1
|
Ko YR, Kim TH, Jin Hee E, Lee WS, Kim SJ. Associations between maternal MTHFR polymorphisms and embryological outcomes in Korean patients with infertility undergoing IVF/ICSI cycles. Gynecol Endocrinol 2024; 40:2431224. [PMID: 39560974 DOI: 10.1080/09513590.2024.2431224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Methylenetetrahydrofolatereductase (MTHFR) is important for folate metabolism, which is involved in DNA synthesis and cell growth. However, the relationship between Maternal MTHFR polymorphisms and outcomes in assisted reproduction remains controversial. This is the first study to explore the effect of MTHFR polymorphisms on the embryological outcomes in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles in Korean patients with infertility. MATERIALS AND METHODS This retrospective cohort study included 173 women who underwent MTHFR genotyping between July, 2021 and June, 2022. The embryologic outcomes of 301 IVF/ICSI cycles were compared between groups according to MTHFR polymorphisms using ANOVA and Chi-square test. RESULTS Oocyte maturation rates were 80.0%, 75.0%, and 71.4% for MTHFR 677CC, 677CT, and 677TT, respectively. Cleaved embryo formation and transplantable embryo rates were comparable across various maternal MTHFR 677 genotypes. Good-quality embryo (GQE) rate was higher for MTHFR 677CT than those for 677CC and 677TT (40.0% vs. 29.4%, p = 0.001 and 40.0% vs. 33.3%, p = 0.025, respectively). When analyzing the combined MTHFR genotypes, the oocyte maturation rate was significantly lower in 677TT than in 677CC 1298AA/677CC 1298AC and 677CC 1298CC/677CT 1298AA/677CT 1298AC (71.4% vs. 76.7%, p = 0.012 and 71.4% vs. 75.7%, p = 0.029, respectively). The MTHFR 677CC/1298CC, 677CT/1298AA, and 677CT/1298AC genotypes had the highest GQE rates. CONCLUSIONS MTHFR 677TT genotype, which had the lowest enzymatic activity, had the lowest oocyte maturation rate. The combined MTHFR 677CC/1298CC, 677CT/1298AA, and 677CT/1298AC genotypes with intermediate enzyme activities had higher GQE rates. However, no differences were observed in the transplantable embryo rate between MTHFR genotypes.
Collapse
Affiliation(s)
- Yoo Ra Ko
- Department of Obstetrics and Gynecology, Gangnam CHA Infertility Center, CHA University School of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- CHA Fertility Center Gangnam, CHA University School of Medicine, Seoul, Korea
| | - Eum Jin Hee
- CHA Fertility Center Gangnam, CHA University School of Medicine, Seoul, Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Gangnam CHA Infertility Center, CHA University School of Medicine, Seoul, Korea
| | - Se Jeong Kim
- Department of Obstetrics and Gynecology, Gangnam CHA Infertility Center, CHA University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Huang W, Chen ACH, Wei X, Fong SW, Yeung WSB, Lee YL. Uncovering the role of TET2-mediated ENPEP activation in trophoblast cell fate determination. Cell Mol Life Sci 2024; 81:270. [PMID: 38886218 PMCID: PMC11335190 DOI: 10.1007/s00018-024-05306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xujin Wei
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Liang P, Li H, Long C, Liu M, Zhou J, Zuo Y. Chromatin region binning of gene expression for improving embryo cell subtype identification. Comput Biol Med 2024; 170:108049. [PMID: 38290319 DOI: 10.1016/j.compbiomed.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Mammalian embryonic development is a complex process, characterized by intricate spatiotemporal dynamics and distinct chromatin preferences. However, the quick diversification in early embryogenesis leads to significant cellular diversity and the sparsity of scRNA-seq data, posing challenges in accurately determining cell fate decisions. In this study, we introduce a chromatin region binning method using scChrBin, designed to identify chromatin regions that elucidate the dynamics of embryonic development and lineage differentiation. This method transforms scRNA-seq data into a chromatin-based matrix, leveraging genomic annotations. Our results showed that the scChrBin method achieves high accuracy, with 98.0% and 89.2% on two single-cell embryonic datasets, demonstrating its effectiveness in analyzing complex developmental processes. We also systematically and comprehensively analysis of these key chromatin binning regions and their associated genes, focusing on their roles in lineage and stage development. The perspective of chromatin region binning method enables a comprehensive analysis of transcriptome data at the chromatin level, allowing us to unveil the dynamic expression of chromatin regions across temporal and spatial development. The tool is available as an application at https://github.com/liameihao/scChrBin.
Collapse
Affiliation(s)
- Pengfei Liang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hanshuang Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunshen Long
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Mingzhu Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jian Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
4
|
Perera CD, Idrees M, Khan AM, Haider Z, Ullah S, Kang JS, Lee SH, Kang SM, Kong IK. PDGFRβ Activation Induced the Bovine Embryonic Genome Activation via Enhanced NFYA Nuclear Localization. Int J Mol Sci 2023; 24:17047. [PMID: 38069370 PMCID: PMC10707662 DOI: 10.3390/ijms242317047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-β (PDGFRβ) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRβ using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRβ. In addition, PDGFRβ mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRβ inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRβ-NFYA axis is critical for bovine embryonic genome activation and embryonic development.
Collapse
Affiliation(s)
- Chalani Dilshani Perera
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abdul Majid Khan
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Zaheer Haider
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Safeer Ullah
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Ji-Su Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Seo-Hyun Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Seon-Min Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (C.D.P.); (M.I.); (A.M.K.); (Z.H.); (S.U.); (J.-S.K.); (S.-H.L.); (S.-M.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Genome Editing and Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:75-85. [DOI: 10.1007/978-981-19-5642-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Zheng L, Liang P, Long C, Li H, Li H, Liang Y, He X, Xi Q, Xing Y, Zuo Y. EmAtlas: a comprehensive atlas for exploring spatiotemporal activation in mammalian embryogenesis. Nucleic Acids Res 2022; 51:D924-D932. [PMID: 36189903 PMCID: PMC9825456 DOI: 10.1093/nar/gkac848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 01/30/2023] Open
Abstract
The emerging importance of embryonic development research rapidly increases the volume for a professional resource related to multi-omics data. However, the lack of global embryogenesis repository and systematic analysis tools limits the preceding in stem cell research, human congenital diseases and assisted reproduction. Here, we developed the EmAtlas, which collects the most comprehensive multi-omics data and provides multi-scale tools to explore spatiotemporal activation during mammalian embryogenesis. EmAtlas contains data on multiple types of gene expression, chromatin accessibility, DNA methylation, nucleosome occupancy, histone modifications, and transcription factors, which displays the complete spatiotemporal landscape in mouse and human across several time points, involving gametogenesis, preimplantation, even fetus and neonate, and each tissue involves various cell types. To characterize signatures involved in the tissue, cell, genome, gene and protein levels during mammalian embryogenesis, analysis tools on these five scales were developed. Additionally, we proposed EmRanger to deliver extensive development-related biological background annotations. Users can utilize these tools to analyze, browse, visualize, and download data owing to the user-friendly interface. EmAtlas is freely accessible at http://bioinfor.imu.edu.cn/ematlas.
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haicheng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xiang He
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongqiang Xing
- Correspondence may also be addressed to Yongqiang Xing. Tel: +86 472 5951944; Fax: +86 472 5951944;
| | - Yongchun Zuo
- To whom correspondence should be addressed. Tel: +86 471 5227683; Fax: +86 471 5227683;
| |
Collapse
|
7
|
Yu X, Liang S, Chen M, Yu H, Li R, Qu Y, Kong X, Guo R, Zheng R, Izsvák Z, Sun C, Yang M, Wang J. Recapitulating early human development with 8C-like cells. Cell Rep 2022; 39:110994. [PMID: 35732112 DOI: 10.1016/j.celrep.2022.110994] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
In human embryos, major zygotic genome activation (ZGA) initiates at the eight-cell (8C) stage. Abnormal ZGA leads to developmental defects and even contributes to the failure of human blastocyst formation or implantation. An in vitro cell model mimicking human 8C blastomeres would be invaluable to understanding the mechanisms regulating key biological events during early human development. Using the non-canonical promoter of LEUTX that putatively regulates human ZGA, we developed an 8C::mCherry reporter, which specifically marks the 8C state, to isolate rare 8C-like cells (8CLCs) from human preimplantation epiblast-like stem cells. The 8CLCs express a panel of human ZGA genes and have a unique transcriptome resembling that of the human 8C embryo. Using the 8C::mCherry reporter, we further optimize the chemical-based culture condition to increase and maintain the 8CLC population. Functionally, 8CLCs can self-organize to form blastocyst-like structures. The discovery and maintenance of 8CLCs provide an opportunity to recapitulate early human development.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiqi Liang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Manqi Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruiqi Li
- Department of Obstetrics and Gynaecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuliang Qu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuhui Kong
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruirui Guo
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Rongyan Zheng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Mingzhu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jichang Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Tesarik J. Toward Molecular Medicine in Female Infertility Management: Editorial to the Special Issue "Molecular Mechanisms of Human Oogenesis and Early Embryogenesis". Int J Mol Sci 2021; 22:ijms222413517. [PMID: 34948313 PMCID: PMC8705484 DOI: 10.3390/ijms222413517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jan Tesarik
- MarGen Clinic, Molecular Assisted Reproduction and Genetics, Camino de Ronda 2, 18006 Granada, Spain
| |
Collapse
|
9
|
Yoshida T, Miyado M, Mikami M, Suzuki E, Kinjo K, Matsubara K, Ogata T, Akutsu H, Kagami M, Fukami M. Aneuploid rescue precedes X-chromosome inactivation and increases the incidence of its skewness by reducing the size of the embryonic progenitor cell pool. Hum Reprod 2020; 34:1762-1769. [PMID: 31398259 DOI: 10.1093/humrep/dez117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do monosomy rescue (MR) and trisomy rescue (TR) in preimplantation human embryos affect other developmental processes, such as X-chromosome inactivation (XCI)? SUMMARY ANSWER Aneuploid rescue precedes XCI and increases the incidence of XCI skewness by reducing the size of the embryonic progenitor cell pools. WHAT IS KNOWN ALREADY More than half of preimplantation human embryos harbor aneuploid cells, some of which can be spontaneously corrected through MR or TR. XCI in females is an indispensable process, which is predicted to start at the early-blastocyst phase. STUDY DESIGN, SIZE, DURATION We examined the frequency of XCI skewness in young females who carried full uniparental disomy (UPD) resulting from MR or TR/gamete complementation (GC). The results were statistically analyzed using a theoretical model in which XCI involves various numbers of embryonic progenitor cells. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied 39 children and young adults ascertained by imprinting disorders. XCI ratios were determined by DNA methylation analysis of a polymorphic locus in the androgen receptor gene. We used Bayesian approach to assess the probability of the occurrence of extreme XCI skewness in the MR and TR/GC groups using a theoretical model of 1-12 cell pools. MAIN RESULTS AND THE ROLE OF CHANCE A total of 12 of 39 individuals (31%) showed skewed XCI. Extreme skewness was observed in 3 of 15 MR cases (20%) and 1 of 24 TR/GC cases (4.2%). Statistical analysis indicated that XCI in the MR group was likely to have occurred when the blastocyst contained three or four euploid embryonic progenitor cells. The estimated size of the embryonic progenitor cell pools was approximately one-third or one-fourth of the predicted size of normal embryos. The TR/GC group likely had a larger pool size at the onset of XCI, although the results remained inconclusive. LIMITATIONS, REASONS FOR CAUTION This is an observational study and needs to be validated by experimental analyses. WIDER IMPLICATIONS OF THE FINDINGS This study provides evidence that the onset of XCI is determined by an intrinsic clock, irrespectively of the number of embryonic progenitor cells. Our findings can also be applied to individuals without UPD or imprinting disorders. This study provides a clue to understand chromosomal and cellular dynamics in the first few days of human development, their effects on XCI skewing and the possible implications for the expression of X-linked diseases in females. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Grants-in-aid for Scientific Research on Innovative Areas (17H06428) and for Scientific Research (B) (17H03616) from Japan Society for the Promotion of Science (JSPS), and grants from Japan Agency for Medical Research and Development (AMED) (18ek0109266h0002 and 18ek0109278h0002), National Center for Child Health and Development and Takeda Science Foundation. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- T Yoshida
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan.,Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, 157-8535 Tokyo, Japan
| | - M Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - M Mikami
- Division of Biostatistics, Department of Data Management, Center for Clinical Research, National Center for Child Health and Development, 157-8535 Tokyo, Japan
| | - E Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - K Kinjo
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - K Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - T Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 431-3125 Hamamatsu, Japan
| | - H Akutsu
- Department of Reproductive Medicine, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - M Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| | - M Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 157-8535 Tokyo, Japan
| |
Collapse
|
10
|
Liang P, Yang W, Chen X, Long C, Zheng L, Li H, Zuo Y. Machine Learning of Single-Cell Transcriptome Highly Identifies mRNA Signature by Comparing F-Score Selection with DGE Analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:155-163. [PMID: 32169803 PMCID: PMC7066034 DOI: 10.1016/j.omtn.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/27/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Human preimplantation development is a complex process involving dramatic changes in transcriptional architecture. For a better understanding of their time-spatial development, it is indispensable to identify key genes. Although the single-cell RNA sequencing (RNA-seq) techniques could provide detailed clustering signatures, the identification of decisive factors remains difficult. Additionally, it requires high experimental cost and a long experimental period. Thus, it is highly desired to develop computational methods for identifying effective genes of development signature. In this study, we first developed a predictor called EmPredictor to identify developmental stages of human preimplantation embryogenesis. First, we compared the F-score of feature selection algorithms with differential gene expression (DGE) analysis to find specific signatures of the development stage. In addition, by training the support vector machine (SVM), four types of signature subsets were comprehensively discussed. The prediction results showed that a feature subset with 1,881 genes from the F-score algorithm obtained the best predictive performance, which achieved the highest accuracy of 93.3% on the cross-validation set. Further function enrichment demonstrated that the gene set selected by the feature selection method was involved in more development-related pathways and cell fate determination biomarkers. This indicates that the F-score algorithm should be preferentially proposed for detecting key genes of multi-period data in mammalian early development.
Collapse
Affiliation(s)
- Pengfei Liang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xing Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
11
|
Nasiri N, Karimian L, Hassani F, Gourabi H, Alipour H, Zolfaghari Z, Eftekhari-Yazdi P. Total Antioxidant Capacity; A Potential Biomarker for Non-Invasive Sex Prediction in Culture Medium of Preimplantation Human Embryos. CELL JOURNAL 2019; 21:253-258. [PMID: 31210430 PMCID: PMC6582414 DOI: 10.22074/cellj.2019.6115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
Objective The presence of a sex related metabolic difference in glucose utilization and, on the other hand, different
developmental kinetic rates in human preimplantation embryos, has been previously observed, hawever, the correlation
between these two events is unknown. Oxidative stress (OS) induced by higher glucose consumption appears to be a possible
cause for the delayed development rate in female embryos. We examined the correlation between glucose consumption and
total antioxidant capacity (TAC) concentration in individual embryo culture media for both male and female embryos.
Materials and Methods In this cross-sectional study, we evaluated high quality embryos from 51 patients that underwent
intracytoplasmic sperm injection (ICSI) and preimplantation genetic diagnosis (PGD) at the Royan Institute between December
2014 and September 2017. The embryos were individually cultured in G-2TMmedium droplets at days 3-5 or 48 hours post
PGD. We analysed the spent culture media following embryo transfer for total antioxidant capacity (TAC) and any remaining
glucose concentrations through fluorometric measurement by chemiluminecence system which indirectly was used for
measurement of glucose consumed by embryos.
Results The results showed that female embryos consumed more glucose which was associated with decreased TAC
concentration in their culture medium compared to male embryos. The mean of glucose concentration consumed by
the female embryos (30.7 ± 4.7 pmol/embryo/hour) was significantly higher than that of the male embryos (25.3 ± 3.3
pmol/embryo/hour) (P<0.001). There were significantly lower levels of TAC in the surrounding culture medium of female
embryos (22.60 ± 0.19 nmol/µl) compared with male embryos (24.74 ± 0.27 nmol/µl, P<0.01).
Conclusion This finding highlighted the utilization of sex dependent metabolic diversity between preimplantation embryos
for non-invasive sex diagnosis and suggests the TAC concentration as a potential noninvasive biomarker for prediction of sex.
Collapse
Affiliation(s)
- Nahid Nasiri
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Karimian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hiva Alipour
- Biomedicine Group, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Zahra Zolfaghari
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
12
|
Hu B, Zheng L, Long C, Song M, Li T, Yang L, Zuo Y. EmExplorer: a database for exploring time activation of gene expression in mammalian embryos. Open Biol 2019; 9:190054. [PMID: 31164042 PMCID: PMC6597754 DOI: 10.1098/rsob.190054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding early development offers a striking opportunity to investigate genetic disease, stem cell and assisted reproductive technology. Recent advances in high-throughput sequencing technology have led to the rising influx of omics data, which have rapidly boosted our understanding of mammalian developmental mechanisms. Here, we review the database EmExplorer (a database for exploring time activation of gene expression in mammalian embryos), which systematically organizes the genes from development-related pathways, and which we have already established and continue to update it. The current version of EmExplorer incorporates over 26 000 genes obtained from 306 functional pathways in five species. The function annotations of development-related genes were also integrated into EmExplorer. To facilitate data extraction, the database also contains the following information. (i) The dynamic expression values for each development stage are matched to the corresponding genes. (ii) A two-layer search tool which supports multi-option searching, such as by official symbol, pathway name and function annotation. The returned entries can directly link to the analysis results for the corresponding gene or pathway in the analysis module. (iii) The analysis module provides different gene comparisons at the multi-species level and functional pathway level, which shows the species specificity and stage specificity at the gene or pathway level. (iv) The analysis based on the hypergeometric distribution test reveals the enrichment of gene functions at a particular stage of one organism's pathway. (v) The browser is designed for users with ambiguous searching goals and greatly helps new users to get a general idea of the contents of the database. (vi) The experimentally validated pathways are manually curated and shown on the home page. EmExplorer will be helpful for elucidating early developmental mechanisms and exploring time activation genes. EmExplorer is freely available at http://bioinfor.imu.edu.cn/emexplorer.
Collapse
Affiliation(s)
- Bosu Hu
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Lei Zheng
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Chunshen Long
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Mingmin Song
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| | - Tao Li
- 2 College of Life Sciences, Inner Mongolia Agricultural University , Hohhot 010018 , People's Republic of China
| | - Lei Yang
- 3 College of Bioinformatics Science and Technology, Harbin Medical University , Harbin 150081 , People's Republic of China
| | - Yongchun Zuo
- 1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University , Hohhot 010070 , People's Republic of China
| |
Collapse
|