis data. We identified about 11% genes as eGenes in the Geuvadis data and found some eGenes were enriched in approximately independent linkage disequilibrium (LD) blocks (e.g. MHC). We further performed PrediXcan analysis for seven diseases in the WTCCC data with weights estimated using LMM and identified 64, 5, 21 and 1 significant genes (p < 0.05 after Bonferroni correction) associated with T1D, CD, RA and T2D. We found most of the significant genes of T1D and RA were also located within the MHC region. Our results provide strong evidence that gene expression plays an intermediate role for the associated variants in GWAS.
Collapse
Affiliation(s)
- Ping Zeng
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China.
- University of Michigan, Department of Biostatistics, Ann Arbor, MI, 48104, USA.
| | - Ting Wang
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China
| | - Shuiping Huang
- Xuzhou Medical University, Department of Epidemiology and Biostatistics, Xuzhou, 221004, China.
| |
Collapse
|
22
|
Dougherty JD, Yang C, Lake AM. Systems biology in the central nervous system: a brief perspective on essential recent advancements. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:67-76. [PMID: 29057378 PMCID: PMC5648337 DOI: 10.1016/j.coisb.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As recent advances in human genetics have begun to more rapidly identify the individual genes contributing to risk of psychiatric disease, the spotlight now turns to understanding how disruption of these genes alters the brain, and thus behavior. Compared to other tissues, cellular complexity in the brain provides both a substantial challenge and a significant opportunity for systems biology approaches. Current methods are maturing that will allow for finally defining the 'parts list' for the functioning mouse and human brains, enabling new approaches to defining how the system goes awry in disorders of the CNS. However, the availability of tissue is certainly a challenge for systems biology of neuroscience, compared to systems biology of other tissues, where biopsy is feasible. This challenge is particularly notable for disorders caused by extremely rare genetic variants. Thus computational and systems biology approaches, as well as precise experimental models by way of genome editing, will play key roles in defining mechanisms for disorders, and their individual symptoms, across varied genetic etiologies. Here, we highlight recent progress in neurogenetics, postmortem genomics, cell-type specific profiling, and precision modeling toward defining mechanisms in disease.
Collapse
Affiliation(s)
- Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M. Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Guo C, McDowell IC, Nodzenski M, Scholtens DM, Allen AS, Lowe WL, Reddy TE. Transversions have larger regulatory effects than transitions. BMC Genomics 2017; 18:394. [PMID: 28525990 PMCID: PMC5438547 DOI: 10.1186/s12864-017-3785-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background Transversions (Tv’s) are more likely to alter the amino acid sequence of proteins than transitions (Ts’s), and local deviations in the Ts:Tv ratio are indicative of evolutionary selection on genes. Whether the two different types of mutations have different effects in non-protein-coding sequences remains unknown. Genetic variants primarily impact gene expression by disrupting the binding of transcription factors (TFs) and other DNA-binding proteins. Because Tv’s cause larger changes in the shape of a DNA backbone, we hypothesized that Tv’s would have larger impacts on TF binding and gene expression. Results Here, we provide multiple lines of evidence demonstrating that Tv’s have larger impacts on regulatory DNA including analyses of TF binding motifs and allele-specific TF binding. In these analyses, we observed a depletion of Tv’s within TF binding motifs and TF binding sites. Using massively parallel population-scale reporter assays, we also provided empirical evidence that Tv’s have larger effects than Ts’s on the activity of human gene regulatory elements. Conclusions Tv’s are more likely to disrupt TF binding, resulting in larger changes in gene expression. Although the observed differences are small, these findings represent a novel, fundamental property of regulatory variation. Understanding the features of functional non-coding variation could be valuable for revealing the genetic underpinnings of complex traits and diseases in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3785-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Guo
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, 27710, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC, 27710, USA
| | - Ian C McDowell
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Michael Nodzenski
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Andrew S Allen
- Center for Statistical Genetics and Genomics, Duke University Durham, North Carolina, 27710, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, 27710, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, 27710, USA. .,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, 27710, USA. .,Present Address: Biostatistics & Bioinformatics, 101 Science Dr., 2347 CIEMAS, Durham, NC, 27708, USA.
| |
Collapse
|