1
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Li D, Peng X, Hu Z, Li S, Chen J, Pan W. Small molecules targeting selected histone methyltransferases (HMTs) for cancer treatment: Current progress and novel strategies. Eur J Med Chem 2024; 264:115982. [PMID: 38056296 DOI: 10.1016/j.ejmech.2023.115982] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Histone methyltransferases (HMTs) play a critical role in gene post-translational regulation and diverse physiological processes, and are implicated in a plethora of human diseases, especially cancer. Increasing evidences demonstrate that HMTs may serve as a potential therapeutic target for cancer treatment. Thus, the development of HMTs inhibitor have been pursued with steadily increasing interest over the past decade. However, the disadvantages such as insufficient clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of conventional HMT inhibitors. New technologies and methods are imperative to enhance the anticancer activity of HMT inhibitors. In this review, we first review the structure and biological functions of the several essential HMTs, such as EZH2, G9a, PRMT5, and DOT1L. The internal relationship between these HMTs and cancer is also expounded. Next, we mainly focus on the latest progress in the development of HMT modulators encompassing dual-target inhibitors, targeted protein degraders and covalent inhibitors from perspectives such as rational design, pharmacodynamics, pharmacokinetics, and clinical status. Lastly, we also discuss the challenges and future directions for HMT-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 516000, PR China.
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
3
|
Lin X, Long S, Yan C, Zou X, Zhang G, Zou J, Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front Oncol 2023; 13:1202656. [PMID: 37810976 PMCID: PMC10551447 DOI: 10.3389/fonc.2023.1202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Angiogenesis is an essential process in the growth and metastasis of cancer cells, which can be hampered by an anti-angiogenesis mechanism, thereby delaying the progression of tumors. However, the benefit of this treatment modality could be restricted, as most patients tend to develop acquired resistance during treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative mechanism of tumor angiogenesis, where studies have demonstrated that patients with tumors supplemented with VM generally have a shorter survival period and a poorer prognosis. Inhibiting VM may be an effective therapeutic strategy to prevent cancer progression, which could prove helpful in impeding the limitations of lone use of anti-angiogenic therapy when performed concurrently with other anti-tumor therapies. This review summarizes the mechanism of VM signaling pathways in urological tumors, i.e., prostate cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it also summarizes the potential of VM as a therapeutic strategy for urological tumors.
Collapse
Affiliation(s)
- Xinyu Lin
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Long
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Congcong Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gengqing Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
5
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
6
|
Marzochi LL, Cuzziol CI, Nascimento Filho CHVD, Dos Santos JA, Castanhole-Nunes MMU, Pavarino ÉC, Guerra ENS, Goloni-Bertollo EM. Use of histone methyltransferase inhibitors in cancer treatment: A systematic review. Eur J Pharmacol 2023; 944:175590. [PMID: 36775112 DOI: 10.1016/j.ejphar.2023.175590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Histone modifications are an epigenetic mechanism, and the dysregulation of these proteins is known to be associated with the initiation and progression of cancer. In the search for the development of new and more effective drugs, histone modifications were identified as possible therapeutic targets. Histone methyltransferase (HMT) inhibitors correspond to the third generation of epigenetic drugs capable of writing or deleting epigenetic information. This systematic review summarized the development and prospect for the use of different HMT inhibitors in cancer therapy. An electronic search was applied across CENTRAL, Clinical Trials, Embase, LILACS, LIVIVO, Open Gray, PubMed, Scopus, and Web of Science. Based on the title and abstracts, two authors independently selected eligible studies. After the complete reading of the articles, based on the eligibility criteria, 11 studies were included in the review. Different inhibitors of HMT have been explored in multiple clinical studies, and have shown considerable anti-tumor effects. However, few phase 2 studies have been completed and/or have available results. The most advanced clinical trials mainly include tazemetostat, an Enhancer of zeste homolog 2 (EZH2) inhibitor approved for follicular lymphoma (FL). The use of HMT inhibitors has presented, so far, concise results in the treatment of hematological cancers, moreover, the adverse effects presented after the use of these medicines (alone or in combination) did not show a high level of risk for the patient. These findings, in addition to ongoing clinical studies, can represent a promising future regarding the use of HMT inhibitors in treating different types of cancer.
Collapse
Affiliation(s)
- Ludimila Leite Marzochi
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil.
| | - Caroline Izak Cuzziol
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | | | - Juliana Amorim Dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | - Érika Cristina Pavarino
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Eny Maria Goloni-Bertollo
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, 15090-000, Brazil.
| |
Collapse
|
7
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
8
|
Schafer ES, Chao K, Stevens AM, Jo E, Hilsenbeck SG, Gossai NP, Doan A, Colace SI, Guinipero T, Otterson D, Kaplan JA, Hinson A, Pommert L, Wayne AS, Bhojwani D, Burke MJ. Real-world experience in treating pediatric relapsed/refractory or therapy-related myeloid malignancies with decitabine, vorinostat, and FLAG therapy based on a phase 1 study run by the TACL consortium. Pediatr Blood Cancer 2022; 69:e29812. [PMID: 35726868 DOI: 10.1002/pbc.29812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Current therapies for relapsed/refractory (R/R) pediatric myeloid neoplasms are inadequately effective. Real-world data (RWD) can improve care by augmenting traditional studies and include individuals not eligible for clinical trials. The Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) consortium recently completed T2016-003, a phase 1 study of decitabine, vorinostat, fludarabine, cytarabine, and granulocyte colony-stimulating factor (G-CSF) in R/R acute myeloid leukemia (AML), which added epigenetic drugs to a cytotoxic backbone. We report results of RWD from six centers that treated 28 pediatric patients (26 with AML, two with other myeloid neoplasms) identically to the TACL study but who were not enrolled. This allowed unique analyses and the ability to compare data with the 35 TACL study patients. The overall response rate (ORR) (complete response [CR] plus CR with incomplete count recovery) among 26 RWD evaluable patients was 65%. The ORR of 13 patients with relapsed AML with epigenetic alterations was 69% (T2016-003 + RWD: 68%, n = 25), of eight patients with refractory AML was 38% (T2016-003 + RWD: 41%, n = 17) and of five patients with therapy-related AML (t-AML) was 80% (T2016-003 + RWD: 75%, n = 8). The mean number of Grade 3/4 toxicities experienced by the T2016-003-eligible RWD population (n = 22) (one per patient-cycle) was not meaningfully different than those (n = 6) who would have been TACL study-ineligible secondary to comorbidities (two per patient-cycle). Overall, this therapy was well tolerated and effective in pediatric patients with R/R myeloid neoplasms, particularly those with epigenetic alterations, t-AML, and refractory disease.
Collapse
Affiliation(s)
- Eric S Schafer
- Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer Center, Houston, Texas, USA
| | - Karen Chao
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexandra M Stevens
- Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer Center, Houston, Texas, USA
| | - Eunji Jo
- Baylor College of Medicine, Houston, Texas, USA
| | | | - Nathan P Gossai
- Center for Cancer and Blood Diseases, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Doan
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | - Joel A Kaplan
- Levine Children's Hospital/Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Ashley Hinson
- Levine Children's Hospital/Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Lauren Pommert
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alan S Wayne
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Deepa Bhojwani
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
9
|
Luan M, Zhao M, Wang H, Xu R, Cai J. Role of 5-methylcytosine in determining the prognosis, tumor microenvironment, and applicability of precision medicine in patients with hepatocellular carcinoma. Front Genet 2022; 13:984033. [PMID: 36186468 PMCID: PMC9523584 DOI: 10.3389/fgene.2022.984033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 12/09/2022] Open
Abstract
Background: 5-methylcytosine has a profound impact on the development and progression of hepatocellular carcinoma. The aim of this study was to investigate the usefulness of 5-methylcytosine in determining the prognosis, tumor microenvironment, and applicability of precision medicine in hepatocellular carcinoma. Methods: We collected data of seven hepatocellular carcinoma cohorts (The Cancer Genome Atlas, International Cancer Genome Consortium, GSE14520, GSE6764, GSE9843, GSE63898, GSE76427). An unsupervised clustering method was used to identify novel subtypes of hepatocellular carcinoma based on the expression 5-methylcytosine gene signatures. The 5-methylcytosine score was determined using the least absolute shrinkage and selection operator method based on the differential expression of genes in the identified subtypes. Subsequently, we investigated the association between 5-methylcytosine-based clusters (according to the 5-methylcytosine score) and clinical outcomes, immunophenotypes, classical molecular subtypes, and therapeutic opportunities in hepatocellular carcinoma. Finally, we examined the sensitivity of patients with high 5-methylcytosine score to drugs. Results: We identified two hepatocellular carcinoma-specific, 5-methylcytosine-based subtypes (clusters 1 and 2). Cluster 1 exhibited significantly higher 5-methylcytosine scores versus cluster 2. The 5-methylcytosine-based subtypes accurately predicted classical molecular subtypes, immunophenotypes, prognosis, and therapeutic opportunities for patients with hepatocellular carcinoma. Cluster 1 (high 5-methylcytosine score) was characterized by lower anticancer immunity and worse prognosis versus cluster 2 (low 5-methylcytosine score). Moreover, cluster 1 (high 5-methylcytosine score) exhibited low sensitivity to cancer immunotherapy, but high sensitivity to radiotherapy and targeted therapy with lenvatinib. Conclusion: The novel 5-methylcytosine-based subtypes (according to the 5-methylcytosine score) may reflect the prognosis, tumor microenvironment, and applicability of precision medicine in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mingyuan Luan
- Qingdao University Medical College, Qingdao, Shandong, China
| | - Min Zhao
- Center of Laboratory Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Haiying Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Rongjian Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongjian Xu, ; Jinzhen Cai,
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- *Correspondence: Rongjian Xu, ; Jinzhen Cai,
| |
Collapse
|
10
|
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022; 21:163. [PMID: 35974338 PMCID: PMC9380308 DOI: 10.1186/s12943-022-01634-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. Emerging evidences indicate that N6-methyladenosine (m6A), the most abundant post-transcriptional modification in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, and translation. As the key component of the m6A methyltransferase complex, methyltransferase-like 14 (METTL14) catalyzes m6A methylation on mRNA or non-coding RNA to regulate gene expression and cell phenotypes. Dysregulation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical applications and propose the research forecast.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Wei-Wei Liu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ke Yang
- School of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Heifei, China.
| |
Collapse
|
11
|
Shen X, Chen Y, Liu M, Shi J, Tang Y, Yang X, Xu D, Yao H, Lu P, Sun Y, Xue J, Niu N. Glycolysis addiction compensating for a defective pentose phosphate pathway confers gemcitabine sensitivity in SETD2-deficient pancreatic cancer. Biochem Biophys Res Commun 2022; 615:9-16. [PMID: 35679751 DOI: 10.1016/j.bbrc.2022.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy driven by genetic mutations and/or epigenetic dysregulation. Gemcitabine chemotherapy is the first-line regimen for pancreatic cancer but has limited efficacy. Our previous study revealed the role of SETD2-H3K36me3 loss in the initiation and metastasis of PDAC, but little is known about its role in tumor metabolism. Here, we found that SETD2-deficient PDAC enhanced glycolysis addiction via upregulation of glucose transporter 1 (GLUT1) to meet its large demand for glucose in progression. Moreover, SETD2 deficiency impaired nucleoside synthesis by directly downregulating the transcriptional level of transketolase (TKT) in the pentose phosphate pathway. The metabolic changes confer SETD2-deficient PDAC cells with increased sensitivity to gemcitabine under glycolysis restriction conditions. Collectively, our study provides mechanistic insights into how SETD2 deficiency reprograms glycolytic metabolism to compensate for insufficient nucleoside synthesis, suggesting that glycolysis restriction combined with gemcitabine might be a potential therapeutic strategy for PDAC patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Mahadevan S, Kwong K, Lu M, Kelly E, Chami B, Romin Y, Fujisawa S, Manova K, Moore MAS, Zoellner H. A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping. Int J Mol Sci 2022; 23:ijms23147949. [PMID: 35887295 PMCID: PMC9316567 DOI: 10.3390/ijms23147949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
We recently described cell-projection pumping as a mechanism transferring cytoplasm between cells. The uptake of fibroblast cytoplasm by co-cultured SAOS-2 osteosarcoma cells changes SAOS-2 morphology and increases cell migration and proliferation, as seen by single-cell tracking and in FACS separated SAOS-2 from co-cultures. Morphological changes in SAOS-2 seen by single cell tracking are consistent with previous observations in fixed monolayers of SAOS-2 co-cultures. Notably, earlier studies with fixed co-cultures were limited by the absence of a quantitative method for identifying sub-populations of co-cultured cells, or for quantitating transfer relative to control populations of SAOS-2 or fibroblasts cultured alone. We now overcome that limitation by a novel Cartesian plot analysis that identifies individual co-cultured cells as belonging to one of five distinct cell populations, and also gives numerical measure of similarity to control cell populations. We verified the utility of the method by first confirming the previously established relationship between SAOS-2 morphology and uptake of fibroblast contents, and also demonstrated similar effects in other cancer cell lines including from melanomas, and cancers of the ovary and colon. The method was extended to examine global DNA methylation, and while there was no clear effect on SAOS-2 DNA methylation, co-cultured fibroblasts had greatly reduced DNA methylation, similar to cancer associated fibroblasts.
Collapse
Affiliation(s)
- Swarna Mahadevan
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Kenelm Kwong
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Mingjie Lu
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Elizabeth Kelly
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
| | - Belal Chami
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
- The School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yevgeniy Romin
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Sho Fujisawa
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Katia Manova
- Molecular Cytology, The Memorial Sloan Kettering Cancer Center, 415-417 E 68 Street, ZRC 1962, New York, NY 10065, USA; (Y.R.); (S.F.); (K.M.)
| | - Malcolm A. S. Moore
- Cell Biology, The Memorial Sloan Kettering Cancer Center, 430 E 67th St, RRL 717, New York, NY 10065, USA;
| | - Hans Zoellner
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia; (S.M.); (K.K.); (M.L.); (E.K.); (B.C.)
- Cell Biology, The Memorial Sloan Kettering Cancer Center, 430 E 67th St, RRL 717, New York, NY 10065, USA;
- Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Graduate School of Biomedical Engineering, University of NSW, Kensington, NSW 2052, Australia
- Strongarch Pty Ltd., Pennant Hills, NSW 2120, Australia
- Correspondence: ; Tel.: +61-466400028
| |
Collapse
|
13
|
Herrero-Gómez A, Azagra M, Marco-Rius I. A cryopreservation method for bioengineered 3D cell culture models. Biomed Mater 2022; 17. [PMID: 35675803 DOI: 10.1088/1748-605x/ac76fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.
Collapse
Affiliation(s)
- Alba Herrero-Gómez
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Marc Azagra
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Irene Marco-Rius
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Schäker‐Hübner L, Haschemi R, Büch T, Kraft FB, Brumme B, Schöler A, Jenke R, Meiler J, Aigner A, Bendas G, Hansen FK. Balancing Histone Deacetylase (HDAC) Inhibition and Drug-likeness: Biological and Physicochemical Evaluation of Class I Selective HDAC Inhibitors. ChemMedChem 2022; 17:e202100755. [PMID: 35073610 PMCID: PMC9303312 DOI: 10.1002/cmdc.202100755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.
Collapse
Affiliation(s)
- Linda Schäker‐Hübner
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Reza Haschemi
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Thomas Büch
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Fabian B. Kraft
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Birke Brumme
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Andrea Schöler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Robert Jenke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
- University Cancer Center Leipzig (UCCL)Universitätsklinikum LeipzigLiebigstraße 22, Haus 704103LeipzigGermany
| | - Jens Meiler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Achim Aigner
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Gerd Bendas
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Finn K. Hansen
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
15
|
Pommert L, Schafer ES, Malvar J, Gossai N, Florendo E, Pulakanti K, Heimbruch K, Stelloh C, Chi YY, Sposto R, Rao S, Van Huynh T, Brown P, Chang BH, Colace SI, Hermiston ML, Heym K, Hutchinson RJ, Kaplan JA, Mody R, O’Brien TA, Place AE, Shaw PH, Ziegler DS, Wayne A, Bhojwani D, Burke MJ. Decitabine and vorinostat with FLAG chemotherapy in pediatric relapsed/refractory AML: Report from the therapeutic advances in childhood leukemia and lymphoma (TACL) consortium. Am J Hematol 2022; 97:613-622. [PMID: 35180323 PMCID: PMC8986610 DOI: 10.1002/ajh.26510] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
Survival outcomes for relapsed/refractory pediatric acute myeloid leukemia (R/R AML) remain dismal. Epigenetic changes can result in gene expression alterations which are thought to contribute to both leukemogenesis and chemotherapy resistance. We report results from a phase I trial with a dose expansion cohort investigating decitabine and vorinostat in combination with fludarabine, cytarabine, and G-CSF (FLAG) in pediatric patients with R/R AML [NCT02412475]. Thirty-seven patients enrolled with a median age at enrollment of 8.4 (range, 1-20) years. There were no dose limiting toxicities among the enrolled patients, including two patients with Down syndrome. The recommended phase 2 dose of decitabine in combination with vorinostat and FLAG was 10 mg/m2 . The expanded cohort design allowed for an efficacy evaluation and the overall response rate among 35 evaluable patients was 54% (16 complete response (CR) and 3 complete response with incomplete hematologic recovery (CRi)). Ninety percent of responders achieved minimal residual disease (MRD) negativity (<0.1%) by centralized flow cytometry and 84% (n = 16) successfully proceeded to hematopoietic stem cell transplant. Two-year overall survival was 75.6% [95%CI: 47.3%, 90.1%] for MRD-negative patients vs. 17.9% [95%CI: 4.4%, 38.8%] for those with residual disease (p < .001). Twelve subjects (34%) had known epigenetic alterations with 8 (67%) achieving a CR, 7 (88%) of whom were MRD negative. Correlative pharmacodynamics demonstrated the biologic activity of decitabine and vorinostat and identified specific gene enrichment signatures in nonresponding patients. Overall, this therapy was well-tolerated, biologically active, and effective in pediatric patients with R/R AML, particularly those with epigenetic alterations.
Collapse
Affiliation(s)
- Lauren Pommert
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eric S. Schafer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Nathan Gossai
- Department of Pediatrics, Center for Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN
| | - Ellynore Florendo
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Katelyn Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, WI
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, C
| | - Richard Sposto
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, C
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Thu Van Huynh
- Department of Pediatrics, Children’s Hospital of Orange County, Orange, CA
| | - Patrick Brown
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD
| | - Bill H. Chang
- Department of Pediatrics, Oregon Health and Science University, Portland, OR
| | - Susan I. Colace
- Department of Pediatrics, Hematology and Oncology, Nationwide Children’s Hospital, Columbus, OH
| | - Michelle L. Hermiston
- Division of Hematology/Oncology, University of California, San Francisco Benioff Children’s Hospital, San Francisco, CA
| | - Kenneth Heym
- Department of Pediatrics, Cook Children’s Medical Center, Fort Worth, TX
| | - Raymond J. Hutchinson
- Department of Pediatric and Communicable Diseases Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI
| | - Joel A. Kaplan
- Department of Pediatrics, Carolinas Medical Center/Levine Cancer Institute, Charlotte, NC
| | - Rajen Mody
- Department of Pediatric and Communicable Diseases Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI
| | - Tracey A. O’Brien
- Cord & Marrow Transplant Program, Centre for Children’s Cancer & Blood Disorders, Sydney Children’s Hospital, Sydney, Australia
| | - Andrew E. Place
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Peter H. Shaw
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - David S. Ziegler
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| | - Alan Wayne
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, C
| | - Deepa Bhojwani
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, C
| | - Michael J. Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
16
|
Jiménez-Alcántar P, López-Gómez R, López-Meza JE, Ochoa-Zarzosa A. PaDef (Persea americana var. drymifolia), a Plant Antimicrobial Peptide, Triggers Apoptosis, and Induces Global Epigenetic Modifications on Histone 3 in an Acute Lymphoid Leukemia Cell Line. Front Mol Biosci 2022; 9:801816. [PMID: 35141282 PMCID: PMC8820506 DOI: 10.3389/fmolb.2022.801816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has been recognized that epigenetic alterations play an important role in the development and maintenance of cancer, including leukemias. Furthermore, it is known that these alterations are involved in the emergence of resistance to conventional chemotherapeutics. Consequently, molecules with an anticancer activity whose activity is ruled by epigenetic modifications are attractive to search for new therapies against cancer. The plant antimicrobial peptides have been widely evaluated as molecules with anticancer activity; however, the analysis of the epigenetic regulation induced by these molecules associated with this activity is scarce and still is an unexplored field. In this work, we show that the PaDef defensin, a plant antimicrobial peptide from Mexican avocado fruit (Persea americana var. drymifolia) is cytotoxic for Jurkat cell line from acute lymphoid leukemia cells, through an apoptotic process. PaDef inhibited cell viability in a concentration-dependent manner, with an IC50 = 47.3 μM. Treatment of Jurkat cells with PaDef (IC50) induced cell death by apoptosis dependent on caspases 8 and 9; besides, it was related to an increase in the production of reactive oxygen species and the loss of mitochondrial membrane potential. Interestingly, the inhibition of caspase activation by inhibitors of caspases 8 and 9 does not revert the reduction in viability, suggesting that other mechanisms, in addition to caspase activity, could be participating in the PaDef cytotoxic effect. Also, the modifications in the histone 3 tails induced by PaDef in Jurkat cells were evaluated, specifically acetylation and methylation. PaDef increased global histone 3 acetylation and lysine 9 specific marks (2-fold and up to 4-fold, respectively). These effects correlated with the reduction of the Histone Deacetylase activity (HDAC, ∼50%). Based on methylation marks, PaDef treatment increased lysine 9 di- and tri-methylation tags (2-fold in both cases). The epigenetic modulation induced by PaDef on Jurkat cells could be related to the chromatin compaction-decompaction promoting gene expression or repression; however, further studies are necessary to correlate these marks with the transcription of specific genes. Therefore, the study of new molecules that may have anticancer activity through epigenetic modulation is interesting.
Collapse
Affiliation(s)
- Paola Jiménez-Alcántar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
- *Correspondence: Alejandra Ochoa-Zarzosa, ,
| |
Collapse
|
17
|
Ding H, Pei Y, Li Y, Xu W, Mei L, Hou Z, Guang Y, Cao L, Li P, Cao H, Bian J, Chen K, Luo C, Zhou B, Zhang T, Li Z, Yang Y. Design, synthesis and biological evaluation of a novel spiro oxazolidinedione as potent p300/CBP HAT inhibitor for the treatment of ovarian cancer. Bioorg Med Chem 2021; 52:116512. [PMID: 34801827 DOI: 10.1016/j.bmc.2021.116512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023]
Abstract
Histone acetylation is one of the most essential parts of epigenetic modification, mediating a variety of complex biological functions. In these procedure, p300/CBP could catalyze the acetylation of lysine 27 on histone 3 (H3K27ac), and had been reported to mediate tumorigenesis and development in a variety of tumors by enhancing chromatin transcription activity. Ovarian cancer, as an extremely malignant tumor, has also been observed to undergo abnormal acetylation of histones. However, whether the treatment of ovarian cancer could be achieved by inhibiting the acetylation activity of p300/CBP on H3K27 has not been well investigated. In this article, we modified the structure of p300/CBP HAT domain inhibitor A-485 and obtained a highly active small molecule known as 13f, which has an IC50 value of 0.49 nM for inhibiting the in vitro enzyme activity of p300, as well as the anti-proliferation IC50 value on ovarian cancer cell line OVCAR-3 was 153 nM. In addition, 13f had strong acetylase family selectivity, good metabolic stability and promising in vivo anti-tumor activity in OVCAR-3 xenograft model. The discovery of 13f revealed a more active chemical entity of the HATs domain of p300/CBP and provided a novel idea for the application of epigenetic inhibitors in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hong Ding
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuan Pei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Lianghe Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Zeng Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yiman Guang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Liyuan Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peizhuo Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Haijing Cao
- Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023,China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ting Zhang
- Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
18
|
Ray SK, Mukherjee S. Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine. Curr Mol Med 2021; 22:835-850. [PMID: 34872474 DOI: 10.2174/1566524021666211206092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
The mechanisms governing the development and progression of cancers are believed to be the consequence of hereditary deformities and epigenetic modifications. Accordingly, epigenetics has become an incredible and progressively explored field of research to discover better prevention and therapy for neoplasia, especially triple-negative breast cancer (TNBC). It represents 15-20% of all invasive breast cancers and will, in general, have bellicose histological highlights and poor clinical outcomes. In the early phases of triple-negative breast carcinogenesis, epigenetic deregulation modifies chromatin structure and influences the plasticity of cells. It up-keeps the oncogenic reprogramming of malignant progenitor cells with the acquisition of unrestrained selfrenewal capacities. Genomic impulsiveness in TNBC prompts mutations, copy number variations, as well as genetic rearrangements, while epigenetic remodeling includes an amendment by DNA methylation, histone modification, and noncoding RNAs of gene expression profiles. It is currently evident that epigenetic mechanisms assume a significant part in the pathogenesis, maintenance, and therapeutic resistance of TNBC. Although TNBC is a heterogeneous malaise that is perplexing to describe and treat, the ongoing explosion of genetic and epigenetic research will help to expand these endeavors. Latest developments in transcriptome analysis have reformed our understanding of human diseases, including TNBC at the molecular medicine level. It is appealing to envision transcriptomic biomarkers to comprehend tumor behavior more readily regarding its cellular microenvironment. Understanding these essential biomarkers and molecular changes will propel our capability to treat TNBC adequately. This review will depict the different aspects of epigenetics and the landscape of transcriptomics in triple-negative breast carcinogenesis and their impending application for diagnosis, prognosis, and treatment decision with the view of molecular medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
19
|
Hu J, Othmane B, Yu A, Li H, Cai Z, Chen X, Ren W, Chen J, Zu X. 5mC regulator-mediated molecular subtypes depict the hallmarks of the tumor microenvironment and guide precision medicine in bladder cancer. BMC Med 2021; 19:289. [PMID: 34836536 PMCID: PMC8627095 DOI: 10.1186/s12916-021-02163-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Depicting the heterogeneity and functional characteristics of the tumor microenvironment (TME) is necessary to achieve precision medicine for bladder cancer (BLCA). Although classical molecular subtypes effectively reflect TME heterogeneity and characteristics, their clinical application is limited by several issues. METHODS In this study, we integrated the Xiangya cohort and multiple external BLCA cohorts to develop a novel 5-methylcytosine (5mC) regulator-mediated molecular subtype system and a corresponding quantitative indicator, the 5mC score. Unsupervised clustering was performed to identify novel 5mC regulator-mediated molecular subtypes. The principal component analysis was applied to calculate the 5mC score. Then, we correlated the 5mC clusters (5mC score) with classical molecular subtypes, immunophenotypes, clinical outcomes, and therapeutic opportunities in BLCA. Finally, we performed pancancer analyses on the 5mC score. RESULTS Two 5mC clusters, including 5mC cluster 1 and cluster 2, were identified. These novel 5mC clusters (5mC score) could accurately predict classical molecular subtypes, immunophenotypes, prognosis, and therapeutic opportunities of BLCA. 5mC cluster 1 (high 5mC score) indicated a luminal subtype and noninflamed phenotype, characterized by lower anticancer immunity but better prognosis. Moreover, 5mC cluster 1 (high 5mC score) predicted low sensitivity to cancer immunotherapy, neoadjuvant chemotherapy, and radiotherapy, but high sensitivity to antiangiogenic therapy and targeted therapies, such as blocking the β-catenin, FGFR3, and PPAR-γ pathways. CONCLUSIONS The novel 5mC regulator-based subtype system reflects many aspects of BLCA biology and provides new insights into precision medicine in BLCA. Furthermore, the 5mC score may be a generalizable predictor of immunotherapy response and prognosis in pancancers.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, 77030, USA
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xu Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14646, USA
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
20
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
21
|
Liu Z, Sun J, Li C, Xu L, Liu J. MKL1 regulates hepatocellular carcinoma cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. BMC Cancer 2021; 21:1184. [PMID: 34742274 PMCID: PMC8571910 DOI: 10.1186/s12885-021-08185-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Histone modification plays essential roles in hepatocellular carcinoma (HCC) pathogenesis, but the regulatory mechanisms remain poorly understood. In this study, we aimed to analyze the roles of Megakaryoblastic leukemia 1 (MKL1) and its regulation of COMPASS (complex of proteins associated with Set1) in HCC cells. Methods MKL1 expression in clinical tissues and cell lines were detected by bioinformatics, qRT-PCR and western blot. MKL1 expression in HCC cells were silenced with siRNA, followed by cell proliferation evaluation via Edu staining and colony formation, migration and invasion using the Transwell system, and apoptosis by Hoechst staining. HCC cell tumorigenesis was assessed by cancer cell line-based xenograft model, combined with H&E staining and IHC assays. Results MKL1 expression was elevated in HCC cells and clinical tissues which was correlated with poor prognosis. MKL1 silencing significantly repressed proliferation, migration, invasion and colony formation but enhanced apoptosis in HepG2 and Huh-7 cells. MKL1 silencing also inhibited COMPASS components and p65 protein expression in HepG2 and Huh-7 cells. HepG2 cell tumorigenesis in nude mice was severely impaired by MKL1 knockdown, resulted into suppressed Ki67 expression and cell proliferation. Conclusion MKL1 promotes HCC pathogenesis by regulating hepatic cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08185-w.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiuzheng Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyou Xu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
22
|
Schäker-Hübner L, Warstat R, Ahlert H, Mishra P, Kraft FB, Schliehe-Diecks J, Schöler A, Borkhardt A, Breit B, Bhatia S, Hügle M, Günther S, Hansen FK. 4-Acyl Pyrrole Capped HDAC Inhibitors: A New Scaffold for Hybrid Inhibitors of BET Proteins and Histone Deacetylases as Antileukemia Drug Leads. J Med Chem 2021; 64:14620-14646. [PMID: 34582215 DOI: 10.1021/acs.jmedchem.1c01119] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.
Collapse
Affiliation(s)
- Linda Schäker-Hübner
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Pankaj Mishra
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Fabian B Kraft
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Andrea Schöler
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Martin Hügle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Finn K Hansen
- Institut für Wirkstoffentwicklung, Medizinische Fakultät, Universität Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany.,Abteilung für Pharmazeutische und Zellbiologische Chemie, Pharmazeutisches Institut, Universität Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
23
|
Modeling Extracellular Matrix-Cell Interactions in Lung Repair and Chronic Disease. Cells 2021; 10:cells10082145. [PMID: 34440917 PMCID: PMC8394761 DOI: 10.3390/cells10082145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
|
24
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
25
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
26
|
Mahjoor M, Afkhami H, Mollaei M, Nasr A, Shahriary S, Khorrami S. MicroRNA-30c delivered by bone marrow-mesenchymal stem cells induced apoptosis and diminished cell invasion in U-251 glioblastoma cell line. Life Sci 2021; 279:119643. [PMID: 34048811 DOI: 10.1016/j.lfs.2021.119643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Glioblastoma multiform (GBM) is the most belligerent and prevalent brain malignancy among adults. Due to the blood-brain barrier (BBB), drug administration is confronted by massive challenges, making resectional surgery the only treatment pipeline. MicroRNAs have recently absorbed the attention of studies for correlating with the progression of various malignancies. miR-30c has been reported to play a role in cell proliferation, metabolism, and apoptosis process. For instance, miR-30c has been reported to regulate apoptosis through the TNF-related apoptosis-inducing ligand (TRAIL). miR-30c also targets IL-6, which further induces apoptosis. Besides, miR-30c inhibits glioma proliferation and its migratory ability. Besides, the overexpression of miR-30c arrested cells at G0 as well as dampening their migration and invasion. However, it has been shown that the expression level of miR-30c was low in glioma. MSCs can migrate toward tumor cells which is called tumor-tropism, in which they are capable of delivering engineered miR-30c based on gap junction and non-intimacy mechanisms. MATERIAL AND METHODS MiR-30c was cloned into pCDH-CMV-MCS-EF1-copGFP vector utilizing XbaI and EcoRI in order to construct pCDH-miR-30c. Then psPAX2, pMD2.G, and pCDH-miR-30c were co-transfected into Hek-293T to yield lenti-miR-30c virus particles. Next, bone marrow-mesenchymal stem cells (BM-MSCs) were Transduced with lenti-miR-30c. Thereafter, we co-cultured U-251 cell line with BM-MCSs-miR-30c and evaluated the apoptosis rate and the relative expression level of IL-6, Klf4, Sox2, c-Myc, and Oct4 using Real-Time PCR and flow cytometry. RESULTS Wound healing assays represented low migratory ability in U-251 cells treated with BM-MSCs-miR-30c. Plus, apoptosis assay using Annexin V/7AAD showed an increased number of apoptotic U-251 cells following the treatment. miR-30 targeted IL-6 and induced apoptosis. It also impacted on the self-renewal and the anti-apoptotic cluster of genes, namely Klf4, Sox2, c-Myc, and Oct4, to induce apoptosis and dwindle the migration and invasion.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Atieh Nasr
- Bachelor Student of Biochemistry, Department of Biochemistry, Islamic Azad University of Najafabad, Esfahan, Iran
| | - Shamin Shahriary
- Bachelor Student of Microbiology, Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Samaneh Khorrami
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
28
|
Marine Anthraquinones: Pharmacological and Toxicological Issues. Mar Drugs 2021; 19:md19050272. [PMID: 34068184 PMCID: PMC8152984 DOI: 10.3390/md19050272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.
Collapse
|
29
|
Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021; 34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Metabolic reprogramming is considered to be a critical adaptive biological event that fulfills the energy and biomass demands for cancer cells. One hallmark of metabolic reprogramming is reduced oxidative phosphorylation and enhanced aerobic glycolysis. Such metabolic abnormalities contribute to the accumulation of reactive oxygen species (ROS), the by-products of metabolic pathways. Emerging evidence suggests that ROS can in turn directly or indirectly affect the expression, activity, or subcellular localization of metabolic enzymes, contributing to the moonlighting functions outside of their primary roles. This review summarizes the multifunctions of metabolic enzymes and the involved redox modification patterns, which further reveal the inherent connection between metabolism and cellular redox state. Recent Advances: These noncanonical functions of metabolic enzymes involve the regulation of epigenetic modifications, gene transcription, post-translational modification, cellular antioxidant capacity, and many other fundamental cellular events. The multifunctional properties of metabolic enzymes further expand the metabolic dependencies of cancer cells, and confer cancer cells with a means of adapting to diverse environmental stimuli. Critical Issues: Deciphering the redox-manipulated mechanisms with specific emphasis on the moonlighting function of metabolic enzymes is important for clarifying the pertinence between metabolism and redox processes. Future Directions: Investigation of the redox-regulated moonlighting functions of metabolic enzymes will shed new lights into the mechanism by which metabolic enzymes gain noncanonical functions, and yield new insights into the development of novel therapeutic strategies for cancer treatment by targeting metabolic-redox abnormalities. Antioxid. Redox Signal. 34, 979-1003.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
30
|
Xue J, Lv Q, Khas E, Bai C, Ma B, Li W, Cao Q, Fan Z, Ao C. Tissue-specific regulatory mechanism of LncRNAs and methylation in sheep adipose and muscle induced by Allium mongolicum Regel extracts. Sci Rep 2021; 11:9186. [PMID: 33911127 PMCID: PMC8080592 DOI: 10.1038/s41598-021-88444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Allium mongolicum Regel (A. mongolicum) is a perennial and xerophytic Liliaceous allium plant in high altitude desert steppe and desert areas. Feeding A. mongolicum greatly reduced unpleasant mutton flavor and improves meat quality of sheep. We analyzed epigenetic regulatory mechanisms of water extracts of A. mongolicum (WEA) on sheep muscle and adipose using RNA-Seq and whole-genome Bisulfite sequencing. Feeding WEA reduced differentially expressed genes and long non-coding RNAs (lncRNAs) between two tissues but increased differentially methylation regions (DMRs). LncRNA and DMR targets were both involved in ATP binding, ubiquitin, protein kinase binding, regulation of cell proliferation, and related signaling pathways, but not unsaturated fatty acids metabolism. Besides, tissue specific targets were involved in distinct functional annotations, e.g., Golgi membrane and endoplasmic reticulum for muscle lncRNA, oxidative phosphorylation metabolism for adipose lncRNA, dsRNA binding for muscle DMRs. Epigenetic regulatory networks were also discovered to discovered essential co-regulated modules, e.g., co-regulated insulin secretion module (PDPK1, ATP1A2, CACNA1S and CAMK2D) in adipose. The results indicated that WEA induced distinct epigenetic regulation on muscle and adipose to diminish transcriptome differences between tissues, which highlights biological functions of A. mongolicum, tissue similarity and specificity, as well as regulatory mechanism of mutton odor.
Collapse
Affiliation(s)
- Jiangdong Xue
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Qi Lv
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Erdene Khas
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chen Bai
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bingjie Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wangjiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qina Cao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zejun Fan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
31
|
Jou YC, Lin GL, Lin HY, Huang WH, Chuang YM, Lin RI, Chen PC, Wu SF, Shen CH, Chan MWY. Cyproheptadine, an epigenetic modifier, exhibits anti-tumor activity by reversing the epigenetic silencing of IRF6 in urothelial carcinoma. Cancer Cell Int 2021; 21:226. [PMID: 33874979 PMCID: PMC8054409 DOI: 10.1186/s12935-021-01925-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the second most common malignancy of the urinary system with high rate of recurrence, UC patients therefore needed to be treated with surgery followed by chemotherapy. Development of novel therapeutics with minimal side-effect is an urgent issue. Our previous study showed that cyproheptadine (CPH), an anti-histamine, exhibited antitumor activity in UC in vitro and in an xenograft model. However, the molecular mechanism of how CPH inhibits tumor progression is not fully understood. METHODS Genes that were upregulated after treatment with CPH in UC cells, were examined by RNA-Seq. Real-time quantitative PCR (RT-qPCR) was employed to detect IRF6 expression while COBRA assay and bisulphite pyrosequencing were used to examine promoter methylation of IRF6. Enrichment of total H3K27 acetylation and H3K4 mono-methylation were detected by western blotting. Colony formation and flow cytometry were used to examine proliferation and apoptosis in UC cells overexpressed or depleted with IRF6. Nude mice xenograft model was used to examine the effect of IRF6 in UC. RESULTS Our result showed that several genes, including IRF6 were upregulated after treatment with CPH in BFTC905 UC cells. Further experiments found that treatment of CPH could restore the expression of IRF6 in several other UC cell lines, probably due to promoter hypomethylation and enrichment of H3K27 acetylation and H3K4 mono-methylation. These results may be due to the fact that CPH could alter the activity, but not the expression of epigenetic modifiers. Finally, re-expression of IRF6 in UC inhibited tumor growth in vitro and in an xenograft mouse model, by inducing apoptosis. CONCLUSION In conclusion, our results suggested that CPH may be an epigenetic modifier, modulating the expression of the potential tumor suppressor IRF6, in inhibiting tumor growth in UC.
Collapse
Affiliation(s)
- Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Pie-Che Chen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Li X, Meng Y. SUMOylation Regulator-Related Molecules Can Be Used as Prognostic Biomarkers for Glioblastoma. Front Cell Dev Biol 2021; 9:658856. [PMID: 33898460 PMCID: PMC8063029 DOI: 10.3389/fcell.2021.658856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction SUMOylation is one of the post-translational modifications. The relationship between the expression of SUMOylation regulators and the prognosis of glioblastoma is not quite clear. Materials and Methods The single nucleotide variant data, the transcriptome data, and survival information were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and cBioportal database. Wilcoxon test was used to analyze differentially expressed genes between glioblastoma and normal brain tissues. Gene set enrichment analysis was conducted to find the possible functions. One risk scoring model was built by the least absolute shrinkage and selection operator Cox regression. Kaplain–Meier survival curves and receiver operating characteristic curves were applied to evaluate the effectiveness of the model in predicting the prognosis of glioblastoma. Results Single-nucleotide variant mutations were found in SENP7, SENP3, SENP5, PIAS3, RANBP2, USPL1, SENP1, PIAS2, SENP2, and PIAS1. Moreover, UBE2I, UBA2, PIAS3, and SENP1 were highly expressed in glioblastoma, whereas PIAS1, RANBP2, SENP5, and SENP2 were downregulated in glioblastoma. Functional enrichment analysis showed that the SUMOylation regulators of glioblastoma might involve cell cycle, DNA replication, and other functions. A prognostic model of glioblastoma was constructed based on SUMOylation regulator-related molecules (ATF7IP, CCNB1IP1, and LBH). Kaplain–Meier survival curves and receiver operating characteristic curves showed that the model had a strong ability to predict the overall survival of glioblastoma. Conclusion This study analyzed the expression of 15 SUMOylation regulators in glioblastoma. The risk assessment model was constructed based on the SUMOylation regulator-related genes, which had a strong predictive ability for the overall survival of patients with glioblastoma. It might provide targets for the study of the relationship between SUMOylation and glioblastoma.
Collapse
Affiliation(s)
- Xiaozhi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutong Meng
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Genome-wide analysis of the hypoxia-related DNA methylation-driven genes in lung adenocarcinoma progression. Biosci Rep 2021; 40:222062. [PMID: 32031203 PMCID: PMC7033312 DOI: 10.1042/bsr20194200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common type of lung cancer with high incidence and poor prognosis. Hypoxia and DNA methylation play important regulatory roles in cancer progression. The purpose of the present study was to explore the relationship between hypoxia and DNA methylation, and to identify key genes for hypoxia-regulated LUAD progression. Hypoxia score (HS) was calculated using the GSVA algorithm. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction (PPI) analysis were performed using clusterProfile package, STRING database and Cytoscape software. Kaplan-Meier curves of overall survival (OS) and disease-free survival (DFS) were drawn using R software. Smoking status and cancer stages were significantly associated with LUAD hypoxia, and hypoxia is a poor prognostic factor for LUAD. Compared with HS-low group, 1803 aberrantly methylated DEGs were identified in HS-high group. KEGG analysis showed that the 1803 genes were enriched in the metabolic pathways associated with hypoxia stress, angiogenesis and cancer progression. FAM20C, MYLIP and COL7A1 were identified as the hypoxia-related key genes in LUAD progression, which were regulated by DNA methylation. Hypoxia in LUAD tumor cells led to changes in DNA methylation patterns. In-depth study of the relationship between hypoxia and DNA methylation is helpful to elucidate the mechanism of tumorigenesis, and provides new ideas for LUAD treatment.
Collapse
|
34
|
Lai P, Wang Y. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 2021; 18:34-51. [PMID: 33628583 PMCID: PMC7877166 DOI: 10.20892/j.issn.2095-3941.2020.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of skin-homing non-Hodgkin lymphomas. There are limited options for effective treatment of patients with advanced-stage CTCL, leading to a poor survival rate. Epigenetics plays a pivotal role in regulating gene expression without altering the DNA sequence. Epigenetic alterations are involved in virtually all key cancer-associated pathways and are fundamental to the genesis of cancer. In recent years, the epigenetic hallmarks of CTCL have been gradually elucidated and their potential values in the diagnosis, prognosis, and therapeutic intervention have been clarified. In this review, we summarize the current knowledge of the best-studied epigenetic modifications in CTCL, including DNA methylation, histone modifications, microRNAs, and chromatin remodelers. These epigenetic regulators are essential in the development of CTCL and provide new insights into the clinical treatments of this refractory disease.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
35
|
Mancarella D, Plass C. Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Med 2021; 13:23. [PMID: 33568205 PMCID: PMC7874645 DOI: 10.1186/s13073-021-00837-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations are associated with normal biological processes such as aging or differentiation. Changes in global epigenetic signatures, together with genetic alterations, are driving events in several diseases including cancer. Comparative studies of cancer and healthy tissues found alterations in patterns of DNA methylation, histone posttranslational modifications, and changes in chromatin accessibility. Driven by sophisticated, next-generation sequencing-based technologies, recent studies discovered cancer epigenomes to be dominated by epigenetic patterns already present in the cell-of-origin, which transformed into a neoplastic cell. Tumor-specific epigenetic changes therefore need to be redefined and factors influencing epigenetic patterns need to be studied to unmask truly disease-specific alterations. The underlying mechanisms inducing cancer-associated epigenetic alterations are poorly understood. Studies of mutated epigenetic modifiers, enzymes that write, read, or edit epigenetic patterns, or mutated chromatin components, for example oncohistones, help to provide functional insights on how cancer epigenomes arise. In this review, we highlight the importance and define challenges of proper control tissues and cell populations to exploit cancer epigenomes. We summarize recent advances describing mechanisms leading to epigenetic changes in tumorigenesis and briefly discuss advances in investigating their translational potential.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, 69120, Heidelberg, Germany.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Funamoto M, Sunagawa Y, Katanasaka Y, Shimizu K, Miyazaki Y, Sari N, Shimizu S, Mori K, Wada H, Hasegawa K, Morimoto T. Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats. Int J Mol Sci 2021; 22:1771. [PMID: 33578969 PMCID: PMC7916721 DOI: 10.3390/ijms22041771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation by epigenetic regulators has been shown to activate the transcription of hypertrophic response genes, which subsequently leads to the development and progression of heart failure. However, nothing is known about the acetylation of the histone tail and globular domains in left ventricular hypertrophy or in heart failure. The acetylation of H3K9 on the promoter of the hypertrophic response gene was significantly increased in the left ventricular hypertrophy stage, whereas the acetylation of H3K122 did not increase in the left ventricular hypertrophy stage but did significantly increase in the heart failure stage. Interestingly, the interaction between the chromatin remodeling factor BRG1 and p300 was significantly increased in the heart failure stage, but not in the left ventricular hypertrophy stage. This study demonstrates that stage-specific acetylation of the histone tail and globular domains occurs during the development and progression of heart failure, providing novel insights into the epigenetic regulatory mechanism governing transcriptional activity in these processes.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Kiyoshi Mori
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Hiromichi Wada
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| |
Collapse
|
37
|
Fathi E, Farahzadi R, Montazersaheb S, Bagheri Y. Epigenetic Modifications in Acute Lymphoblastic Leukemia: From Cellular Mechanisms to Therapeutics. Curr Gene Ther 2021; 21:60-71. [PMID: 33183201 DOI: 10.2174/1566523220999201111194554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood, and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic alterations as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, beyond available conventional therapy. OBJECTIVE This review will focus on a better understanding of the epigenetic mechanisms in cancer development and progression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and microRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel, well-suited approaches against ALL. CONCLUSION According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifications, particularly DNA hyper-methylation, histone modification, and miRNA alteration.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Bagheri
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
38
|
Kerdivel G, Boeva V. Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma. Methods Mol Biol 2021; 2226:265-284. [PMID: 33326109 DOI: 10.1007/978-1-0716-1020-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ChIP-seq is the method of choice for profiling protein-DNA interactions, and notably for characterizing the landscape of transcription factor binding and histone modifications. This technique has been widely used to study numerous aspects of tumor biology and led to the development of several promising cancer therapies. In Ewing sarcoma research, ChIP-seq provided important insights into the mechanism of action of the major oncogenic fusion protein EWSR1-FLI1 and related epigenetic and transcriptional changes. In this chapter, we provide a detailed pipeline to analyze ChIP-seq experiments from the preprocessing of raw data to tertiary analysis of detected binding sites. We also advise on best practice to prepare tumor samples prior to sequencing.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, Paris, France.
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, Paris Descartes University, Paris, France. .,Department of Computer Science, ETH Zurich, Institute for Machine Learning, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
39
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
40
|
Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:85-96. [PMID: 33155140 DOI: 10.1007/978-981-15-8104-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone modification stands for a vital genetic information form, which shows tight correlation with the modulation of normal physiological activities by genes. Abnormal regulation of histone methylation due to histone modification enzyme changes and histone mutations plays an important role in the development of cancer. Histone mutations, especially H3K27M and H3K36M, have been identified in various cancers such as pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively. "K to M" mutation results overall downregulation of methylation on these lysine residues. Also, "K to M" mutant histones can inhibit the enzymatic activity of the responsible HMT (histone methyltransferase); for instance, SETD2 indicates H3K36 methylation, and Ezh2 represents H3K27 methylation. In-depth analysis of the mechanism of tumor formation triggered by the K to M mutation results in possible targeted therapies. This chapter is going to briefly introduce the mechanism of histone lysine-to-methionine mutation and review the recently identified targeted therapeutic strategies.
Collapse
|
41
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
42
|
Pu J, Shen J, Zhong Z, Yanling M, Gao J. KANK1 regulates paclitaxel resistance in lung adenocarcinoma A549 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:639-647. [PMID: 32064933 DOI: 10.1080/21691401.2020.1728287] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Paclitaxel (PTX), a tubulin-binding agent, is widely used and has shown good efficacy in the initial period of treatment for non-small cell lung cancer (NSCLC). However, the relatively rapid acquisition of resistance to PTX treatments that is observed in virtually all cases significantly limits its utility and remains a substantial challenge to the clinical management of NSCLC. The aim of this study was to identify candidate genes and mechanisms that might mediate acquired paclitaxel resistance. In this work, we established paclitaxel-resistant cells (A549-T) from parental cell lines by step-dose selection in vitro. Using methylation chip analysis and transcriptome sequencing, 43,426 differentially methylated genes and 2,870 differentially expressed genes are identified. Six genes (KANK1, ALDH3A1, GALNT14, PIK3R3, LRG1, WEE2), which may be related to paclitaxel resistance in lung adenocarcinoma, were identified. Among these genes, KANK1 exhibited significant differences in methylation and expression between cell lines. Since KANK1 plays an important role in the development of renal cancer and gastric cancer, we hypothesised that it may also play a role in acquired resistance in lung adenocarcinoma. Transient transfection of SiKANK1 significantly reduced the expression of KANK1, reducing apoptosis, increasing cell migration, and enhancing the tolerance of A549 cells to paclitaxel. KANK1 acts as a tumour suppressor gene, mediating the resistance of lung adenocarcinoma A549 to paclitaxel. The reduction of KANK1 expression can increase the paclitaxel resistance of non-small cell lung cancer and increase the difficulty of clinical treatment.
Collapse
Affiliation(s)
- Junyi Pu
- School of Life Sciences, Northwest University, Xi'an, China.,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianfeng Shen
- School of Life Sciences, Northwest University, Xi'an, China
| | - Zihua Zhong
- School of Life Sciences, Northwest University, Xi'an, China
| | - Ma Yanling
- School of Life Sciences, Northwest University, Xi'an, China
| | - Jie Gao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HCD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2020; 14:151-164. [PMID: 33055265 DOI: 10.1158/1940-6207.capr-20-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.
Collapse
Affiliation(s)
- Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
44
|
Leiendecker L, Jung PS, Krecioch I, Neumann T, Schleiffer A, Mechtler K, Wiesner T, Obenauf AC. LSD1 inhibition induces differentiation and cell death in Merkel cell carcinoma. EMBO Mol Med 2020; 12:e12525. [PMID: 33026191 PMCID: PMC7645387 DOI: 10.15252/emmm.202012525] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, neuroendocrine skin cancer that lacks actionable mutations, which could be utilized for targeted therapies. Epigenetic regulators governing cell identity may represent unexplored therapeutic entry points. Here, we targeted epigenetic regulators in a pharmacological screen and discovered that the lysine‐specific histone demethylase 1A (LSD1/KDM1A) is required for MCC growth in vitro and in vivo. We show that LSD1 inhibition in MCC disrupts the LSD1‐CoREST complex leading to displacement and degradation of HMG20B (BRAF35), a poorly characterized complex member that is essential for MCC proliferation. Inhibition of LSD1 causes derepression of transcriptional master regulators of the neuronal lineage, activates a gene expression signature resembling normal Merkel cells, and induces cell cycle arrest and cell death. Our study unveils the importance of LSD1 for maintaining cellular plasticity and proliferation in MCC. There is also growing evidence that cancer cells exploit cellular plasticity and dedifferentiation programs to evade destruction by the immune system. The combination of LSD1 inhibitors with checkpoint inhibitors may thus represent a promising treatment strategy for MCC patients.
Collapse
Affiliation(s)
- Lukas Leiendecker
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pauline S Jung
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Krecioch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna C Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
45
|
Wang X, Cheng Y, Yan LL, An R, Wang XY, Wang HY. Exploring DNA Methylation Profiles Altered in Cryptogenic Hepatocellular Carcinomas by High-Throughput Targeted DNA Methylation Sequencing: A Preliminary Study for Cryptogenic Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:9901-9916. [PMID: 33116575 PMCID: PMC7547808 DOI: 10.2147/ott.s267812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) includes cryptogenic hepatocellular carcinomas (CR-HCC) that lack a defined cause. Specific DNA methylation patterns and comparisons of the aberrant alterations in DNA methylation between CR-HCC and adjacent peritumor tissues (APTs) have not yet been reported. Methods The SureSelectXT Methyl-Seq Target Enrichment System was used to sequence targeted DNA methylation in three paired CR-HCC tissues and APTs. Gene Ontology (GO) enrichment and KEGG pathway analysis were performed to investigate the DNA methylation mechanism of CR-HCC. The mRNA expression levels of HOXB-AS3, HOXB6, HOXB3, USP18, MAP3K6, TIRAP, TNNI2, SHC3, CTTN, and TFAP2A, selected from the identified signaling pathways, were evaluated by quantitative real-time PCR (qPCR). Results A total of 1728 differentially methylated regions (DMRs) were identified in tumor tissues compared with non-tumor tissues, of which 868 DMRs were hypermethylated and 860 were hypomethylated. The DMRs were mapped within 2091 DMR-associated genes (DMGs). The mRNA expression of HOXB-AS3, HOXB3, and MAP3K6 was downregulated in CR-HCC tissues compared to the APTs. However, the mRNA expression of TIRAP, SHC3, and CTTN was upregulated in the CR-HCC tissues. Differences between the mRNA expression of HOXB6, USP18, TNNI2, and TFAP2A in the CR-HCC and APTS tissues were not statistically significant. GO analysis showed that the molecular functions of “binding”, “protein binding”, and “cytoskeletal protein binding” were the main categories for the hypermethylated DMGs. The hypomethylated DMGs were mostly enriched in the molecular functions “binding”, “protein binding”, “calcium ion binding”, among others. KEGG pathway analysis showed that the hypermethylated DMGs were enriched in several pathways such as “estrogen signaling pathway”, while hypomethylated DMGs were enriched in several pathways such as “proteoglycans in cancer”, suggesting that epigenetic modifications play important roles in the cryptogenic hepatocarcinogenesis. Conclusion These results provide useful information for future work to characterize the functions of epigenetic mechanisms on CR-HCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Ya Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Liang-Liang Yan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Ran An
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xing-Yu Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Heng-Yi Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| |
Collapse
|
46
|
Liu H, Meng X, Wang J. Real time quantitative methylation detection of PAX1 gene in cervical cancer screening. Int J Gynecol Cancer 2020; 30:1488-1492. [PMID: 32616628 DOI: 10.1136/ijgc-2019-001144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION DNA methylation is currently found to be associated with the progression of cervical intraepithelial neoplasia and the development of cervical cancer. The aim of this study was to analyze the role of real time quantitative methylation detection of the PAX1 gene in cervical cancer screening. METHODS All eligible patients who underwent multiple detections for cervical cancer were assigned to the normal cervical group (n=21), cervical intraepithelial neoplasia I group (n=7), cervical intraepithelial neoplasia II+III group (n=12), or invasive cervical cancer group (n=14) based on pathological gradings. The methylation level of the PAX1 gene was detected using the real time quantitative methylation specific polymerase chain reaction assay and assessed by △Cp value. The diagnostic performance of PAX1 methylation detection was compared with folic acid receptor mediated diagnosis, the Thinprep cytology test, and human papilloma virus (HPV) testing. RESULTS The △Cp value in the invasive cervical cancer group was (6.15±4.07), significantly lower than that in the other groups (F=26.45, p<0.001). The area under the curve (AUC) of PAX1 methylation detection was 0.902 (95% confidence interval (CI) 0.817-0.986; p<0.001), and sensitivity and specificity were 92.30% and 78.60% when the cut-off value of △Cp was 13.28. The AUC of PAX1 methylation detection was notably larger compared with 0.709 for folic acid receptor mediated diagnosis (95% CI 0.568-0.849, p=0.009), 0.702 for the Thinprep cytology test (95% CI 0.559-0.844, p=0.015), and 0.655 for HPV testing (95% CI 0.508-0.802, p=0.014). CONCLUSION Through quantitative methylation specific polymerase chain reaction assay characterized by rapid screening and simple operation, the methylation detection of the PAX1 gene exhibited a higher diagnostic performance and may be a promising method for cervical cancer screening.
Collapse
Affiliation(s)
- Haifeng Liu
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Xia Meng
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Jingyi Wang
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| |
Collapse
|
47
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
de Oliveira NFP, de Souza BF, de Castro Coêlho M. UV Radiation and Its Relation to DNA Methylation in Epidermal Cells: A Review. EPIGENOMES 2020; 4:23. [PMID: 34968303 PMCID: PMC8594722 DOI: 10.3390/epigenomes4040023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is the most studied epigenetic mark, and it can be altered by environmental factors. Among these factors, ultraviolet radiation (UV) is little explored within this context. While the relationship between UV radiation and DNA mutations is clear, little is known about the relationship between UV radiation and epimutations. The present study aimed to perform a literature review to determine the influence of artificial or natural (solar) UV radiation on the global and site-specific methylation profile of epidermal cells. A systematic review of the literature was carried out using the databases PubMed, Scopus, Cochrane, and Web of Science. Observational and intervention studies in cultured cells and animal or human models were included. Most studies showed a relationship between UV radiation and changes in the methylation profile, both global and site-specific. Hypermethylation and hypomethylation changes were detected, which varied according to the studied CpG site. In conclusion, UV radiation can alter the DNA methylation profile in epidermal cells derived from the skin. These data can be used as potential biomarkers for environmental exposure and skin diseases, in addition to being targets for treatments. On the other hand, UV radiation (phototherapy) can also be used as a tool to treat skin diseases. Thus, the data suggest that epigenetic homeostasis can be disrupted or restored by exposure to UV radiation according to the applied wavelength.
Collapse
Affiliation(s)
- Naila Francis Paulo de Oliveira
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
- Programa de Pós Graduação em Odontologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| | - Beatriz Fernandes de Souza
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| | - Marina de Castro Coêlho
- Programa de Pós Graduação em Odontologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| |
Collapse
|
49
|
Bi X, Lv X, Liu D, Guo H, Yao G, Wang L, Liang X, Yang Y. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther 2020; 28:335-349. [PMID: 32939058 DOI: 10.1038/s41417-020-00222-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 02/03/2023]
Abstract
Methyltransferase-like 3 (METTL3) functions as an RNA methyltransferase that controls the modification of N(6)-methyladenosine (m6A) to influence the biosynthesis, decay, and translation of mRNAs. This study aims to investigate the regulation of METTL3-mediated promotion of microRNA-126-5p (miR-126-5p) in the progression of ovarian cancer and to identify the mechanisms in relation to phosphatase and tensin homolog (PTEN) and the PI3K/Akt/mTOR pathway. We found high expression of miR-126-5p in ovarian cancer samples compared to paired adjacent samples, and also in ovarian cancer cell lines. Gain-of-function experiments demonstrated that overexpression of miR-126-5p promoted ovarian cancer cell proliferation, migration, and invasion, and inhibited their apoptosis. Luciferase reporter assay identified that miR-126-5p could directly bind to PTEN. By targeting PTEN, miR-126-5p could activate the PI3K/Akt/mTOR pathway. Furthermore, the RNA methyltransferase METTL3 promoted the maturation of miR-126-5p via the m6A modification of pri-miR-126-5p. Finally, in vitro and in vivo experiments substantiated that silencing of METTL3 impeded the progression and tumorigenesis of ovarian cancer by impairing the miR-126-5p-targeted inhibition of PTEN and thus blocking the PI3K/Akt/mTOR pathway. Coherently, knockdown of METTL3 inhibited the effect of miR-126-5p to upregulate PTEN, and thus prevents PI3K/Akt/mTOR pathway activation, thereby suppressing the development of ovarian cancer. These findings highlight potential targets for the future ovarian cancer treatment as well as tumorigenic mechanisms mediated by m6A modification.
Collapse
Affiliation(s)
- Xuehan Bi
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Dajiang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Hongtao Guo
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Guang Yao
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Lijuan Wang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China. .,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
50
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|