1
|
Koce M, Fakin A, Markelj Š, Debeljak M, Kovač J, Lisec A, Bertok S, Meglič A. Pathogenic variants in the IFT140 gene and an intriguing clinical presentation in two pediatric patients. Cases report and review of literature. Ophthalmic Genet 2025:1-8. [PMID: 39927556 DOI: 10.1080/13816810.2025.2462987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The IFT140 gene is one of many genes involved in the synthesis of proteins needed for cilium function. Ciliopathies are a group of disorders associated with the dysfunction of ciliary structures and express as an individual organ system disease as well as multisystem disorders. Dysfunctional cilia typically manifest as pleiotropic clinical features, reflecting their widespread distribution and varied functionality. CASES PRESENTATION We present two cases: Case 1, a male with two pathological variations in IFT140 gene, a compound heterozygote, with kidney failure, retinal dystrophy, cardiomyopathy, and situs inversus and Case 2, a female with an IFT140 pathogenic homozygous variant, presented with nephrotic range proteinuria, retinitis pigmentosa, and pseudotumor cerebri. CONCLUSIONS As cilia dysfunction is known to cause pleiotropic clinical features due to the presence of cilia in different organs in the body, the clinical picture of the IFT140 mutation is also very heterogeneous. Our cases reveal unprecedented manifestations - LVNC, situs inversus, and pseudotumor cerebri - not previously documented in IFT140 mutation. These findings underscore the importance of genetic screening in ciliopathies.
Collapse
Affiliation(s)
- Maša Koce
- Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ana Fakin
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Markelj
- Department of Ophthalmology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Ajda Lisec
- Clinical Department of Anesthesiology and Surgical Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Centre for Medical Genetics, University Medical Centre, University Children's Hospital, Ljubljana, Slovenia
| | - Anamarija Meglič
- Nephrology Department, Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Dahmer-Heath M, Gerß J, Fliser D, Liebau MC, Speer T, Telgmann AK, Burgmaier K, Pennekamp P, Pape L, Schaefer F, Konrad M, König JC. Urinary Dickkopf-3 Reflects Disease Severity and Predicts Short-Term Kidney Function Decline in Renal Ciliopathies. Kidney Int Rep 2025; 10:197-208. [PMID: 39810774 PMCID: PMC11725807 DOI: 10.1016/j.ekir.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Phenotypic heterogeneity and unpredictability of individual disease progression present enormous challenges in ultrarare renal ciliopathies. The tubular-derived glycoprotein, Dickkopf-related protein 3 (DKK3) is a promising biomarker for kidney fibrosis and prediction of kidney function decline. Here, we measured urinary DKK3 (uDKK3) levels in 195 pediatric patients with renal ciliopathy to assess its potential as a discriminative and prediction marker. Methods uDKK3 concentration was measured in 357 spot urine samples from 247 individuals, including 52 healthy age-matched controls. Disease entities comprised nephronophthisis (NPH) (n = 37), autosomal recessive polycystic kidney disease (ARPKD) (n = 61), Bardet Biedl syndrome (BBS) (n = 57), and hepatocyte nuclear factor 1 beta (HNF1B)-nephropathy (n = 40). The results were correlated with chronic kidney disease (CKD) stage and annual estimated glomerular filtration rate (eGFR) decline. Results Median uDKK3-to-creatinine ratios (uDKK3/crea) in all disease entities were significantly higher compared with healthy controls (11pg/mg uDKK3/crea, P < 0.001): NPH, 1.219 pg/mg; HNF1B, 731 pg/mg; BBS, 541 pg/mg; and ARPKD, 437 pg/mg. A significant correlation of CKD stage with uDKK3 levels was observed for all disease entities (P < 0.0001) with no other clinical parameter having a relevant impact. In our cohort, uDKK3 values >4.700 pg/mg were associated with a significantly greater annual eGFR loss independently of diagnosis and eGFR (P = 0.0029). Although we observed a trend toward lower uDKK3 levels in glomerulopathies compared to renal ciliopathies, there was no discriminative difference between individual ciliopathy entities (P = 0.2637). Conclusion In renal ciliopathies, uDKK3 is a marker to assess disease severity and estimate short-term kidney function decline.
Collapse
Affiliation(s)
- Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Lars Pape
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jens Christian König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - NEOCYST Consortium10
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| |
Collapse
|
3
|
Ercoskun P, Aydin Gumus A, Gokpinar Ili E, Yilmaz Celik L, Dogan M, Yavuz S, Yildiz G, Gezdirici A. Variant Spectrum of Renal Ciliopathies in Turkish Cohort and Genotype-Phenotype Association Specifically in Autosomal Dominant Polycystic Kidney Disease. Clin Genet 2024. [PMID: 39731278 DOI: 10.1111/cge.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease. One hundred nineteen patients had ADPKD phenotype, 7 patients had ARPKD phenotype, 4 patients had nephronophthisis, 1 patient had Senior-Loken syndrome, 4 patients had Bardet-Biedl syndrome, 1 patient had Joubert syndrome and 1 patient had Meckel Gruber syndrome phenotype. Among patients with autosomal dominant polycystic kidney disease, patients with the PKD1 gene mutation had higher creatinine levels (p value: 0.020) and no arachnoid cysts were revealed in the PKD2 group (p value: 0.014). When the domains were compared, the finding of arachnoid cyst in patients with mutations in the transmembrane domain was statistically significant (p value: 0.021). Homozygous likely pathogenic variant in the TCTN1 gene was reported in a fetus who had findings of Meckel-Gruber syndrome; microphthalmia and cardiac hypoplasia were reported as novel findings. As a conclusion, we identified variant spectrum of renal ciliopathies in Turkish cohort and revealed the association between the transmembrane domain and arachnoid cyst.
Collapse
Affiliation(s)
- Pelin Ercoskun
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Aydeniz Aydin Gumus
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ezgi Gokpinar Ili
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Lale Yilmaz Celik
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Mustafa Dogan
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sevgi Yavuz
- Department of Pediatric Nephrology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Gursel Yildiz
- Department of Nephrology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Collier JB, Kang HS, Roh YG, Srivastava C, Grimm SA, Jarmusch AK, Jetten AM. GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease. Mol Metab 2024; 90:102052. [PMID: 39505148 PMCID: PMC11613186 DOI: 10.1016/j.molmet.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis. METHODS Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice. RESULTS Transcriptome analysis showed that many genes critical for mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, including Tfam, Tfb1m, Tfb2m, Ppargc1a, Ppargc1b, Atp5j2, Hadha, and Sdha, are significantly suppressed in kidneys from both ubiquitous and tissue-specific Glis3-deficient mice. ChIP-Seq analysis demonstrated that GLIS3 is associated with the regulatory region of many of these genes, indicating that their transcription is directly regulated by GLIS3. Cistrome analyses revealed that GLIS3 binding loci frequently located near those of hepatocyte nuclear factor 1-Beta (HNF1B) and nuclear respiratory factor 1 (NRF1) suggesting GLIS3 regulates transcription of many metabolic and mitochondrial function-related genes in coordination with these TFs. Seahorse analysis and untargeted metabolomics corroborated that mitochondrial OXPHOS utilization is suppressed in GLIS3-deficient kidneys and showed that key metabolites in glycolysis, TCA cycle, and glutamine pathways were altered indicating increased reliance on aerobic glycolysis and glutamine anaplerosis. These features of metabolic reprogramming may contribute to a bioenergetic environment that supports renal cyst formation and progression in Glis3-deficient mice kidneys. CONCLUSIONS We identify GLIS3 as a novel positive regulator of the transition from aerobic glycolysis to OXPHOS in normal early postnatal kidney development by directly regulating the transcription of mitochondrial metabolic genes. Loss of GLIS3 induces several features of renal cell metabolic reprogramming. Our study identifies GLIS3 as a new participant in an interconnected transcription regulatory network, that includes HNF1B and NRF1, critical in the regulation of mitochondrial-related gene expression and energy metabolism in normal postnatal kidneys and PKD pathogenesis in Glis3-deficient mice.
Collapse
Affiliation(s)
- Justin B Collier
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yun-Gil Roh
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Chitrangda Srivastava
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Alan K Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
5
|
Wang G, Liao M, Tan DJ, Chen X, Chao R, Zhu Y, Li P, Guan Y, Mao J, Hu L. Advances in Diagnosis and Treatment of Inherited Kidney Diseases in Children. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:558-572. [PMID: 39664340 PMCID: PMC11631113 DOI: 10.1159/000541564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/18/2024] [Indexed: 12/13/2024]
Abstract
Background Inherited kidney diseases (IKDs) in children pose unique diagnostic and therapeutic challenges. IKD significantly impact patient quality of life, morbidity, mortality, and cost to the healthcare system. With over 150 genetic abnormalities, they account for approximately 30% of cases requiring renal replacement therapy. There is an urgent need to advance both diagnosis and treatment strategies. In this review, we present recent advances in diagnosis and treatment for facilitating personalized treatment approaches. Summary The diagnostic landscape for IKDs have evolved significantly, emphasizing precise genetic identification and classification of these disorders. Recent advancements include the refinement of genetic testing techniques, such as whole exome sequencing, which has improved the accuracy of diagnosing specific diseases and facilitated early intervention strategies. Additionally, this review categorizes IKDs based on genetic abnormalities and clinical manifestations, enhancing understanding and management approaches. Finally, it summarizes the corresponding treatment, and lists the application of emerging therapeutic options such as gene therapy and organoids, which show promise in transforming treatment outcomes. Key Messages This review summarizes the common types of IKDs in children, including their diagnosis and treatment advances, and provides an update on the status of gene therapy development for these disorders.
Collapse
Affiliation(s)
- Guozhen Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Liao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danny Junyi Tan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Chao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zhu
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuelin Guan
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. Cytoskeleton (Hoboken) 2024; 81:618-638. [PMID: 38715433 PMCID: PMC11540979 DOI: 10.1002/cm.21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and embedding conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both preclinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Pongpratch Puapatanakul
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rachel Pudlowski
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Jeffrey H Miner
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University, St. Louis, Missouri, USA
| | - Steven L Brody
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jennifer T Wang
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hani Y Suleiman
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Moe R Mahjoub
- Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Van Sciver RE, Caspary T. A prioritization tool for cilia-associated genes and their in vivo resources unveils new avenues for ciliopathy research. Dis Model Mech 2024; 17:dmm052000. [PMID: 39263856 PMCID: PMC11512102 DOI: 10.1242/dmm.052000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. Approximately 10% of mammalian genes encode cilia-associated proteins, and a major gap in the cilia research field is knowing which genes to prioritize to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here, we present a unified resource listing the cilia-associated human genes cross referenced to available mouse and zebrafish mutant alleles, and their associated phenotypes, as well as expression data in the kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross reference with newly generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Vrabič N, Fakin A, Tekavčič Pompe M. Spectrum and frequencies of extraocular features reported in CEP290-associated ciliopathy - A systematic review. J Fr Ophtalmol 2024; 47:104232. [PMID: 39213781 DOI: 10.1016/j.jfo.2024.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 09/04/2024]
Abstract
Pathogenic variants in the CEP290 gene may result in a broad spectrum of diseases, ranging from lethal neonatal syndromes to isolated retinopathy. A detailed review of the clinical spectrum with the incidence of affected extraocular systems has not yet been published. A review of published papers was carried out to provide a comprehensive report on systemic signs and symptoms associated with CEP290 ciliopathies and to explore the genotype-phenotype correlation. Genetic and clinical data were collected on patients with biallelic variants in the CEP290 gene and the extraocular tissues affected. Genotype-phenotype analysis was performed. Two hundred thirty-five patients were included in the analysis. The most frequently reported organs affected, after the eye, were the central nervous system (82.6%, 194/235), followed by the kidney (53.2%, 125/235), skeletal system (15.3% 36/235), and a large spectrum of other, less frequently reported clinical manifestations. Patients with two variants that together predictably resulted in a low amount of CEP290 protein showed a significant association with having two or more extraocular organ systems affected. This is the most extensive report to date on patients with CEP290-ciliopathy and affected extraocular tissues. Based on these findings and previous publications, systemic screening is proposed, together with a clinical pathway for patients with CEP290-related ciliopathy.
Collapse
Affiliation(s)
- N Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - A Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - M Tekavčič Pompe
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Sekar T, Sebire NJ. Renal Pathology of Ciliopathies. Pediatr Dev Pathol 2024; 27:411-425. [PMID: 38616607 DOI: 10.1177/10935266241242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.
Collapse
Affiliation(s)
- Thivya Sekar
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| | - Neil J Sebire
- Histopathology Department, Level 3 CBL Labs, Great Ormond Street Hospital, London, UK
| |
Collapse
|
10
|
Lamot L, Vuković Brinar I, Fištrek Prlić M, Beck B. Editorial: Cystic kidney diseases in children and adults: from diagnosis to etiology and back. Front Pediatr 2024; 12:1401593. [PMID: 38659695 PMCID: PMC11040088 DOI: 10.3389/fped.2024.1401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivana Vuković Brinar
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Margareta Fištrek Prlić
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, Zagreb, Croatia
| | - Bodo Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Grlić S, Gregurović V, Martinić M, Davidović M, Kos I, Galić S, Fištrek Prlić M, Vuković Brinar I, Vrljičak K, Lamot L. Single-Center Experience of Pediatric Cystic Kidney Disease and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:392. [PMID: 38671609 PMCID: PMC11048964 DOI: 10.3390/children11040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Pediatric cystic kidney disease (CyKD) includes conditions characterized by renal cysts. Despite extensive research in this field, there are no reliable genetics or other biomarkers to estimate the phenotypic consequences. Therefore, CyKD in children heavily relies on clinical and diagnostic testing to predict the long-term outcomes. AIM A retrospective study aimed to provide a concise overview of this condition and analyze real-life data from a single-center pediatric CyKD cohort followed during a 12-year period. METHODS AND MATERIALS Medical records were reviewed for extensive clinical, laboratory, and radiological data, treatment approaches, and long-term outcomes. RESULTS During the study period, 112 patients received a diagnosis of pediatric CyKD. Male patients were more involved than female (1:0.93). Fifty-six patients had a multicystic dysplastic kidney; twenty-one of them had an autosomal dominant disorder; fifteen had an isolated renal cyst; ten had been diagnosed with autosomal recessive polycystic kidney disease; three had the tuberous sclerosis complex; two patients each had Bardet-Biedl, Joubert syndrome, and nephronophthisis; and one had been diagnosed with the trisomy 13 condition. Genetic testing was performed in 17.9% of the patients, revealing disease-causing mutations in three-quarters (75.0%) of the tested patients. The most commonly presenting symptoms were abdominal distension (21.4%), abdominal pain (15.2%), and oligohydramnios (12.5%). Recurrent urinary tract infections (UTI) were documented in one-quarter of the patients, while 20.5% of them developed hypertension during the long-term follow-up. Antibiotic prophylaxis and antihypertensive treatment were the most employed therapeutic modalities. Seventeen patients progressed to chronic kidney disease (CKD), with thirteen of them eventually reaching end-stage renal disease (ESRD). The time from the initial detection of cysts on an ultrasound (US) to the onset of CKD across the entire cohort was 59.0 (7.0-31124.0) months, whereas the duration from the detection of cysts on an US to the onset of ESRD across the whole cohort was 127.0 (33.0-141.0) months. The median follow-up duration in the cohort was 3.0 (1.0-7.0) years. The patients who progressed to ESRD had clinical symptoms at the time of initial clinical presentation. CONCLUSION This study is the first large cohort of patients reported from Croatia. The most common CyKD was the multicystic dysplastic kidney disease. The most common clinical presentation was abdominal distention, abdominal pain, and oliguria. The most common long-term complications were recurrent UTIs, hypertension, CKD, and ESRD.
Collapse
Affiliation(s)
- Sara Grlić
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
| | - Viktorija Gregurović
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
| | - Mislav Martinić
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Maša Davidović
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Ivanka Kos
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Slobodan Galić
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Margareta Fištrek Prlić
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Vuković Brinar
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kristina Vrljičak
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| | - Lovro Lamot
- Department of Pediatrics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.V.B.); (L.L.)
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.M.); (M.D.); (I.K.); (S.G.); (K.V.)
| |
Collapse
|
12
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. J Cell Sci 2024; 137:jcs261047. [PMID: 37665101 PMCID: PMC10499034 DOI: 10.1242/jcs.261047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering homotypic fusion and protein sorting (HOPS) complex disrupts this actin clearing and ciliogenesis, but it remains unclear how the ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body, and that this effect is specific to polarized epithelial cells. We also find that Rab19 functions in endolysosomal cargo trafficking in addition to having its previously identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion leads to the abnormal accumulation of Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin clearing and ciliogenesis in polarized epithelial cells.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Ultrastructure expansion microscopy (U-ExM) of mouse and human kidneys for analysis of subcellular structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580708. [PMID: 38405695 PMCID: PMC10889020 DOI: 10.1101/2024.02.16.580708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ultrastructure expansion microscopy (U-ExM) involves the physical magnification of specimens embedded in hydrogels, which allows for super-resolution imaging of subcellular structures using a conventional diffraction-limited microscope. Methods for expansion microscopy exist for several organisms, organs, and cell types, and used to analyze cellular organelles and substructures in nanoscale resolution. Here, we describe a simple step-by-step U-ExM protocol for the expansion, immunostaining, imaging, and analysis of cytoskeletal and organellar structures in kidney tissue. We detail the critical modified steps to optimize isotropic kidney tissue expansion, and preservation of the renal cell structures of interest. We demonstrate the utility of the approach using several markers of renal cell types, centrioles, cilia, the extracellular matrix, and other cytoskeletal elements. Finally, we show that the approach works well on mouse and human kidney samples that were preserved using different fixation and storage conditions. Overall, this protocol provides a simple and cost-effective approach to analyze both pre-clinical and clinical renal samples in high detail, using conventional lab supplies and standard widefield or confocal microscopy.
Collapse
|
14
|
Zhuang X, Li M, Xu D, Lin S, Yang Z, Xu T, Yin J. Comprehensive analysis of pain genes in prognosis of kidney renal clear cell carcinoma and tumor immunotherapy: A comprehensive bioinformatic study. Health Sci Rep 2024; 7:e1884. [PMID: 38352696 PMCID: PMC10862147 DOI: 10.1002/hsr2.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Background The effect of pain genes (NAV1, EHMT2, SP1, SLC6A4, COMT, OPRM1, OPRD1, CYP2D6, and CYP3A4) have not been reported previously in kidney renal clear cell carcinoma (KIRC) patients and thus we made a comprehensive analysis of pain genes in the prognosis of KIRC and tumor immunotherapy. Methods In this study, TCGA, Kaplan-Meier plotter, Metascape, STRING, Human Protein Atlas, Single Cell Expression Atlas database, LinkedOmics, cBioPortal, MethSurv, CancerSEA, COSMIC database and R package (ggplot2, version 3.3.3) were used for comprehensive analysis of pain genes in KIRC. Pearson and Spearman correlation coefficients were for co-expression analysis. Immunotherapy and TISIDB database were used for tumor Immunotherapy. Results Representative pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4) were statistically significant (p < 0.0001) in the prognosis of KIRC. Immunotherapy (anti-PD-1 therapy, anti-PD-L1 therapy, and anti-CTLA4 therapy) and immunomodulator (immunoinhibitor, immunostimulator, and MHC molecule) in KIRC were significant associated with pain genes (SP1, SLC6A4, COMT, OPRD1, CYP2D6, and CYP3A4), which were the important addition to clinical decision making for patients. Conclusions Our study uncovered a mechanism for the effect of pain genes on KIRC outcome via the modulation of associated co-expression gene networks, gene variation, and tumor Immunotherapy.
Collapse
Affiliation(s)
- Xiao‐Yu Zhuang
- Department of AnesthesiologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Ming Li
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Da‐Ming Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shu‐Bin Lin
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Zheng‐Liang Yang
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Teng‐Yu Xu
- Department of UrologySecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Jun Yin
- Department of Clinical Laboratory MedicineSecond Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| |
Collapse
|
15
|
Garfa Traoré M, Roccio F, Miceli C, Ferri G, Parisot M, Cagnard N, Lhomme M, Dupont N, Benmerah A, Saunier S, Delous M. Fluid shear stress triggers cholesterol biosynthesis and uptake in inner medullary collecting duct cells, independently of nephrocystin-1 and nephrocystin-4. Front Mol Biosci 2023; 10:1254691. [PMID: 37916190 PMCID: PMC10616263 DOI: 10.3389/fmolb.2023.1254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.
Collapse
Affiliation(s)
- Meriem Garfa Traoré
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Caterina Miceli
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Marie Lhomme
- ICAN Omics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
16
|
Tauqeer Z, O'Neil EC, Brucker AJ, Aleman TS. NPHP1 FULL DELETION CAUSES NEPHRONOPHTHISIS AND A CONE-ROD DYSTROPHY. Retin Cases Brief Rep 2023; 17:352-358. [PMID: 36913617 DOI: 10.1097/icb.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe in detail the structural and functional phenotypes of a patient with cone-rod dystrophy associated with a full deletion of the NPHP1 gene. METHODS A 30-year-old man with a history of end-stage renal disease presented with progressive vision loss in early adulthood prompting evaluation for retinal disease. Ophthalmic evaluation was performed including visual fields, electroretinography, spectral domain optical coherence tomography and short-wavelength and near-infrared fundus autofluorescence imaging. RESULTS The visual acuity was 20/60 in each eye. Fundus examination revealed a subtle bull's-eye maculopathy confirmed with fundus autofluorescence. Spectral domain optical coherence tomography demonstrated perifoveal loss of the outer retinal layers with structural preservation further peripherally. Static perimetry confirmed the loss of cone greater than rod sensitivities in a manner that colocalized to structural findings. Electroretinography revealed decreased cone- and rod-mediated responses. Genetic testing confirmed a homozygous whole-gene deletion of the NPHP1 gene. CONCLUSION NPHP1 -associated retinal degeneration may present as a cone-rod dystrophy in addition to the previously reported rod-predominant phenotypes and can notably be associated with systemic abnormalities, including renal disease. Our work further expands on the growing literature describing the retinal disease associated with systemic ciliopathies.
Collapse
Affiliation(s)
| | - Erin C O'Neil
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tomas S Aleman
- Scheie Eye Institute; and
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Hureaux M, Heidet L, Vargas-Poussou R, Dorval G. [Major advances in pediatric nephro-genetics]. Med Sci (Paris) 2023; 39:234-245. [PMID: 36943120 DOI: 10.1051/medsci/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The rise of genetics in the last decades has allowed major advances in the understanding of the mechanisms leading to inherited kidney diseases. From the first positional cloning studies to the advent of high-throughput sequencing (NGS), genome analysis technologies have become increasingly efficient, with an extraordinary level of resolution. Moreover, sequencing prices have decreased from one million dollars for the sequencing of James Watson's genome in 2008, to a few hundred dollars for the sequencing of a genome today. Thus, molecular diagnosis has a central place in the diagnosis of these patients and influences the therapeutic management in many situations. However, although NGS is a powerful tool for the identification of variants involved in diseases, it also exposes to the risk of over-interpretation of certain variants, leading to erroneous diagnoses, requiring the use of specialists. In this review, we first propose a brief retrospective of the essential steps that led to the current knowledge and the development of NGS for the study of hereditary nephropathies in children. This review is then an opportunity to present the main hereditary nephropathies and the underlying molecular mechanisms. Among them, we emphasize ciliopathies, congenital anomalies of the kidney and urinary tract, podocytopathies and tubulopathies.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Inserm U970, Paris CardioVascular Research Center, université Paris Cité, faculté de médecine, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Heidet
- Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Service de néphrologie pédiatrique, AP-HP, université Paris Cité, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Rosa Vargas-Poussou
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Guillaume Dorval
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Inserm U1163, Laboratoire des maladies rénales héréditaires, institut Imagine, université Paris Cité, France
| |
Collapse
|
19
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527563. [PMID: 36798155 PMCID: PMC9934645 DOI: 10.1101/2023.02.07.527563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Sambharia M, Freese ME, Donato F, Bathla G, Abukhiran IMM, Dantuma MI, Mansilla MA, Thomas CP. Suspected Autosomal Recessive Polycystic Kidney Disease but Cerebellar Vermis Hypoplasia, Oligophrenia Ataxia, Coloboma, and Hepatic Fibrosis (COACH) Syndrome in Retrospect, A Delayed Diagnosis Aided by Genotyping and Reverse Phenotyping: A Case Report and A Review of the Literature. Nephron Clin Pract 2023; 148:264-272. [PMID: 36617405 DOI: 10.1159/000527991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
The clinical features of cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis (COACH) characterize the rare autosomal recessive multisystem disorder called COACH syndrome. COACH syndrome belongs to the spectrum of Joubert syndrome and related disorders (JSRDs) and liver involvement distinguishes COACH syndrome from the rest of the JSRD spectrum. Developmental delay and oculomotor apraxia occur early but with time, these can improve and may not be readily apparent or no longer need active medical management. Congenital hepatic fibrosis and renal disease, on the other hand, may develop late, and the temporal incongruity in organ system involvement may delay the recognition of COACH syndrome. We present a case of a young adult presenting late to a Renal Genetics Clinic for evaluation of renal cystic disease with congenital hepatic fibrosis, clinically suspected to have autosomal recessive polycystic kidney disease. Following genetic testing, a reevaluation of his medical records from infancy, together with reverse phenotyping and genetic phasing, led to a diagnosis of COACH syndrome.
Collapse
Affiliation(s)
- Meenakshi Sambharia
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Margaret E Freese
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francisco Donato
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | | | - Maisie I Dantuma
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - M Adela Mansilla
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Christie P Thomas
- Division of Nephrology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- The Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Panda DK, Bai X, Zhang Y, Stylianesis NA, Koromilas AE, Lipman ML, Karaplis AC. SCF-SKP2 E3 ubiquitin ligase links mTORC1/ER stress/ISR with YAP activation in murine renal cystogenesis. J Clin Invest 2022; 132:153943. [PMID: 36326820 PMCID: PMC9754004 DOI: 10.1172/jci153943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway nuclear effector Yes-associated protein (YAP) potentiates the progression of polycystic kidney disease (PKD) arising from ciliopathies. The mechanisms underlying the increase in YAP expression and transcriptional activity in PKD remain obscure. We observed that in kidneys from mice with juvenile cystic kidney (jck) ciliopathy, the aberrant hyperactivity of mechanistic target of rapamycin complex 1 (mTORC1), driven by ERK1/2 and PI3K/AKT cascades, induced ER proteotoxic stress. To reduce this stress by reprogramming translation, the protein kinase R-like ER kinase-eukaryotic initiation factor 2α (PERK/eIF2α) arm of the integrated stress response (ISR) was activated. PERK-mediated phosphorylation of eIF2α drove the selective translation of activating transcription factor 4 (ATF4), potentiating YAP expression. In parallel, YAP underwent K63-linked polyubiquitination by SCF S-phase kinase-associated protein 2 (SKP2) E3 ubiquitin ligase, a Hippo-independent, nonproteolytic ubiquitination that enhances YAP nuclear trafficking and transcriptional activity in cancer cells. Defective ISR cellular adaptation to ER stress in eIF2α phosphorylation-deficient jck mice further augmented YAP-mediated transcriptional activity and renal cyst growth. Conversely, pharmacological tuning down of ER stress/ISR activity and SKP2 expression in jck mice by administration of tauroursodeoxycholic acid (TUDCA) or tolvaptan impeded these processes. Restoring ER homeostasis and/or interfering with the SKP2-YAP interaction represent potential therapeutic avenues for stemming the progression of renal cystogenesis.
Collapse
Affiliation(s)
- Dibyendu K. Panda
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital,,Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Xiuying Bai
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Yan Zhang
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | | | - Antonis E. Koromilas
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark L. Lipman
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Andrew C. Karaplis
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| |
Collapse
|
22
|
Wang D, Chen X, Wen Q, Li Z, Chen W, Chen W, Wang X. A single heterozygous nonsense mutation in the TTC21B gene causes adult-onset nephronophthisis 12: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e2076. [PMID: 36263627 PMCID: PMC9747551 DOI: 10.1002/mgg3.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nephronophthisis type 12 (NPHP 12) is a rare cilia-related cystic kidney disease, caused by TTC21B mutation, mainly involving the kidneys, which generally occurs in children. Our study aimed to illustrate its clinical, pathological and genetic characteristics by reporting an adult-onset case of NPHP 12 caused by a single heterozygous nonsense mutation of TTC21B confirmed by renal histology and whole exome sequencing and reviewing related literature with a comparative analysis of the clinical features of each case. It will further increase the recognition of this rare kidney genetic disease, which sometimes can manifest as an adult disease. RESULTS A 33-years-old man showed a chronic disease course, and he exhibited slight renal dysfunction (CKD stage 3, eGFR = 49 ml/[min* 1.73 m2]) with renal tubular proteinuria, without any extrarenal manifestations, congenital malformation history of kidney disease, or family hereditary disease. Renal histological findings showed substantial interstitial fibrosis with some irregular and tortuous tubules with complex branches and segmental thickening and splitting of the tubular basement membrane. The patient was diagnosed with chronic interstitial nephritis for an unknown reason clinically. Further genetic analysis revealed a single heterozygous nonsense mutation in the TTC21B gene and NPHP 12 was diagnosed finally. CONCLUSION A single heterozygous mutation in the TTC21B gene may cause atypical NPHP12, which had a relatively later onset and milder clinical symptoms without developmental abnormalities. Therefore, for unexplained adult-onset chronic interstitial nephritis with unusual changes of renal tubules and interstitial fibrosis, even without a clear history of hereditary kidney disease, genetic testing is still recommended. The correct diagnosis of this rare adult-onset hereditary nephropathy can avoid unnecessary treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Xionghui Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Zhijian Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina,NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of NephrologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
23
|
König JC, Karsay R, Gerß J, Schlingmann KP, Dahmer-Heath M, Telgmann AK, Kollmann S, Ariceta G, Gillion V, Bockenhauer D, Bertholet-Thomas A, Mastrangelo A, Boyer O, Lilien M, Decramer S, Schanstra J, Pohl M, Schild R, Weber S, Hoefele J, Drube J, Cetiner M, Hansen M, Thumfart J, Tönshoff B, Habbig S, Liebau MC, Bald M, Bergmann C, Pennekamp P, Konrad M. Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney Int Rep 2022; 7:2016-2028. [PMID: 36090483 PMCID: PMC9459005 DOI: 10.1016/j.ekir.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3–12.0); NPHP1, 13.5 years (interquartile range 10.5–16.5); NPHP4, 16.0 years (interquartile range 11.0–25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7–28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.
Collapse
|
24
|
Olinger E, Phakdeekitcharoen P, Caliskan Y, Orr S, Mabillard H, Pickles C, Tse Y, Wood K, Sayer JA. Biallelic variants in TTC21B as a rare cause of early-onset arterial hypertension and tubuloglomerular kidney disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:109-120. [PMID: 35289079 PMCID: PMC9314882 DOI: 10.1002/ajmg.c.31964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Monogenic disorders of the kidney typically affect either the glomerular or tubulointerstitial compartment producing a distinct set of clinical phenotypes. Primary focal segmental glomerulosclerosis (FSGS), for instance, is characterized by glomerular scarring with proteinuria and hypertension while nephronophthisis (NPHP) is associated with interstitial fibrosis and tubular atrophy, salt wasting, and low- to normal blood pressure. For both diseases, an expanding number of non-overlapping genes with roles in glomerular filtration or primary cilium homeostasis, respectively, have been identified. TTC21B, encoding IFT139, however has been associated with disorders of both the glomerular and tubulointerstitial compartment, and linked with defective podocyte cytoskeleton and ciliary transport, respectively. Starting from a case report of extreme early-onset hypertension, proteinuria, and progressive kidney disease, as well as data from the Genomics England 100,000 Genomes Project, we illustrate here the difficulties in assigning this mixed phenotype to the correct genetic diagnosis. Careful literature review supports the notion that biallelic, often hypomorph, missense variants in TTC21B are commonly associated with early-onset hypertension and histological features of both FSGS and NPHP. Increased clinical recognition of this mixed glomerular and tubulointerstitial disease with often mild or absent features of a typical ciliopathy as well as inclusion of TTC21B on gene panels for early-onset arterial hypertension might shorten the diagnostic odyssey for patients affected by this rare tubuloglomerular kidney disease.
Collapse
Affiliation(s)
- Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Pran Phakdeekitcharoen
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Yasar Caliskan
- Division of NephrologySaint Louis University Center for Abdominal TransplantationSt. LouisMissouriUSA
| | - Sarah Orr
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Holly Mabillard
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Charles Pickles
- Paediatric Nephrology, Great North Children's HospitalNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yincent Tse
- Paediatric Nephrology, Great North Children's HospitalNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Katrina Wood
- Department of Cellular PathologyNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | | | - John A. Sayer
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK,Renal ServicesNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK,NIHR Newcastle Biomedical Research CentreNewcastle upon TyneUK
| |
Collapse
|
25
|
Quatredeniers M, Bienaimé F, Ferri G, Isnard P, Porée E, Billot K, Birgy E, Mazloum M, Ceccarelli S, Silbermann F, Braeg S, Nguyen-Khoa T, Salomon R, Gubler MC, Kuehn EW, Saunier S, Viau A. The renal inflammatory network of nephronophthisis. Hum Mol Genet 2022; 31:2121-2136. [PMID: 35043953 DOI: 10.1093/hmg/ddac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Frank Bienaimé
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Pierre Isnard
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Department of Pathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Esther Porée
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Katy Billot
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Eléonore Birgy
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Manal Mazloum
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Salomé Ceccarelli
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Flora Silbermann
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Simone Braeg
- Renal Department, University Medical Center, Freiburg 79106, Germany
| | - Thao Nguyen-Khoa
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Laboratory of Biochemistry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Centre Université de Paris, Paris 75015, France
| | - Rémi Salomon
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
- Université de Paris, Paris 75006, France
- Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Amandine Viau
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| |
Collapse
|
26
|
Kalantari S, Filges I. Gene Ontology Enrichment Analysis of Renal Agenesis: Improving Prenatal Molecular Diagnosis. Mol Syndromol 2021; 12:362-371. [PMID: 34899145 DOI: 10.1159/000518115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Uni- or bilateral renal agenesis (RA) is a commonly occurring major congenital anomaly impacting fetal and neonatal outcomes. Since the etiology is highly heterogeneous, our aim was to provide a logically structured approach by highlighting the genes in which variants have been identified to be associated with RA and to define the pathways involved in this type of abnormal kidney development. We used Phenolyzer to collect a list of all the genes known as causative for RA. Using ClueGO gene enrichment analysis, we classified the relationship between these genes and the biological processes defined by gene ontology. We identified 287 genes and 69 groups of enriched biological processes. About 50% included pathways directly related to the development of urogenital organ tissues. Several ciliary, axis specification, hindgut development, and endocrine pathways were enriched, which may relate to different clinical presentations of RA. Our gene ontology enrichment analysis shows that genes representing distinct biological pathways are significantly enriched. This knowledge will lead to an improved molecular diagnosis in clinical care when applying genome-wide sequencing approaches. The findings will also allow to further study the biological pathways involved in RA and to identify novel candidate genes and pathways.
Collapse
Affiliation(s)
- Silvia Kalantari
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland.,Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Zhang J, Zhang C, Gao E, Zhou Q. Next-Generation Sequencing-Based Genetic Diagnostic Strategies of Inherited Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:425-437. [PMID: 34901190 DOI: 10.1159/000519095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND At least 10% of adults and most of the children who receive renal replacement therapy have inherited kidney diseases. These disorders substantially decrease their life quality and have a large effect on the health-care system. Multisystem complications, with typical challenges for rare disorders, including variable phenotypes and fragmented clinical and biological data, make genetic diagnosis of inherited kidney disorders difficult. In current clinical practice, genetic diagnosis is important for clinical management, estimating disease development, and applying personal treatment for patients. SUMMARY Inherited kidney diseases comprise hundreds of different disorders. Here, we have summarized various monogenic kidney disorders. These disorders are caused by mutations in genes coding for a wide range of proteins including receptors, channels/transporters, enzymes, transcription factors, and structural components that might also have a role in extrarenal organs (bone, eyes, brain, skin, ear, etc.). With the development of next-generation sequencing technologies, genetic testing and analysis become more accessible, promoting our understanding of the pathophysiologic mechanisms of inherited kidney diseases. However, challenges exist in interpreting the significance of genetic variants and translating them to guide clinical managements. Alport syndrome is chosen as an example to introduce the practical application of genetic testing and diagnosis on inherited kidney diseases, considering its clinical features, genetic backgrounds, and genetic testing for making a genetic diagnosis. KEY MESSAGES Recent advances in genomics have highlighted the complexity of Mendelian disorders, which is due to allelic heterogeneity (distinct mutations in the same gene produce distinct phenotypes), locus heterogeneity (mutations in distinct genes result in similar phenotypes), reduced penetrance, variable expressivity, modifier genes, and/or environmental factors. Implementation of precision medicine in clinical nephrology can improve the clinical diagnostic rate and treatment efficiency of kidney diseases, which requires a good understanding of genetics for nephrologists.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qing Zhou
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
28
|
Song J, Zhang Q, Lu B, Gou Z, Wang T, Tang H, Xiang J, Jiang W, Deng X. Case Report: Candidate Genes Associated With Prenatal Ultrasound Anomalies in a Fetus With Prenatally Detected 1q23.3q31.2 Deletion. Front Genet 2021; 12:696624. [PMID: 34630509 PMCID: PMC8496901 DOI: 10.3389/fgene.2021.696624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patients with deletions involving the long arm of chromosome 1 are rare, and the main aim of this study was to refine the genotype-phenotype correlation. Case Report: In this report, a 28-year-old pregnant woman, gravida 2 para 1, at 25+4 weeks of gestation underwent ultrasound examination in our institute. The ultrasonographic findings of the fetus were as follows: (1) fetal growth restriction; (2) cleft lip and palate; (3) bilateral renal hypoplasia; (4) lateral ventriculomegaly; (5) single umbilical artery; (6) absent stomach; (7) coronary sinus dilatation with persistent left superior vena cava, ventricular septal defect and unroofed coronary sinus syndrome. Chromosomal microarray analysis of amniotic fluid from the fetus revealed a 28.025 Mb deletion in 1q23.3q31.2, spanning from position 164,559,675 to 192,584,768 (hg19). Conclusion: Genotype-phenotype correlation might improve prenatal diagnosis of fetuses with chromosome 1q deletion. PBX1 could be a candidate gene for fetal growth restriction, renal hypoplasia and congenital heart disease. Fetal growth restriction was accompanied by decreased renal volume in the fetus. Combined with ultrasonic examination, the application of chromosomal microarray analysis will provide accurate prenatal diagnosis.
Collapse
Affiliation(s)
- Jiahao Song
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Bing Lu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhongshan Gou
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Wei Jiang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
29
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
30
|
Wang X, Xiao H, Yao Y, Xu K, Liu X, Su B, Zhang H, Guan N, Zhong X, Zhang Y, Ding J, Wang F. Spectrum of Mutations in Pediatric Non-glomerular Chronic Kidney Disease Stages 2-5. Front Genet 2021; 12:697085. [PMID: 34295353 PMCID: PMC8290170 DOI: 10.3389/fgene.2021.697085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Renal hypodysplasia and cystic kidney diseases, the common non-glomerular causes of pediatric chronic kidney disease (CKD), are usually diagnosed by their clinical and imaging characteristics. The high degree of phenotypic heterogeneity, in both conditions, makes the correct final diagnosis dependent on genetic testing. It is not clear, however, whether the frequencies of damaged alleles vary among different ethnicities in children with non-glomerular CKD, and this will influence the strategy used for genetic testing. In this study, 69 unrelated children (40 boys, 29 girls) of predominantly Han Chinese ethnicity with stage 2-5 non-glomerular CKD caused by suspected renal hypodysplasia or cystic kidney diseases were enrolled and assessed by molecular analysis using proband-only targeted exome sequencing and array-comparative genomic hybridization. Targeted exome sequencing discovered genetic etiologies in 33 patients (47.8%) covering 10 distinct genetic disorders. The clinical diagnoses in 13/48 patients (27.1%) with suspected renal hypodysplasia were confirmed, and two patients were reclassified carrying mutations in nephronophthisis (NPHP) genes. The clinical diagnoses in 16/20 patients (80%) with suspected cystic kidney diseases were confirmed, and one patient was reclassified as carrying a deletion in the hepatocyte nuclear factor-1-beta gene (HNF1B). The diagnosis of one patient with unknown non-glomerular disease was elucidated. No copy number variations were identified in the 20 patients with negative targeted exome sequencing results. NPHP genes were the most common disease-causing genes in the patients with disease onsets above 6 years of age (14/45, 31.1%). The children with stage 2 and 3 CKD at onset were found to carry causative mutations in paired box gene 2 (PAX2) and HNF1B gene (11/24, 45.8%), whereas those with stage 4 and 5 CKD mostly carried causative mutations in NPHP genes (19/45, 42.2%). The causative genes were not suspected by the kidney imaging patterns at disease onset. Thus, our data show that in Chinese children with non-glomerular renal dysfunction caused by renal hypodysplasia and cystic kidney diseases, the common causative genes vary with age and CKD stage at disease onset. These findings have the potential to improve management and genetic counseling of these diseases in clinical practice.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
31
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
32
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
33
|
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17:245-261. [PMID: 33144689 PMCID: PMC8172121 DOI: 10.1038/s41581-020-00359-2] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The molecular features that define clear cell renal cell carcinoma (ccRCC) initiation and progression are being increasingly defined. The TRACERx Renal studies and others that have described the interaction between tumour genomics and remodelling of the tumour microenvironment provide important new insights into the molecular drivers underlying ccRCC ontogeny and progression. Our understanding of common genomic and chromosomal copy number abnormalities in ccRCC, including chromosome 3p loss, provides a mechanistic framework with which to organize these abnormalities into those that drive tumour initiation events, those that drive tumour progression and those that confer lethality. Truncal mutations in ccRCC, including those in VHL, SET2, PBRM1 and BAP1, may engender genomic instability and promote defects in DNA repair pathways. The molecular features that arise from these defects enable categorization of ccRCC into clinically and therapeutically relevant subtypes. Consideration of the interaction of these subtypes with the tumour microenvironment reveals that specific mutations seem to modulate immune cell populations in ccRCC tumours. These findings present opportunities for disease prevention, early detection, prognostication and treatment.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Histomorphology and Immunohistochemistry of a Congenital Nephromegaly Demonstrate Concurrent Features of Heritable and Acquired Cystic Nephropathies in a Girgentana Goat ( Capra falconeri). Case Rep Vet Med 2021; 2021:8749158. [PMID: 33532110 PMCID: PMC7837792 DOI: 10.1155/2021/8749158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney diseases (PKD) represent frequent congenital and adult nephropathies in humans and domestic animals. This report illustrates an uncommon state of congenital PKD in a girgentana goat (Capra falconeri). A stillborn female goat kid was submitted for postmortem examination and underwent macroscopic and microscopic examination. The kidneys showed a bilateral nephromegaly and a perpendicular polycystic altered texture of the renal parenchyma. Renal tissue sections were comprehensively investigated by histopathology (overview and special stains), immunohistochemistry (CD10, CD117, pan-cytokeratin, cytokeratin 7, E-cadherin, Pax2, Pax8, and vimentin), and electron microscopy (SEM, TEM). Histopathology of renal tissue sections revealed polycystic alterations of the renal parenchyma as well as conspicuous polypoid proliferates/projections of the renal tubular epithelium, which showed clear cell characteristics. Furthermore, epithelial projections were indicative for epithelio-mesenchymal-transition, cellular depolarization, and strong expression of differentiation markers Pax2, Pax8, and CD10. Ultrastructural morphology of the projections was characterized by numerous diffusely distributed, demarked round cytoplasmic structures and several apico-lateral differentiations. Additionally, hepatic malformations comprising biliary duct proliferation with saccular dilation and bridging fibrosis were observed. Notably, this report describes the first case of a congenital cystic nephropathy with overlapping features of heritable and acquired nephropathies in any species. Epithelio-mesenchymal-transition and altered cadherin expression seem to be crucial components of a suspected pathomechanism during cystogenesis.
Collapse
|
35
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
36
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
37
|
Marquez J, Bhattacharya D, Lusk CP, Khokha MK. Nucleoporin NUP205 plays a critical role in cilia and congenital disease. Dev Biol 2020; 469:46-53. [PMID: 33065118 DOI: 10.1016/j.ydbio.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/26/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Ciliopathies affect a variety of tissues during development including the heart, kidneys, respiratory tract, and retina. Though an increasing number of monogenic causes of ciliopathies have been described, many remain unexplained. Recently, recessive variants in NUP93 and NUP205 encoding two proteins of the inner ring of the nuclear pore complex were implicated as causes of steroid resistant nephrotic syndrome. In addition, we previously found that the inner ring nucleoporins NUP93 and NUP188 function in proper left-right patterning in developing embryos via a role at the cilium. Here, we describe the role of an additional inner ring nucleoporin NUP205 in cilia biology and establishment of normal organ situs. Using knockdown in Xenopus, we show that Nup205 depletion results in loss of cilia and abnormal cardiac morphology. Furthermore, by transmission electron microscopy, we observe a loss of cilia and mispositioning of intracellular ciliary structures such as basal bodies and rootlets upon depleting inner ring nucleoporins. We describe a model wherein NUP93 interacting with either NUP188 or NUP205 is necessary for cilia. We thus provide evidence that dysregulation of inner ring nucleoporin genes that have been identified in patients may contribute to pathogenesis through cilia dysfunction.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Dipankan Bhattacharya
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Shiromizu T, Yuge M, Kasahara K, Yamakawa D, Matsui T, Bessho Y, Inagaki M, Nishimura Y. Targeting E3 Ubiquitin Ligases and Deubiquitinases in Ciliopathy and Cancer. Int J Mol Sci 2020; 21:E5962. [PMID: 32825105 PMCID: PMC7504095 DOI: 10.3390/ijms21175962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Takashi Shiromizu
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Mizuki Yuge
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| | - Kousuke Kasahara
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Daishi Yamakawa
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Nara 630-0192, Japan; (T.M.); (Y.B.)
| | - Masaki Inagaki
- Department of Physiology, Graduate School of Medicine, Mie University, Tsu, Mie 514-5807, Japan; (K.K.); (D.Y.); (M.I.)
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan; (T.S.); (M.Y.)
| |
Collapse
|
39
|
Morbidoni V, Agolini E, Slep KC, Pannone L, Zuccarello D, Cassina M, Grosso E, Gai G, Salviati L, Dallapiccola B, Novelli A, Martinelli S, Trevisson E. Biallelic mutations in the TOGARAM1 gene cause a novel primary ciliopathy. J Med Genet 2020; 58:526-533. [PMID: 32747439 DOI: 10.1136/jmedgenet-2020-106833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dysfunction in non-motile cilia is associated with a broad spectrum of developmental disorders characterised by clinical heterogeneity. While over 100 genes have been associated with primary ciliopathies, with wide phenotypic overlap, some patients still lack a molecular diagnosis. OBJECTIVE To investigate and functionally characterise the molecular cause of a malformation disorder observed in two sibling fetuses characterised by microphthalmia, cleft lip and palate, and brain anomalies. METHODS A trio-based whole exome sequencing (WES) strategy was used to identify candidate variants in the TOGARAM1 gene. In silico, in vitro and in vivo (Caenorhabditis elegans) studies were carried out to explore the impact of mutations on protein structure and function, and relevant biological processes. RESULTS TOGARAM1 encodes a member of the Crescerin1 family of proteins regulating microtubule dynamics. Its orthologue in C. elegans, che-12, is expressed in a subset of sensory neurons and localises in the dendritic cilium where it is required for chemosensation. Nematode lines harbouring the corresponding missense variant in TOGARAM1 were generated by CRISPR/Cas9 technology. Although chemotaxis ability on a NaCl gradient was not affected, che-12 point mutants displayed impaired lipophilic dye uptake, with shorter and altered cilia in sensory neurons. Finally, in vitro analysis of microtubule polymerisation in the presence of wild-type or mutant TOG2 domain revealed a faster polymerisation associated with the mutant protein, suggesting aberrant tubulin binding. CONCLUSIONS Our data are in favour of a causative role of TOGARAM1 variants in the pathogenesis of this novel disorder, connecting this gene with primary ciliopathy.
Collapse
Affiliation(s)
- Valeria Morbidoni
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Laboratorio di Genetica ed Epidemiologia Clinica, Instituto di Ricerca Pediatrica Citta della Speranza, Padova, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Kevin C Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giorgia Gai
- Medical Genetics Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy.,Laboratorio di Genetica ed Epidemiologia Clinica, Instituto di Ricerca Pediatrica Citta della Speranza, Padova, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Ospedale Pediatrico Bambino Gesù, Roma, Lazio, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy .,Laboratorio di Genetica ed Epidemiologia Clinica, Instituto di Ricerca Pediatrica Citta della Speranza, Padova, Italy
| |
Collapse
|
40
|
Panchapakesan U, Pollock C. The primary cilia in diabetic kidney disease: A tubulocentric view? Int J Biochem Cell Biol 2020; 122:105718. [PMID: 32070746 DOI: 10.1016/j.biocel.2020.105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Diabetic kidney disease is growing exponentially. This review aims to discuss alternate therapeutic approaches beyond the glomerulocentric view and to consider a novel tubulocentric approach with focus on the primary cilia. Renin-angiotensin-aldosterone system blockade to decrease glomerular capillary pressure and prevent albuminuria has been the mainstay of treatment for diabetic and non-diabetic proteinuric kidney disease. Landmark clinical trials have also shown cardiorenal benefit with sodium-glucose linked co-transporter 2 inhibitors and glucagon-like peptide 1 receptor analogues in patients with type 2 diabetes. Effective renoprotective drugs seem to have a common mechanistic mode of reducing glomerular hyperfiltration/hypertension. In the tubules, primary cilia act as "antennae" to detect mechanosensory changes such as glomerular hyperfiltration and trgger intracellular signalling pathways. They are also implicated in obesity and metabolic disorders linked to diabetes. To conclude, primary cilia of the kidney tubules offer a novel therapeutic target and may complement the current glomerulocentric approaches.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia
| |
Collapse
|
41
|
Ramsbottom SA, Thelwall PE, Wood KM, Clowry GJ, Devlin LA, Silbermann F, Spiewak HL, Shril S, Molinari E, Hildebrandt F, Gunay-Aygun M, Saunier S, Cordell HJ, Sayer JA, Miles CG. Mouse genetics reveals Barttin as a genetic modifier of Joubert syndrome. Proc Natl Acad Sci U S A 2020; 117:1113-1118. [PMID: 31879347 PMCID: PMC6969532 DOI: 10.1073/pnas.1912602117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.
Collapse
Affiliation(s)
- Simon A Ramsbottom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Peter E Thelwall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Katrina M Wood
- The Histopathology Department, The Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Flora Silbermann
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, 75015 Paris, France
| | - Helena L Spiewak
- Northern Genetics Service, International Centre for Life, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, 75015 Paris, France
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom;
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Colin G Miles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE1 3BZ, United Kingdom;
| |
Collapse
|
42
|
The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem Sci 2019; 45:96-107. [PMID: 31812462 DOI: 10.1016/j.tibs.2019.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
During interphase, filamentous actin, microtubules, and intermediate filaments regulate cell shape, motility, transport, and interactions with the environment. These activities rely on signaling events that control cytoskeleton properties. Recent studies uncovered mechanisms that go far beyond this one-directional flow of information. Thus, the three branches of the cytoskeleton impinge on signaling pathways to determine their activities. We propose that this regulatory role of the cytoskeleton provides sophisticated mechanisms to control the spatiotemporal output and the intensity of signaling events. Specific examples emphasize these emerging contributions of the cytoskeleton to cell physiology. In our opinion, further exploration of these pathways will uncover new concepts of cellular communication that originate from the cytoskeleton.
Collapse
|