1
|
Daniels RJ, D'Amato ME, Lesaoana M, Kasu M, Ehlers K, Chauke PA, Lecheko P, Challis S, Rockett K, Montinaro F, González-Santos M, Capelli C. Genetic heritage of the Baphuthi highlights an over-ethnicized notion of "Bushman" in the Maloti-Drakensberg, southern Africa. Am J Hum Genet 2023; 110:880-894. [PMID: 37105174 PMCID: PMC10183465 DOI: 10.1016/j.ajhg.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Using contemporary people as proxies for ancient communities is a contentious but necessary practice in anthropology. In southern Africa, the distinction between the Cape KhoeSan and eastern KhoeSan remains unclear, as ethnicity labels have been changed through time and most communities were decimated if not extirpated. The eastern KhoeSan may have had genetic distinctions from neighboring communities who speak Bantu languages and KhoeSan further away; alternatively, the identity may not have been tied to any notion of biology, instead denoting communities with a nomadic "lifeway" distinct from African agro-pastoralism. The Baphuthi of the 1800s in the Maloti-Drakensberg, southern Africa had a substantial KhoeSan constituency and a lifeway of nomadism, cattle raiding, and horticulture. Baphuthi heritage could provide insights into the history of the eastern KhoeSan. We examine genetic affinities of 23 Baphuthi to discern whether the narrative of KhoeSan descent reflects distinct genetic ancestry. Genome-wide SNP data (Illumina GSA) were merged with 52 global populations, for 160,000 SNPs. Genetic analyses show no support for a unique eastern KhoeSan ancestry distinct from other KhoeSan or southern Bantu speakers. The Baphuthi have strong affinities with early-arriving southern Bantu-speaking (Nguni) communities, as the later-arriving non-Nguni show strong evidence of recent African admixture possibly related to late-Iron Age migrations. The references to communities as "San" and "Bushman" in historic literature has often been misconstrued as notions of ethnic/biological distinctions. The terms may have reflected ambiguous references to non-sedentary polities instead, as seems to be the case for the eastern "Bushman" heritage of the Baphuthi.
Collapse
Affiliation(s)
- Ryan Joseph Daniels
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ Oxfordshire, UK; Forensic DNA Laboratory, Department of Biotechnology, University of the Western Cape, Cape Town 7535, South Africa.
| | - Maria Eugenia D'Amato
- Forensic DNA Laboratory, Department of Biotechnology, University of the Western Cape, Cape Town 7535, South Africa
| | - Mpasi Lesaoana
- Forensic DNA Laboratory, Department of Biotechnology, University of the Western Cape, Cape Town 7535, South Africa; Lesotho Mounted Police Service, Technical Support Services, Maseru 100, Lesotho
| | - Mohaimin Kasu
- Forensic DNA Laboratory, Department of Biotechnology, University of the Western Cape, Cape Town 7535, South Africa
| | - Karen Ehlers
- Department of Genetics, University of the Free State, Bloemfontein 9300, South Africa
| | - Paballo Abel Chauke
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, CIDRI Africa Wellcome Trust Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Puseletso Lecheko
- Rock Art Research Institute, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Sam Challis
- Rock Art Research Institute, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Kirk Rockett
- Wellcome Centre for Human Genomics, Oxford, OX3 7BN Oxfordshire, UK
| | - Francesco Montinaro
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ Oxfordshire, UK; Department of Biology-Genetics, University of Bari, Via E. Orabona, 4, 70124 Bari, Italy
| | | | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ Oxfordshire, UK; Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, 43121 Parma, Italy.
| |
Collapse
|
2
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
3
|
Grine FE, Gonzalvo E, Rossouw L, Holt S, Black W, Braga J. Variation in Middle Stone Age mandibular molar enamel-dentine junction topography at Klasies River Main Site assessed by diffeomorphic surface matching. J Hum Evol 2021; 161:103079. [PMID: 34739985 DOI: 10.1016/j.jhevol.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
The morphology and variability of the Middle Stone Age (MSA) hominin fossils from Klasies River Main Site have been the focus of investigation for more than four decades. The mandibular remains have figured prominently in discussions relating to robusticity, size dimorphism, and symphyseal morphology. Variation in corpus size between the robust SAM-AP 6223 and the diminutive SAM-AP 6225 mandibles is particularly impressive, and the difference between the buccolingual diameters of their M2s significantly exceeds recent human sample variation. SAM-AP 6223 and SAM-AP 6225 are the only Klasies specimens with homologous teeth (M2 and M3) that permit comparisons of crown morphology. While the differences in dental trait expression at the outer enamel surfaces of these molars are slight, diffeomorphic surface analyses of their underlying enamel-dentine junction (EDJ) topographies reveal differences that are well beyond the means of pairwise differences among comparative samples of Later Stone Age (LSA) Khoesan and recent African homologues. The EDJs of both SAM-AP 6225 molars and the SAM-AP 6223 M3 fall outside the envelopes that define the morphospace of these two samples. Although the radiocarbon dated LSA individuals examined here differ by a maximum of some 7000 years, and the two Klasies jaws may differ by perhaps as much as 18,000 years, it is difficult to ascribe their differences to time alone. With reference to the morphoscopic traits by which the SAM-AP 6223 and SAM-AP 6225 EDJs differ, the most striking is the expression of the protoconid cingulum. This is very weakly developed on the SAM-AP 6223 molars and distinct in SAM-AP 6225. As such, this diminutive fossil exhibits a more pronounced manifestation of what is likely a plesiomorphic feature, thus adding to the morphological mosaicism that is evident in the Klasies hominin assemblage. Several possible explanations for the variation and mosaicism in this MSA sample are discussed.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Elsa Gonzalvo
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France
| | - Lloyd Rossouw
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Wendy Black
- Archaeology Unit, Research and Exhibitions Department, Iziko Museums of South Africa, Cape Town, South Africa
| | - José Braga
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
4
|
Choudhury A, Sengupta D, Ramsay M, Schlebusch C. Bantu-speaker migration and admixture in southern Africa. Hum Mol Genet 2021; 30:R56-R63. [PMID: 33367711 PMCID: PMC8117461 DOI: 10.1093/hmg/ddaa274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023] Open
Abstract
The presence of Early and Middle Stone Age human remains and associated archeological artifacts from various sites scattered across southern Africa, suggests this geographic region to be one of the first abodes of anatomically modern humans. Although the presence of hunter-gatherer cultures in this region dates back to deep times, the peopling of southern Africa has largely been reshaped by three major sets of migrations over the last 2000 years. These migrations have led to a confluence of four distinct ancestries (San hunter-gatherer, East-African pastoralist, Bantu-speaker farmer and Eurasian) in populations from this region. In this review, we have summarized the recent insights into the refinement of timelines and routes of the migration of Bantu-speaking populations to southern Africa and their admixture with resident southern African Khoe-San populations. We highlight two recent studies providing evidence for the emergence of fine-scale population structure within some South-Eastern Bantu-speaker groups. We also accentuate whole genome sequencing studies (current and ancient) that have both enhanced our understanding of the peopling of southern Africa and demonstrated a huge potential for novel variant discovery in populations from this region. Finally, we identify some of the major gaps and inconsistencies in our understanding and emphasize the importance of more systematic studies of southern African populations from diverse ethnolinguistic groups and geographic locations.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Carina Schlebusch
- Palaeo-Research Institute, University of Johannesburg, Auckland Park 2006, South Africa
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala 75326, Sweden
- SciLifeLab, Uppsala 75237, Sweden
| |
Collapse
|
5
|
Pakendorf B, Stoneking M. The genomic prehistory of peoples speaking Khoisan languages. Hum Mol Genet 2020; 30:R49-R55. [PMID: 33075813 PMCID: PMC8117426 DOI: 10.1093/hmg/ddaa221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
Peoples speaking so-called Khoisan languages-that is, indigenous languages of southern Africa that do not belong to the Bantu family-are culturally and linguistically diverse. They comprise herders, hunter-gatherers as well as groups of mixed modes of subsistence, and their languages are classified into three distinct language families. This cultural and linguistic variation is mirrored by extensive genetic diversity. We here review the recent genomics literature and discuss the genetic evidence for a formerly wider geographic spread of peoples with Khoisan-related ancestry, for the deep divergence among populations speaking Khoisan languages overlaid by more recent gene flow among these groups and for the impact of admixture with immigrant food-producers in their prehistory.
Collapse
Affiliation(s)
- Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université de Lyon, 14 avenue Berthelot, 69007 Lyon, France
| | - Mark Stoneking
- Department of Evolutionary Genetics, MPI for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Le Meillour L, Zirah S, Zazzo A, Cersoy S, Détroit F, Imalwa E, Lebon M, Nankela A, Tombret O, Pleurdeau D, Lesur J. Palaeoproteomics gives new insight into early southern African pastoralism. Sci Rep 2020; 10:14427. [PMID: 32879376 PMCID: PMC7468255 DOI: 10.1038/s41598-020-71374-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
The advent of domestication is a major step that transformed the subsistence strategies of past human societies. In Africa, domestic caprines (sheep and goat) were introduced in the north-eastern part of the continent from the Near East more than 9000 years ago. However, their diffusion southwards was slow. They are thought to have made their first appearance in the southern part of the continent ca. 2000 years ago, at a few Later Stone Age sites, including Leopard Cave (Erongo region, Namibia), which provided the oldest directly dated remains assigned to sheep or goat on the basis of morphology of bones and teeth. However, similarities in morphology, not only between these two domesticated caprine species, but also between them and the small wild antelopes, raised questions about the morphological species attribution of these remains. Additionally, the high fragmentation of the site's osteological remains makes it difficult to achieve species-level taxonomic identification by comparative anatomy. In this paper, we report molecular species identification of the Leopard Cave remains using palaeoproteomics, a method that uses protein markers in bone and tooth collagen to achieve taxonomic identification of archaeological remains. We also report new direct radiocarbon dates. Wild antelope remains from museum collections were used to enrich the available protein record and propose de novo type I collagen sequences. Our results demonstrate that the remains morphologically described as domesticates actually belong to a wild antelope species and that domestic caprines first appeared at Leopard Cave 1500 years later than previously thought. This study illustrates that the use of palaeoproteomics coupled with direct radiocarbon dates is particularly suited to complement classic zooarchaeological studies, in this case concerning the arrival of the first herding practices in arid environments.
Collapse
Affiliation(s)
- Louise Le Meillour
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon, 75005, Paris, France.
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, 63 rue Buffon, 75005, Paris, France.
| | - Séverine Zirah
- UMR 7245 Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, 63 rue Buffon, 75005, Paris, France
| | - Antoine Zazzo
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon, 75005, Paris, France
| | - Sophie Cersoy
- USR 3224 Centre de Recherche sur la Conservation (CRCC), Muséum national d'Histoire naturelle, CNRS, Ministère de la Culture, 36 rue Geoffroy Saint Hilaire, 75005, Paris, France
| | - Florent Détroit
- UMR 7194 Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013, Paris, France
| | | | - Matthieu Lebon
- UMR 7194 Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013, Paris, France
| | - Alma Nankela
- National Heritage Council of Namibia, 153 Dr. AB May and Rev. Michael Scott streets, Ausspannplatz, Windhoek, Namibia
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon, 75005, Paris, France
- UMR 7194 Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013, Paris, France
| | - David Pleurdeau
- UMR 7194 Histoire naturelle de l'Homme Préhistorique (HNHP), Muséum national d'Histoire naturelle, CNRS, UPVD, 1 rue René Panhard, 75013, Paris, France
| | - Joséphine Lesur
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon, 75005, Paris, France.
| |
Collapse
|
7
|
Grine FE, Lee C, Mongle CS, Billings BK, Wallace IJ, Mngomezulu V. Secular trends in cranial size and shape among black South Africans over the late 19th and 20th centuries. Ann Hum Biol 2020; 47:446-456. [PMID: 32552038 DOI: 10.1080/03014460.2020.1783361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Previous studies of secular change in cranial size among black South Africans have produced conflicting results. AIM We re-examined cranial size change in this population during the 19th and 20th century by evaluating its relationship with individual year-of-birth, and the significance of trends among eight decennial cohorts. SUBJECTS AND METHODS This study is based on 102 male and 89 female adults born between 1865 and 1959. Linear regressions were employed to evaluate possible relationships between year-of-birth and cranial dimensions; ANOVAs were used to evaluate the significance of long-term trends among decennial cohorts. RESULTS No analysis revealed a secular change in cranial length in either sex; however, the ANOVA for cranial length in the combined sex sample was significant. There is no secular trend in female cranial breadth, but males display a negative trend in this dimension. This results in a secular trend for increased male dolichocephaly. CONCLUSIONS The factors that underlie the negative secular trend in male cranial breadth and the absence of a secular trend in overall cranial size in this population are unclear. Nevertheless, these observations accord with findings related to stature and long bone strength in this population and are consistent with observations for other sub-Saharan African populations.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Christine Lee
- Department of Biological and Chemical Sciences, New York Institute of Technology, Westbury, NY, USA
| | - Carrie S Mongle
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Brendon K Billings
- Faculty of Health Sciences, Human Variation and Identification Research Unit, School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Victor Mngomezulu
- Department of Diagnostic Radiology, Charlotte Maxeke Johannesburg Academic Hospital, Parktown, Johannesburg, South Africa
| |
Collapse
|
8
|
Pfeiffer S, Cameron ME, Sealy J, Beresheim AC. Diet and adult age-at-death among mobile foragers: A synthesis of bioarcheological methods. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:131-147. [PMID: 31265761 DOI: 10.1002/ajpa.23883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The research explores whether the combined study of cortical bone histology, bone morphology, and dietary stable isotopes can expand insights into past human health and adaptations, particularly dietary sufficiency and life span. MATERIALS AND METHODS Midthoracic rib cortices from 54 South African Late Holocene adult skeletons (28 M, 24 F, two sex undetermined) are assessed by transmitted-light microscopy for cross-sectional area measurements, osteon area (On.Ar), osteon population density, and presence/absence of secondary osteon variants. Values for δ13 Cbone collagen , δ15 Nbone collagen , 14 C dates, Southwestern and Southern Cape geographic regions, body size measures, estimated ages-at-death from both morphological and histological methods are integrated into analyses, which include Spearman correlations, χ2 tests and Kruskal-Wallis ANOVAs. RESULTS There is reduced On.Ar variability with higher δ15 N (r = -.41, p = .005); rib %cortical area and δ15 N are negatively correlated in the Southern Cape group (r = -.60, p = .03). Osteon variants are more common in older adults; histological ages at death are significantly older than those determined from gross morphology. DISCUSSION We found bone tissue relationships with measures of diet composition, but indicators of dietary adequacy remain elusive. Relationships of tissue quality and isotopes suggest that some Southern Cape adults lived long lives. Osteon variants are associated with age-at-death; some association with diet remains possible. Gross morphological methods appear to underestimate adult ages-at-death, at least among small-bodied adults.
Collapse
Affiliation(s)
- Susan Pfeiffer
- Anthropology, University of Toronto, Toronto, Ontario, Canada.,Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | | | - Judith Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Amy C Beresheim
- Anthropology, University of Toronto, Toronto, Ontario, Canada.,Department of Anatomy, Des Moines University, Des Moines, Iowa
| |
Collapse
|