1
|
Sun P, Liu F, Huo K, Wang J, Cheng Y, Shang S, Ma W, Yu J, Han J. Adiponectin facilitates the cell cycle, inhibits cell apoptosis and induces temozolomide resistance in glioblastoma via the Akt/mTOR pathway. Oncol Lett 2025; 29:127. [PMID: 39807099 PMCID: PMC11726000 DOI: 10.3892/ol.2025.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.0 µg/ml ADN and 1.0 mM TMZ were selected as the optimal concentrations for the experimental conditions. LY294002 (a PI3K inhibitor) was added to ADN or ADN + TMZ-treated glioblastoma cell lines. Cell growth rate was determined using the Cell Counting Kit-8 assay, the apoptotic rate and cell cycle were evaluated using Annexin V/propidium iodide and cell cycle assays, and p-Akt (Thr308), p-Akt (Ser473), Akt, p-mTOR, c-caspase 3, caspase 3, Bax, cyclin B1 and cyclin D1 expression was determined by western blotting. Adiponectin receptor (ADIPOR) 1 and ADIPOR2 were expressed in glioblastoma cell lines. The glioblastoma cell line growth rate was increased by ADN in a concentration- and time-dependent manner. ADN inhibited glioblastoma cell line apoptosis and facilitated cell cycle. Of note, ADN activated the Akt/mTOR pathway and the addition of LY294002 reversed the effect of ADN, indicating that ADN activated the Akt/mTOR pathway to suppress apoptosis and promote cell cycle in glioblastoma cell lines. Notably, TMZ inhibited glioblastoma cell line growth, promoted apoptosis and increased G2 phase cell cycle arrest. However, the addition of ADN reversed the effect of TMZ in glioblastoma cell lines, disclosing that ADN induced TMZ resistance. Markedly, ADN-mediated TMZ resistance was further attenuated by LY294002, suggesting that ADN activated the Akt/mTOR pathway to induce TMZ resistance in glioblastoma cell lines. In conclusion, ADN activated the Akt/mTOR pathway to facilitate cell cycle, inhibit cell apoptosis and induce TMZ resistance in glioblastoma.
Collapse
Affiliation(s)
- Peng Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fude Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyi Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yawen Cheng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenlong Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Yu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianfeng Han
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
2
|
Zhao Y, Zhou X, Hong L, Yao J, Pan J, Shafi S, Siraj S, Ahmad N, Liu J, Zhao R, Sun M. Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis. Int Immunopharmacol 2025; 147:113915. [PMID: 39740503 DOI: 10.1016/j.intimp.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive tumor in the central nervous system. Tumor-associated macrophage (TAMs) represent a major immune cell population in tumor microenvironment (TME) and exert immunosuppressive effects that impede GBM treatment. Morusin is a flavonoid extracted from mulberry trees and has anti-tumor properties against various cancers, including glioma. However, the impact of morusin on the TME of gliomas has not been explored. METHODS We evaluated the effect of morusin on the tumor microenvironment using a mouse glioma model through in vivo and in vitro experiments. In vitro experiments demonstrated the effects of morusin on the viability of RAW264.7 and THP1 cells, and the migration ability of M2 macrophages. Furthermore, we investigated the effect of conditioned medium (CM) of morusin-treated M2 macrophages on the migration of glioblastoma cell lines GL261, U87, and U251. RESULT Morusin alleviated the GBM progression and prolonged mouse survival by inhibiting the ratio of macrophages to CD206+ macrophages. Mechanistically, we demonstrated that morusin could effectively inhibit the secretion of the chemokine CCL4 in M2 macrophage which consequently decreased CCL4-dependent CCR5 activation. This leads to the reduced migration of both macrophages and glioblastoma cells in TME. These findings provide a strong rationale for the development of morusin as a potential therapeutic agent for GBM, either as a standalone treatment or in combination with other immunotherapeutic strategies, and warrant further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Lei Hong
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital., No. 1 Lijiang Road, Suzhou 215153, China.
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Shaheryar Shafi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Nafees Ahmad
- Institute of Biomedical & Genetic Engineering, Islamabad 44000, Pakistan.
| | - Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
3
|
Wang H, Liu Z, Peng Z, Lv P, Fu P, Jiang X. Identification and validation of TSPAN13 as a novel temozolomide resistance-related gene prognostic biomarker in glioblastoma. PLoS One 2025; 20:e0316552. [PMID: 39903772 PMCID: PMC11793784 DOI: 10.1371/journal.pone.0316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary tumor of the central nervous system, with its resistance to treatment posing significant challenges. This study aims to develop a comprehensive prognostic model to identify biomarkers associated with temozolomide (TMZ) resistance. We employed a multifaceted approach, combining differential expression and univariate Cox regression analyses to screen for TMZ resistance-related differentially expressed genes (TMZR-RDEGs) in GBM. Using LASSO Cox analysis, we selected 12 TMZR-RDEGs to construct a risk score model, which was evaluated for performance through survival analysis, time-dependent ROC, and stratified analyses. Functional enrichment and mutation analyses were conducted to explore the underlying mechanisms of the risk score and its relationship with immune cell infiltration levels in GBM. The prognostic risk score model, based on the 12 TMZR-RDEGs, demonstrated high efficacy in predicting GBM patient outcomes and emerged as an independent predictive factor. Additionally, we focused on the molecule TSPAN13, whose role in GBM is not well understood. We assessed cell proliferation, migration, and invasion capabilities through in vitro assays (including CCK-8, Edu, wound healing, and transwell assays) and quantitatively analyzed TSPAN13 expression levels in clinical glioma samples using tissue microarray immunohistochemistry. The impact of TSPAN13 on TMZ resistance in GBM cells was validated through in vitro experiments and a mouse orthotopic xenograft model. Notably, TSPAN13 was upregulated in GBM and correlated with poorer patient prognosis. Knockdown of TSPAN13 inhibited GBM cell proliferation, migration, and invasion, and enhanced sensitivity to TMZ treatment. This study provides a valuable prognostic tool for GBM and identifies TSPAN13 as a critical target for therapeutic intervention.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Pilotto Heming C, de Souza Barbosa I, Lyra Miranda R, Nogueira Ugarte O, Santório de São José V, Moura Neto V, Aran V. P-Glycoprotein Drives Glioblastoma Survival and Chemotherapy Resistance: Potential as a Promising Liquid Biopsy Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(24)00476-0. [PMID: 39788485 DOI: 10.1016/j.ajpath.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Drug resistance is a major challenge in cancer therapy, and the expression of efflux pumps such as P-glycoprotein (P-gp, ABCB1) often correlates with poor prognosis in various tumors, including glioblastoma (GB). Considering that different roles for these proteins have been established in the biology of various tumors, this study aimed to investigate the functions of P-gp in GB-derived cells by evaluating its survival, migratory, and apoptosis-regulating capabilities, as well as its potential as a liquid biopsy biomarker. P-gp expression was diminished via siRNA to determine its exact role in GB biology. The P-gp mRNA levels were evaluated by using quantitative real-time RT-PCR. With respect to liquid biopsy, circulating cell-free RNA was extracted from plasma belonging to patients diagnosed with GB, and P-gp levels were compared with matching tumor tissues using digital PCR. P-gp silencing significantly decreased viability, increased apoptosis, and enhanced chemotherapy sensitivity in GB cells, although it did not affect migratory patterns. Finally, P-gp expression levels in circulating cell-free RNA from patients with GB matched tumor tissue, whereas healthy volunteers appeared to bear no circulating P-gp. Taken together, the results indicate that P-gp affects GB tumor biology beyond its known role in drug resistance and could integrate a broader molecular signature for future diagnosis via liquid biopsy.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isabel de Souza Barbosa
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | | | | | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
6
|
Li Q, Zhang Z, Wu X, Zhao Y, Liu Y. Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4480-4489. [PMID: 39797776 DOI: 10.1021/acsami.4c15671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed. The GCNP possesses a cationic polyplex core and a glycosylated polymer layer that is capable of cascading response to low pH and high GSH concentration, so that the release of CRISPR/Cas9 only takes place after crossing the BBB and entering the GBM where the acidic tumor microenvironment and high concentration of glutathione (GSH) are present. By targeting the programmed death-ligand 1 (PD-L1) in GBM, GCNP effectively inhibited the tumor growth and greatly prolonged the survival time of GBM-bearing mice when combined with temozolomide (TMZ).
Collapse
Affiliation(s)
- Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhanzhan Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Xueyao Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Phon BWS, Chelliah SS, Osman DER, Bhuvanendran S, Radhakrishnan AK, Kamarudin MNA. Revisiting ABC Transporters and Their Clinical Significance in Glioblastoma. Pharmaceuticals (Basel) 2025; 18:102. [PMID: 39861164 PMCID: PMC11769420 DOI: 10.3390/ph18010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. Methods: This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect). Results: Inhibition of ABC transporters, especially ABCB1, improved drug efficacies. Staple GBM phenotypes, such as GBM stem cells and increased activation of the PI3K/Akt/NF-κB pathway, have been implicated in the expression of several ABC transporters. Using the datasets in The Cancer Genome Atlas and Gene Expression Omnibus, we found upregulated ABC transporters that either negatively impacted survival in univariate analyses (ABCA1, ABCA13, ABCB9, ABCD4) or were independent negative prognosis factors for patients with GBM (ABCA13, ABCB9). Our multivariate analysis further demonstrated three ABC transporters, ABCA13 (Hazard Ratio (HR) = 1.31, p = 0.017), ABCB9 (HR = 1.26, p = 0.03), and ABCB5 (HR = 0.77, p = 0.016), with the administration of alkylating agents (HR = 0.41, p < 0.001), were independent negative prognosis factors for patients with GBM. Conclusions: These findings reinforce the important role played by ABC transporters, particularly by ABCA13, ABCB9, and ABCB1, which could be potential targets that warrant further evaluations for alternate strategies to augment the effects of existing alkylating agents and xenobiotic drugs.
Collapse
Affiliation(s)
- Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
| | - Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Dina El-Rabie Osman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; (B.W.S.P.); (S.S.C.); (D.E.-R.O.); (S.B.); (A.K.R.)
| |
Collapse
|
8
|
Pawlak W, Majchrzak-Celińska A. Tinostamustine (EDO-S101) and Its Combination with Celecoxib or Temozolomide as a Therapeutic Option for Adult-Type Diffuse Gliomas. Int J Mol Sci 2025; 26:661. [PMID: 39859375 PMCID: PMC11766231 DOI: 10.3390/ijms26020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Adult-type diffuse gliomas are characterized by inevitable recurrence and very poor prognosis. Novel treatment options, including multimodal drugs or effective drug combinations, are therefore eagerly awaited. Tinostamustine is an alkylating and histone deacetylase inhibiting molecule with great potential in cancer treatment. Thus, the aim of this study was to investigate its effects on glioma cells. In this context, tinostamustine was evaluated in monotherapy and as a combination therapy, with either celecoxib or temozolomide; additionally, the results were compared to the golden glioma chemotherapy standard-temozolomide. Our experiments, conducted on both temozolomide-sensitive U-87 MG astrocytoma and temozolomide-resistant U-138 MG glioblastoma cells revealed that tinostamustine and its combination with either celecoxib or temozolomide exert dose-dependent cytotoxicity, cause cell cycle arrest, induce oxidative stress-mediated apoptosis of malignant glioma cells, and mitigate their migratory potential. Astrocytoma cells were more susceptible to the tested treatments than glioblastoma cells, and, generally, those dual therapies were superior in anti-glioma efficacy compared to temozolomide. Overall, our study provides evidence that tinostamustine and the combination therapies consisting of tinostamustine and celecoxib or tinostamustine and temozolomide may represent a new approach for the effective treatment of malignant gliomas.
Collapse
Affiliation(s)
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
9
|
Sun S, Shyr Z, McDaniel K, Fang Y, Tao D, Chen CZ, Zheng W, Zhu Q. Reversal gene expression assessment for drug repurposing, a case study of glioblastoma. J Transl Med 2025; 23:25. [PMID: 39773231 PMCID: PMC11706105 DOI: 10.1186/s12967-024-06046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement. METHODS This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database. RESULTS We prioritized the candidates via hierarchical clustering of their expression signatures and quantification of their reversal strength by calculating two self-defined indices based on the GGEP genes' log2 foldchange (LFC) that the drug candidates could induce. Among five prioritized candidates, in-vitro experiments validated Clofarabine and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells. CONCLUSIONS The success of this study illustrated a promising avenue for accelerating drug development by uncovering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases and non-rare diseases.
Collapse
Affiliation(s)
- Shixue Sun
- Informatics Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zeenat Shyr
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Kathleen McDaniel
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Yuhong Fang
- Analytical Chemistry Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Dingyin Tao
- Analytical Chemistry Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Catherine Z Chen
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Wei Zheng
- Early Translation Branch, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA
| | - Qian Zhu
- Informatics Core, Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, USA.
| |
Collapse
|
10
|
Ma J, Qiu J, Wright GA, Wang S. Oxygen/Nitric Oxide Dual-Releasing Nanozyme for Augmenting TMZ-Mediated Apoptosis and Necrosis. Mol Pharm 2025; 22:168-180. [PMID: 39571173 PMCID: PMC11707740 DOI: 10.1021/acs.molpharmaceut.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor, with a poor prognosis. Temozolomide (TMZ) represents the standard chemotherapy for GBM but has limited efficacy due to poor targeting and a hypoxic tumor microenvironment (TME). To address these challenges, we developed a dual-gas-releasing, cancer-cell-membrane-camouflaged nanoparticle to deliver TMZ. This nanoceria, camouflaged with a cancer cell membrane (CCM-CeO2), targets explicitly GBM cells and accumulates in lysosomes, triggering the rapid release of TMZ. Additionally, CCM-CeO2 could release oxygen (O2) and nitric oxide (NO) in response to the TME. Synthesized using d-arginine, catalytic nanoceria could decompose excessive hydrogen peroxide (H2O2) in the TME to produce O2, while d-arginine could nonenzymatically react with H2O2 to generate NO. CCM-CeO2 could penetrate GBM spheroids to a depth of 148.3 ± 31 μm, with the O2 and NO produced, reducing HIF-1α protein expression. When loaded with TMZ, CCM-CeO2 could increase the intracellular ROS produced by TMZ, leading to lysosome membrane permeabilization and notably augmented apoptosis and necrosis in GBM cells. An in vitro antitumor assay using spheroids showed that CCM-CeO2 reduced the IC50 value of TMZ from 174.5 to 42.6 μg/mL, likely due to the catalase-like activity of nanoceria. These results suggest that alleviating hypoxia and increasing ROS produced by chemotherapeutics could be an effective therapeutic strategy for treating GBM.
Collapse
Affiliation(s)
- Jun Ma
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Jingjing Qiu
- Department
of Mechanical Engineering & Department of Materials Science and
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gus A. Wright
- Flow
Cytometry Facility, College of Veterinary Medicine & Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Shiren Wang
- Department
of Industrial Systems and Engineering & Department of Materials
Science and Engineering & Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Hu W, Cui X, Liu H, Li Z, Chen X, Wang Q, Zhang G, Wen E, Lan J, Chen J, Liu J, Kang C, Chen L. CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD +/NADH ratio. J Exp Clin Cancer Res 2025; 44:3. [PMID: 39754188 PMCID: PMC11697892 DOI: 10.1186/s13046-024-03254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive. METHODS A multi-step process of machine learning algorithms was implemented to construct the glioma stemness-related score (GScore). Further in silico and patient tissue analyses validated the predictive ability of the GScore and identified a potential target, CYP3A5. Loss-of-function or gain-of-function genetic experiments were performed to assess the impact of CYP3A5 on the self-renewal and chemoresistance of GSCs both in vitro and in vivo. Mechanistic studies were conducted using nontargeted metabolomics, RNA-seq, seahorse, transmission electron microscopy, immunofluorescence, flow cytometry, ChIP‒qPCR, RT‒qPCR, western blotting, etc. The efficacy of pharmacological inhibitors of CYP3A5 was assessed in vivo. RESULTS Based on the proposed GScore, we identify a GSC target CYP3A5, which is highly expressed in GSCs and temozolomide (TMZ)-resistant GBM patients. This elevated expression of CYP3A5 is attributed to transcription factor STAT3 activated by EGFR signaling or TMZ treatment. Depletion of CYP3A5 impairs self-renewal and TMZ resistance of GSCs. Mechanistically, CYP3A5 maintains mitochondrial fitness to promote GSC metabolic adaption through the NAD⁺/NADH-SIRT1-PGC1α axis. Additionally, CYP3A5 enhances the activity of NAD-dependent enzyme PARP to augment DNA damage repair. Treatment with CYP3A5 inhibitor alone or together with TMZ effectively suppresses tumor growth in vivo. CONCLUSION Together, this study suggests that GSCs activate STAT3 to upregulate CYP3A5 to fine-tune NAD⁺/NADH for the enhancement of mitochondrial functions and DNA damage repair, thereby fueling tumor stemness and conferring TMZ resistance, respectively. Thus, CYP3A5 represents a promising target for GBM treatment.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hongyu Liu
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xu Chen
- China Medical University, Shenyang, Liaoning, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Guolu Zhang
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Er Wen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Lan
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Junyi Chen
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| | - Ling Chen
- School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
- Department of Neurosurgery, Institute of Neurosurgery of Chinese PLA, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Alshahrani MY, Oghenemaro EF, Rizaev J, Kyada A, Roopashree R, Kumar S, Taha ZA, Yadav G, Mustafa YF, Abosaoda MK. Exploring the modulation of TLR4 and its associated ncRNAs in cancer immunopathogenesis, with an emphasis on the therapeutic implications and mechanisms underlying drug resistance. Hum Immunol 2025; 86:111188. [PMID: 39631102 DOI: 10.1016/j.humimm.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
This study provides an in-depth analysis of the pathogenic relevance, therapeutic implications, and mechanisms of treatment resistance associated with TLR4 and its ncRNAs in cancer immunopathogenesis. TLR4, a pivotal component of the innate immune response, has been implicated in promoting inflammation, tumorigenesis, and immune evasion across various malignancies, including gastric, ovarian, and hepatocellular carcinoma. The interactions between TLR4 and specific ncRNAs, such as lncRNAs and miRNAs, play a crucial role in modulating TLR4 signaling pathways, influencing immune cell dynamics, and contributing to chemoresistance. These ncRNAs facilitate tumor-promoting processes, including macrophage polarization, dendritic cell suppression, and T-cell regulation, effectively establishing an immunosuppressive tumor microenvironment that further enhances therapeutic resistance. A comprehensive understanding of the complex interplay between TLR4 and ncRNAs unveils potential avenues for identifying predictive biomarkers and discovering novel therapeutic targets in cancer. Future research initiatives should prioritize the development of personalized therapeutic strategies that specifically target TLR4 signaling and its ncRNA regulators to counteract drug resistance and improve clinical outcomes. This review extensively evaluates the role of TLR4 in cancer biology, emphasizing its critical importance in developing innovative cancer management strategies.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Central Labs, King Khalid University, AlQura 'a, Abha, P.O. Box 960, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Abraka, Delta State, Nigeria.
| | - Jasur Rizaev
- Professor, Doctor of Medical Sciences, Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ashishkumar Kyada
- Marwadi University, Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq.
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, -41001, Iraq.
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq; College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
13
|
Bhardwaj S, Sanjay, Yadav AK. Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells. J Neurooncol 2025; 171:47-63. [PMID: 39585598 DOI: 10.1007/s11060-024-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights. METHODS In this study two non-expressing O6-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229. U87MG cells were grown in Temozolomide from 50μM upto 400μM & LN229 cells grown upto 200μM, till then both these cells acquired Temozolomide resistance. Both of these cells were grown & maintained continously in its highest dose of Temozolomide (TMZ). Splice factor protein SF2/ASF1 was functionally correlated with abundance of hnRNPA1 protein in Temozolomide (TMZ) resistant cells using its specific siRNA transfection approach, in detrmining SF2/ASF1 mediated hnRNPA1 splicing and Temozolomide resistant reversal. RESULTS U87MG TMZ resistance, results an increase in the expression of pre mRNA-splicing factor SF2/ASF1, Heterogeneous Ribonucleoprotein A1 (hnRNPA1) and O6-methylguanine-DNA methyltransferase (MGMT) protein. MGMT expression was not observed in LN229 TMZ resistant cells. Further, mRNA sequencing of hnRNPA1 confirmed the exclusive abundance of its higher isoform in TMZ- resistant cells along with increase in SF2/ASF1 expression. Knocking down of SF2/ASF1 using its specific siRNA reverted the higher isoform of hnRNPA1 isoform Var2 to its lower isoform hnRNPA1 Var1 in U87 TMZ resistant cells, reveals hnRNPA1 alternative higher isoform abundance is SF2/ASF1 splice factor dependent. Additionally, selective knock down of hnRNPA1 higher isoform Var2 in TMZ resistant U87MG & LN229 promotes apoptosis, was further specfically enhanced on Wortmannin (PI3Kinase inhibitor) treatment. CONCLUSION Targeting higher isoform Var2 of hnRNPA1 specifically induces chemosensitization in MGMT expressed Temozolomide resistant U87MG as well as in MGMT non-expressed LN229 TMZ resistant cells.
Collapse
Affiliation(s)
- Sachin Bhardwaj
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Sanjay
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Ajay Kumar Yadav
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.
| |
Collapse
|
14
|
Chowdhury MG, Kapoor S, Muthukumar V, Chatterjee DR, Shard A. Development of novel tetrazole-based pyruvate kinase M2 inhibitors targeting U87MG glioblastoma cells. Bioorg Chem 2025; 154:108029. [PMID: 39693922 DOI: 10.1016/j.bioorg.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Glioblastoma (GB), the most aggressive and life-threatening primary brain tumor in adults, poses significant therapeutic challenges. Tumor pyruvate kinase M2 (PKM2) has been implicated in the proliferation and survival of glioma cells. In this study, we designed and synthesized a series of 23 novel tetrazole-based derivatives. The compounds were thoroughly characterized using 1H, 13C, 19F NMR, along with HRMS analysis. Among them, 1-(imidazo[1,2-a]pyrimidin-3-yl)-2-(5-(naphthalen-2-yl)-2H-tetrazol-2-yl)ethan-1-one (9b) exhibited potent and selective antiproliferative activity against U87MG glioma cells, with minimal effects on bEnd (brain endothelial cell line) non-glioma cells. It emerged as a potent PKM2 inhibitor, with an IC50 of 0.307 µM. Apoptosis assays and cell cycle analysis revealed that compound 9b induced early apoptosis and caused G1 phase arrest. A significant decrease in pyruvate concentration further suggested PKM2 inhibition. In silico studies confirmed the binding affinity to the PKM2 inhibitory site, and RT-PCR data demonstrated its inhibitory activity against PKM2. Additionally, it reduced lactate levels, indicating its potential impact on cellular metabolism. Collectively, these findings suggest that the most potent compound holds promise as a therapeutic candidate against GB.
Collapse
Affiliation(s)
- Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Venkatesh Muthukumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
15
|
Masoomabadi N, Gorji A, Ghadiri T, Ebrahimi S. Regulatory role of circular RNAs in the development of therapeutic resistance in the glioma: A double-edged sword. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:3-15. [PMID: 39877636 PMCID: PMC11771335 DOI: 10.22038/ijbms.2024.81644.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and autophagy. Considering the poor survival and increased resistance to currently approved treatments for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and discussed the existing knowledge regarding the important role eof circRNAs in the emergence of resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing the effectiveness of glioma therapeutic strategies.
Collapse
Affiliation(s)
- Negin Masoomabadi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Münster University, Münster, Germany
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Ebrahimi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Sun Q, Xu J, Yuan F, Liu Y, Chen Q, Guo L, Dong H, Liu B. RND1 inhibits epithelial-mesenchymal transition and temozolomide resistance of glioblastoma via AKT/GSK3-β pathway. Cancer Biol Ther 2024; 25:2321770. [PMID: 38444223 PMCID: PMC10936657 DOI: 10.1080/15384047.2024.2321770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
GBM is one of the most malignant tumor in central nervous system. The resistance to temozolomide (TMZ) is inevitable in GBM and the characterization of TMZ resistance seriously hinders clinical treatment. It is worthwhile exploring the underlying mechanism of aggressive invasion and TMZ resistance in GBM treatment. Bioinformatic analysis was used to analyze the association between RND1 and a series of EMT-related genes. Colony formation assay and cell viability assay were used to assess the growth of U87 and U251 cells. The cell invasion status was evaluated based on transwell and wound-healing assays. Western blot was used to detect the protein expression in GBM cells. Treatment targeted RND1 combined with TMZ therapy was conducted in nude mice to evaluate the potential application of RND1 as a clinical target for GBM. The overexpression of RND1 suppressed the progression and migration of U87 and U251 cells. RND1 knockdown facilitated the growth and invasion of GBM cells. RND1 regulated the EMT of GBM cells via inhibiting the phosphorylation of AKT and GSK3-β. The promoted effects of RND1 on TMZ sensitivity was identified both in vitro and in vivo. This research demonstrated that the overexpression of RND1 suppressed the migration and EMT status by downregulating AKT/GSK3-β pathway in GBM. RND1 enhanced the TMZ sensitivity of GBM cells both in vitro and in vivo. Our findings may contribute to the targeted therapy for GBM and the understanding of mechanisms of TMZ resistance in GBM.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junjie Xu
- Office of director, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Fan’en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lirui Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Baliyan D, Sharma R, Goyal S, Chhabra R, Singh B. Phytochemical strategies in glioblastoma therapy: Mechanisms, efficacy, and future perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167647. [PMID: 39740382 DOI: 10.1016/j.bbadis.2024.167647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor. This review focuses on the molecular hallmarks of GBM, including the activation of the PI3K/Akt pathway, genomic instability, and the deregulation of epidermal growth factor receptor (EGFR), all of which contribute to the tumor's aggressive behavior. Current therapies, such as Temozolomide and Bevacizumab, have limitations, highlighting the need for novel treatment strategies. Phytochemicals, bioactive compounds found in plants, have emerged as potential therapeutic agents by targeting multiple cellular pathways involved in GBM progression. This review provides an overview of key phytochemicals, including quercetin, curcumin, apigenin, and resveratrol. These compounds have shown promise in preclinical studies, with their anti-invasive, anti- angiogenic, pro-apoptotic, and anti-proliferative properties positioning them as strong candidates for GBM therapy. While phytochemicals offer a promising avenue for GBM treatment, further research is required to fully understand their mechanisms of action and to evaluate their efficiency in clinical settings. Developing multi-targeted, safer, and cost-effective anti-GBM therapies could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Deepanjali Baliyan
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Rajni Sharma
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Shipra Goyal
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Baljinder Singh
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
18
|
Loftus AEP, Romano MS, Phuong AN, McKinnel BJ, Muir MT, Furqan M, Dawson JC, Avalle L, Douglas AT, Mort RL, Byron A, Carragher NO, Pollard SM, Brunton VG, Frame MC. An ILK/STAT3 pathway controls glioblastoma stem cell plasticity. Dev Cell 2024; 59:3197-3212.e7. [PMID: 39326421 DOI: 10.1016/j.devcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/16/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is driven by malignant neural stem-like cells that display extensive heterogeneity and phenotypic plasticity, which drive tumor progression and therapeutic resistance. Here, we show that the extracellular matrix-cell adhesion protein integrin-linked kinase (ILK) stimulates phenotypic plasticity and mesenchymal-like, invasive behavior in a murine GBM stem cell model. ILK is required for the interconversion of GBM stem cells between malignancy-associated glial-like states, and its loss produces cells that are unresponsive to multiple cell state transition cues. We further show that an ILK/STAT3 signaling pathway controls the plasticity that enables transition of GBM stem cells to an astrocyte-like state in vitro and in vivo. Finally, we find that ILK expression correlates with expression of STAT3-regulated proteins and protein signatures describing astrocyte-like and mesenchymal states in patient tumors. This work identifies ILK as a pivotal regulator of multiple malignancy-associated GBM phenotypes, including phenotypic plasticity and mesenchymal state.
Collapse
Affiliation(s)
- Alexander E P Loftus
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| | - Marianna S Romano
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Anh Nguyen Phuong
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Ben J McKinnel
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Muhammad Furqan
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - John C Dawson
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Adam T Douglas
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Adam Byron
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
19
|
Weber AF, Scholl JN, Dias CK, Lima VP, Assmann TS, Anzolin E, Kus WP, Worm PV, Battastini AMO, Figueiró F. In silico, in vitro, and ex vivo analysis reveals miR-27a-3p and miR-155-5p as key microRNAs for glioblastoma progression: Insights into Th1 differentiation and apoptosis induction. FASEB J 2024; 38:e70255. [PMID: 39698937 DOI: 10.1096/fj.202401538r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
We explored key microRNAs (miRNAs) related to tumorigenesis and immune modulation in glioblastoma (GBM), employing in silico, in vitro, and ex vivo analysis along with an assessment of the cellular impacts resulting from miRNA inhibition. GBM and T cells miRNA expression profiles from public datasets were used to evaluate differentially expressed miRNAs (DEmiRNAs). Some DEmiRNAs were chosen for validation in GBM cell lines, primary cell cultures, and brain tumor patient samples, using RT-qPCR. Target genes and pathways were identified with bioinformatic analyses. In silico functional enrichment analysis revealed that miR-27a-3p and miR-155-5p modulate immune, metabolic, and GBM-related pathways. A172 cells were transfected with miRNA inhibitors and the effects on cellular processes and immunomodulation were analyzed by co-culture assays and flow cytometry. Upon validation, miR-27a-3p and miR-155-5p miRNAs expressions were consistently increased. Inhibiting these two miRNAs reduced cell viability, but only the inhibition of miR-27a-3p led to apoptosis. Co-culture assays showed an increase in Th1 cells along with elevated Th1/Treg and Th17/Treg ratios, and an increase in Th17 cells exclusively with miR-155-5p inhibition. Immune cells' gene expression modulation induced an antitumor profile, concomitant with an increase in the expression of apoptotic genes in cancer cells after co-culture. This study unveils potential targets for immune and tumor regulation, highlighting overexpressed miRNAs modulation as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Augusto Ferreira Weber
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliete Nathali Scholl
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Kehl Dias
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius Pierdoná Lima
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Taís Silveira Assmann
- Molecular and Cellular Biology Laboratory, Endocrinology Division-Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | - Paulo Valdeci Worm
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Ana Maria Oliveira Battastini
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
Alirezaei Z, Amouheidari A, BasirianJahromi R, Seyyedhosseini S, Hamidi A. Survival Analysis of Glioblastoma: A Scientometric Perspective. World Neurosurg 2024; 194:123476. [PMID: 39577630 DOI: 10.1016/j.wneu.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Glioblastoma is the most aggressive primary brain tumor and the outlook for patients is usually pessimistic. Numerous ongoing studies have focused on enhancing the survival rate of glioblastoma patients. This study aims to analyze the research trends surrounding glioblastoma survival and facilitate studying recent topics to provide insight into the perspective, research fields, and international collaborations. METHODS Data were collected from the Web of Science database documents published from 1980 to 2022 and analyzed using Citespace and Biblioshiny software. After analyzing the data, we visualized the co-occurrence and coauthorship networks. RESULTS Eighteen main clusters were formed by drawing a document cocitation network. The result indicates that prognostic biomarkers, treating field, T cell, radiomic feature, and 5-aminolevulinic acid were trending topics for researchers. The most active countries in this field are the United States, followed by China, Germany, and Italy, respectively. CONCLUSIONS Considering the significance of monitoring the studies in glioblastoma patients, the current research has shown promising results in stratifying patient survival as a valuable tool for prognosis and prediction and eventually guiding treatment decisions. Using the results of this study, glioblastoma researchers can identify their potential colleagues and research gaps in this field.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Reza BasirianJahromi
- Department of Medical Library and Information Science, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shohreh Seyyedhosseini
- Department of Medical Library and Information Science, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Hamidi
- Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
21
|
Wang M, Bergès R, Malfanti A, Préat V, Bastiancich C. Local delivery of doxorubicin prodrug via lipid nanocapsule-based hydrogel for the treatment of glioblastoma. Drug Deliv Transl Res 2024; 14:3322-3338. [PMID: 37889402 PMCID: PMC11499358 DOI: 10.1007/s13346-023-01456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Glioblastoma (GBM) recurrences appear in most cases around the resection cavity borders and arise from residual GBM cells that cannot be removed by surgery. Here, we propose a novel treatment that combines the advantages of nanomedicine and local drug delivery to target these infiltrating GBM cells. We developed an injectable lipid nanocapsule (LNC)-based formulation loaded with lauroyl-doxorubicin prodrug (DOXC12). Firstly, we demonstrated the efficacy of intratumoral administration of DOXC12 in GL261 GBM-bearing mice, which extended mouse survival. Then, we formulated an injectable hydrogel by mixing the appropriate amount of prodrug with the lipophilic components of LNC. We optimized the hydrogel by incorporating cytidine-C16 (CytC16) to achieve a mechanical stiffness adapted for an application in the brain post-surgery (DOXC12-LNCCL). DOXC12-LNCCL exhibited high DOXC12 encapsulation efficiency (95%) and a size of approximately 60 nm with sustained drug release for over 1 month in vitro. DOXC12-LNCCL exhibited enhanced cytotoxicity compared to free DOXC12 (IC50 of 349 and 86 nM, respectively) on GL261 GBM cells and prevented the growth of GL261 spheroids cultured on organotypic brain slices. In vivo, post-surgical treatment with DOXC12-LNCCL significantly improved the survival of GL261-bearing mice. The combination of this local treatment with the systemic administration of anti-inflammatory drug ibuprofen further delayed the onset of recurrences. In conclusion, our study presents a promising therapeutic approach for the treatment of GBM. By targeting residual GBM cells and reducing the inflammation post-surgery, we present a new strategy to delay the onset of recurrences in the gap period between surgery and standard of care therapy.
Collapse
Affiliation(s)
- Mingchao Wang
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France.
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy.
| |
Collapse
|
22
|
Ercelik M, Tekin C, Gurbuz M, Tuncbilekli Y, Dogan HY, Mutlu B, Eser P, Tezcan G, Parın FN, Yildirim K, Sarihan M, Akpinar G, Kasap M, Bekar A, Kocaeli H, Taskapilioglu MO, Aksoy SA, Ozpar R, Hakyemez B, Tunca B. A new nano approach to prevent tumor growth in the local treatment of glioblastoma: Temozolomide and rutin-loaded hybrid layered composite nanofiber. Asian J Pharm Sci 2024; 19:100971. [PMID: 39640055 PMCID: PMC11617954 DOI: 10.1016/j.ajps.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Total resection of glioblastoma (GB) tumors is nearly impossible, and systemic administration of temozolomide (TMZ) is often inadequate. This study presents a hybrid layered composite nanofiber mesh (LHN) designed for localized treatment in GB tumor bed. The LHN, consisting of polyvinyl alcohol and core-shell polylactic acid layers, was loaded with TMZ and rutin. In vitro analysis revealed that LHNTMZ and LHNrutin decelerated epithelial-mesenchymal transition and growth of stem-like cells, while the combination, LHNTMZ +rutin, significantly reduced sphere size compared to untreated and LHNTMZ-treated cells (P < 0.0001). In an orthotopic C6-induced GB rat model, LHNTMZ +rutin therapy demonstrated a more pronounced tumor-reducing effect than LHNTMZ alone. Tumor volume, assessed by magnetic resonance imaging, was significantly reduced in LHNTMZ +rutin-treated rats compared to untreated controls. Structural changes in tumor mitochondria, reduced membrane potential, and decreased PARP expression indicated the activation of apoptotic pathways in tumor cells, which was further confirmed by a reduction in PHH3, indicating decreased mitotic activity of tumor cells. Additionally, the local application of LHNs in the GB model mitigated aggressive tumor features without causing local tissue inflammation or adverse systemic effects. This was evidenced by a decrease in the angiogenesis marker CD31, the absence of inflammation or necrosis in H&E staining of the cerebellum, increased production of IFN-γ, decreased levels of interleukin-4 in splenic T cells, and lower serum AST levels. Our findings collectively indicate that LHNTMZ +rutin is a promising biocompatible model for the local treatment of GB.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Melisa Gurbuz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Yagmur Tuncbilekli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hazal Yılmaz Dogan
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Busra Mutlu
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
- Central Research Laboratory, Bursa Technical University, Bursa, Turkey
| | - Pınar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Fatma Nur Parın
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Kenan Yildirim
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | | | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | - Rıfat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Bahattin Hakyemez
- Department of Radiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
23
|
Skouras P, Markouli M, Papadatou I, Piperi C. Targeting epigenetic mechanisms of resistance to chemotherapy in gliomas. Crit Rev Oncol Hematol 2024; 204:104532. [PMID: 39406277 DOI: 10.1016/j.critrevonc.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma, an aggressive type of brain tumors of glial origin is highly heterogeneous, posing significant treatment challenges due to its intrinsic resistance to conventional therapeutic schemes. It is characterized by an interplay between epigenetic and genetic alterations in key signaling pathways which further endorse their resistance potential. Aberrant DNA methylation patterns, histone modifications and non-coding RNAs may alter the expression of genes associated with drug response and cell survival, induce gene silencing or deregulate key pathways contributing to glioma resistance. There is evidence that epigenetic plasticity enables glioma cells to adapt dynamically to therapeutic schemes and allow the formation of drug-resistant subpopulations. Furthermore, the tumor microenvironment adds an extra input on epigenetic regulation, increasing the complexity of resistance mechanisms. Herein, we discuss epigenetic changes conferring to drug resistance mechanisms in gliomas in order to delineate novel therapeutic targets and potential approaches that will enable personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ioanna Papadatou
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
24
|
Dong X, Zhu W, Wang N. Cepharanthine inhibits the proliferation of glioblastoma cells by blocking the autophagy-lysosomal pathway. Toxicol Appl Pharmacol 2024; 493:117141. [PMID: 39500397 DOI: 10.1016/j.taap.2024.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Cepharanthine (CEP) is a Stephania cepharantha-derived bioactive alkaloid that can inhibit the progression of numerous tumors. However, the effects and specific mechanisms of CEP performance in glioblastoma (GBM) remain unclear. Thus, this study focused on exploring the effects of CEP on GBM and clarifying the underlying mechanisms. U251 and U87 cells were selected to estimate the anti-GBM effects of CEP, and the possible targets of CEP were analyzed using RNA sequencing (RNA-seq). Validation experiments based on RNA-seq data were performed to clarify the key pathway by which CEP mediates GBM cells response. Results showed that CEP administration successfully inhibited the proliferation and induced the cell cycle arrest and apoptosis of the GBM cells. RNA-seq analysis after CEP administration identified 386 differentially expressed genes, which were highly enriched in the autophagy-lysosomal pathway. Subsequent findings demonstrated that CEP exhibited the potential to curb GBM progression by causing lysosomal and autophagic dysfunction. Taken together, our results indicate that CEP is a potential drug candidate for GBM intervention.
Collapse
Affiliation(s)
- Xiangjun Dong
- Department of Pediatrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing 401147, China
| | - Weiyi Zhu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Nianrong Wang
- Department of Pediatrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing 401147, China.
| |
Collapse
|
25
|
Szymczak B, Pegoraro A, De Marchi E, Grignolo M, Maciejewski B, Czarnecka J, Adinolfi E, Roszek K. Retinoic acid-induced alterations enhance eATP-mediated anti-cancer effects in glioma cells: Implications for P2X7 receptor variants as key players. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167611. [PMID: 39626856 DOI: 10.1016/j.bbadis.2024.167611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Retinoic acid (RA) is a small, lipophilic molecule that inhibits cell proliferation and induces differentiation through activation of a family of nuclear receptors (RARs). The therapeutic potential of RA in the treatment of glioma was first evaluated two decades ago, but these attempts were considered not conclusive. Based on the complexity of tumor microenvironment and the role of purinergic signals within TME, we aimed to support RA-induced alterations in glioma cells with extracellular ATP. Our experiments focused on defining the purinergic signaling dynamics of two different human glioma cell lines M059K and M059J subjected to RA-based differentiation protocol. The applied procedure caused considerable modulation in P2X7 receptor variants expression at the gene and protein level, and decrease in ecto-nucleotidase activity. Collectively, it led to the decrease in cell proliferation rate and migration, as well as boosted sensitivity to cytotoxic eATP influence. We confirmed that micromolar concentrations of ATP decreased cell viability by 40 and 20 % in RA-treated M059K and M059J cells, respectively. Moreover, the decrease in migration capability up to 60 % in the presence of 100 μM ATP was observed. Both effects were mediated by P2X7R activation and reversed in the presence of A740003 antagonist, confirming the role of P2X7 receptor. We postulate that retinoic acid-induced changes coupled with micromolar eATP could be effective as anti-cancer treatment affecting the purinergic signaling. The obtained results point out the role of P2X7R variants in influencing potential of glioma cells, as well as the possibility of using these isoforms as therapeutic targets.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Pegoraro
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Elena De Marchi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marianna Grignolo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
26
|
Wu G, Zhou M, Guo F, Lin Y, Chen Y, Kong Y, Xiao J, Wan S, Li Z, Wu X, Zhang T, Zhang J. Discovery of novel Macrocyclic small molecules Based on 2-Amino-4-thiazolylpyridineas selective EGFR inhibitors with high Blood-Brain barrier penetration for the treatment of glioblastoma. Bioorg Chem 2024; 153:107905. [PMID: 39476599 DOI: 10.1016/j.bioorg.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 12/12/2024]
Abstract
Because epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene in glioblastoma (GBM), the development of EGFR inhibitors has become a promising direction for the treatment of GBM. However, due to factors such as limited blood-brain barrier (BBB) permeability and pathway compensation mechanisms, current EGFR inhibitors targeting GBM are not satisfactory. In the previous study, we obtained compound 10c with strong anti-cell proliferation activity. Since macrocyclization can effectively change the physical and chemical properties of molecules, and optimize their selectivity. Therefore, a series of 2-amino-4-thiazolyl pyridine scaffold macrocyclic derivatives were designed and synthesized using compound 10c as the lead compound in this study. Compound 3a, which inhibited the growth of glioblastoma cell lines U87MG and U87-EGFRVIII, had average IC50 values of 4.69 µM and 4.98 µM, respectively. Compound 3a was highly selective to 9 kinases in the ErbB family, including ErbB2 and ErbB4. In addition, compound 3a demonstrated good blood-brain barrier permeability in mice, the blood-brain concentration of the drug remained above 20 % within 5-60 min following intravenous administration in mice. In conclusion, compound 3a is a promising candidate for novel EGFR inhibitors targeting GBM.
Collapse
Affiliation(s)
- Guowu Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Mingfeng Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Fengqiu Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Yong Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Yongxin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Yifan Kong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Jun Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Shanhe Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Zhonghuang Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Xiaoyun Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China
| | - Tingting Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China.
| | - Jiajie Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China.
| |
Collapse
|
27
|
Yuan Z, Jing H, Deng Y, Liu M, Jiang T, Jin X, Lin W, Liu Y, Yin J. P4HB maintains Wnt-dependent stemness in glioblastoma stem cells as a precision therapeutic target and serum marker. Oncogenesis 2024; 13:42. [PMID: 39580454 PMCID: PMC11585657 DOI: 10.1038/s41389-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
Glioblastoma stem cells (GSCs) are pivotal in the recurrence and drug resistance of glioblastoma multiforme (GBM). However, precision therapeutic and diagnostic markers for GSCs have not been fully established. Here, using bioinformatics and experimental analysis, we identified P4HB, a protein disulfide isomerase, as a serum marker that maintains stemness in GSCs through the Wnt/β-catenin signaling pathway. Transcriptional silencing of P4HB induces apoptosis and diminishes stem cell-like characteristics in GSCs. Treatments with the chemical CCF624 or the China National Medical Products Administration (NMPA)-approved securinine significantly prolonged survival in patient-derived xenograft mouse models, underscoring P4HB's potential as a therapeutic target and presenting an expedited path to clinical application through drug repurposing. Additionally, elevated P4HB levels in patient serum were found to correlate with disease progression, underscoring its utility as a biomarker and its promise for precision medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hongbo Jing
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yilin Deng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Meichen Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Tao Jiang
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiong Jin
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Weiwei Lin
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, 450052, China.
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Jinlong Yin
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
28
|
Korelidou A, Domínguez-Robles J, Islam R, Donnelly RF, Coulter JA, Larrañeta E. 3D-printed implants loaded with acriflavine for glioblastoma treatment. Int J Pharm 2024; 665:124710. [PMID: 39277153 DOI: 10.1016/j.ijpharm.2024.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Drug delivery routes play an essential role in determining the efficacy and safety of medications. This study focused on the development and optimization of 3D-printed reservoir type implants as a combinational therapy drug delivery system for Glioblastoma Multiforme (GBM) post-surgery, possessing also antibacterial properties. In this study, we used a multimodal agent, Acriflavine (ACF) as an alternative drug to treat GBM. To date, ACF is used only as an antiseptic agent, although it has been shown to possess strong anticancer activities. ACF and a low molecular weight PCL were loaded into 3D-printed reservoir-type implants for sustained drug delivery. The study demonstrated that ACF implants exhibited sustained drug release kinetics, with faster release during the initial 30 days, followed by a gradual decrease over 90 days. This controlled release profile enhances the effectiveness of ACF delivery to tumour targets while minimizing side effects associated with systemic administration. In vitro experiments confirmed the inhibitory activity of ACF against GBM cells compared to non-tumour cells. The study also highlighted the bacteriostatic effects of ACF, making the implants potentially useful for post-surgery infection management, particularly against S. aureus, a common bacterial infection associated with brain surgery. The long-term drug-release capabilities of the implants make them attractive candidates for both tumour inhibition and antibacterial treatment. The study suggests that the developed ACF delivery systems have the potential for future clinical studies. Their ability to provide increased drug efficacy without systemic toxicity makes them promising candidates for cancer therapy and post-surgery infection management.
Collapse
Affiliation(s)
- Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
29
|
Sarkar S, Kumar S, Saha G, Basu M, Ghosh MK. Glioma nanotherapy: Unleashing the synergy of dual-loaded DIM and TMZ. Int J Pharm 2024; 665:124697. [PMID: 39270762 DOI: 10.1016/j.ijpharm.2024.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of primary brain tumor in adults, which unfortunately has an abysmal prognosis and poor survival rates. The reason behind the poor success rate of several FDA-approved drug is mainly attributed to insufficient drug distribution to the tumor site across the blood-brain barrier (BBB) and induction of resistance. In this study, we have developed a novel nanotherapeutic approach to achieve our goal. PLGA-based nanoencapsulation of both Temozolomide (TMZ) and EGFR inhibitor 3,3'-diindoyl methane (DIM) in a combinatorial approach enhances the delivery of them together. Their synergistic mode of actions, significantly enhances the cytotoxic effect of TMZ in vitro and in vivo. Moreover, the dual-loaded nanoformulation works more efficiently on DNA damage and apoptosis, resulting in a several-fold reduction in tumor burden in vivo, systemic drug toxicity, and increased survival. These findings suggest the preclinical potential of this new treatment strategy.
Collapse
Affiliation(s)
- Sibani Sarkar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
30
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
31
|
Yang C, Li Z, Tian K, Meng X, Wang X, Song D, Wang X, Xu T, Sun P, Zhong J, Song Y, Ma W, Liu Y, Yu D, Shen R, Jiang C, Cai J. LncRNA-Mediated TPI1 and PKM2 Promote Self-Renewal and Chemoresistance in GBM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402600. [PMID: 39342418 PMCID: PMC11600202 DOI: 10.1002/advs.202402600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Temozolomide (TMZ) resistance is one of the major reasons for poor prognosis in patients with glioblastoma (GBM). Long noncoding RNAs (lncRNAs) are involved in multiple biological processes, including TMZ resistance. Linc00942 is a potential regulator of TMZ sensitivity in GBM cells is shown previously. However, the underlying mechanism of TMZ resistance induced by Linc00942 is unknown. In this study, the sequence of Linc00942 by rapid amplification of cDNA ends assay in TMZ-resistant GBM cells is identified and confirmed that Linc00942 contributes to self-renewal and TMZ resistance in GBM cells. Chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) and followed by Western blotting (ChIRP-WB) assays shows that Linc00492 interacted with TPI1 and PKM2, subsequently promoting their phosphorylation, dimerization, and nuclear translocation. The interaction of Linc00942 with TPI1 and PKM2 leads to increased acetylation of H3K4 and activation of the STAT3/P300 axis, resulting in the marked transcriptional activation of SOX9. Moreover, the knockdown of SOX9 reversed TMZ resistance induced by Linc00492 both in vitro and in vivo. In summary, Linc00942 strongly promotes SOX9 expression by interacting with TPI1 and PKM2 is found, thereby driving self-renewal and TMZ resistance in GBM cells. These findings suggest potential combined therapeutic strategies to overcome TMZ resistance in patients with GBM.
Collapse
Affiliation(s)
- Changxiao Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Ziwei Li
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Kaifu Tian
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xiangqi Meng
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xinyu Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Dan Song
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Xuan Wang
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Tianye Xu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Penggang Sun
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Junzhe Zhong
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yu Song
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Wenbin Ma
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yuxiang Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Daohan Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- Future Medical LaboratoryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Ruofei Shen
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Chuanlu Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
- The Sixth Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Jinquan Cai
- Department of NeurosurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| |
Collapse
|
32
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
34
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
35
|
Jiménez R, Constantinescu A, Yazir M, Alfonso-Triguero P, Pequerul R, Parés X, Pérez-Alea M, Candiota AP, Farrés J, Lorenzo J. Targeting Retinaldehyde Dehydrogenases to Enhance Temozolomide Therapy in Glioblastoma. Int J Mol Sci 2024; 25:11512. [PMID: 39519068 PMCID: PMC11546810 DOI: 10.3390/ijms252111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance. ALDHs take part in processes such as cell proliferation, differentiation, invasiveness or metastasis and have been studied as pharmacological targets in cancer treatment. In the present work, three novel α,β-acetylenic amino thiolester compounds, with demonstrated efficacy as ALDH inhibitors, were tested in vitro on a panel of six human GB cell lines and one murine GB cell line. Firstly, the expression of the ALDH1A isoforms was assessed, and then inhibitors were tested for their cytotoxicity and their ability to inhibit cellular ALDH activity. Drug combination assays with TMZ were performed, as well as an assessment of the cell death mechanism and generation of ROS. A knockout of several ALDH genes was carried out in one of the human GB cell lines, allowing us to discuss their role in cell proliferation, migration capacity and resistance to treatment. Our results strongly suggest that ALDH inhibitors could be an interesting approach in the treatment of GB, with EC50 values in the order of micromolar, decreasing ALDH activity in GB cell lines to 40-50%.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Andrada Constantinescu
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Muhube Yazir
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Paula Alfonso-Triguero
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, E-08193 Bellaterra, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Mileidys Pérez-Alea
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Ana Paula Candiota
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Julia Lorenzo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| |
Collapse
|
36
|
Ke H, Zhang Z, Yu Z, Zhang B, Chen R, Zhou Q, Guo Q, Lou X. Characteristics of adverse reactions of three anti-glioma drugs in WHO-VigiAccess. Front Pharmacol 2024; 15:1485067. [PMID: 39512822 PMCID: PMC11540626 DOI: 10.3389/fphar.2024.1485067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Antitumor medications such as Avastin, Berubicin, and Temozolomide have fundamentally transformed the treatment landscape for gliomas by exhibiting potent pharmacological effects on both high-grade and low-grade gliomas. This study aims to determine which anti-glioma medication presents the lowest risk for personalized use in clinical patients by assessing the adverse drug reactions (ADRs) associated with these medications as reported in the World Health Organization (WHO) VigiAcess database, and by comparing the characteristics of adverse responses among the three drugs. Methods This investigation employs a retrospective descriptive analysis method. We compiled ADR reports for three commercially available anti-glioma medications from WHO-VigiAccess, gathering data on the disease systems and symptoms associated with ADRs, as well as the age, gender, and geographic characteristics of the patients represented in the reports. To provide a reference for clinical treatment, we analyzed the similarities and differences in the adverse reactions of the three medications by calculating the proportion of adverse reactions recorded for each drug. Results A total of 132,471 adverse events (AEs) associated with three anti-glioma drugs were reported in VigiAccess. The analysis revealed that the ten most frequently reported AEs included bone marrow suppression, myalgia, leukopenia, thrombocytopenia, nausea, vomiting, death, rhabdomyolysis, disease progression, and a decrease in neutrophil count. The five most common categories of AEs related to anti-glioma drugs were blood and lymphatic system diseases (20,233 cases, 15.2%), general disorders and administration site conditions (26,973 cases, 20.3%), gastrointestinal dysfunction (22,061 cases, 16.7%), necessitating further investigations (18,285 cases, 13.8%), and musculoskeletal and connective tissue diseases (30,695 cases, 23.1%). Notably, the adverse events associated with Avastin were more pronounced in the category of musculoskeletal and connective tissue diseases compared to the other two drugs. Furthermore, Berubicin exhibited a particularly high proportion of blood and lymphatic system disease AEs, reaching 45.6%, which was significantly greater than those observed for the other two drugs. Conclusion There is limited correlation between antineoplastic medications and ADRs. Current comparative observational studies indicate that these inhibitors are associated with both common and specific adverse effects documented in the ADR reports submitted to the World Health Organization (WHO).
Collapse
Affiliation(s)
- Huadong Ke
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zicheng Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiquan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Chen
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Zhou
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Guo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Lou
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Wang J, Cao M, Han L, Shangguan P, Liu Y, Zhong Y, Chen C, Wang G, Chen X, Lin M, Lu M, Luo Z, He M, Sung HHY, Niu G, Lam JWY, Shi B, Tang BZ. Blood-Brain Barrier-Penetrative Fluorescent Anticancer Agents Triggering Paraptosis and Ferroptosis for Glioblastoma Therapy. J Am Chem Soc 2024; 146:28783-28794. [PMID: 39394087 DOI: 10.1021/jacs.4c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Chaoyue Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ming Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mengya Lu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhengqun Luo
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mu He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
38
|
Ji H, Lan Y, Xing P, Wang Z, Zhong X, Tang W, Wei Q, Chen H, Liu B, Guo H. IL-18, a therapeutic target for immunotherapy boosting, promotes temozolomide chemoresistance via the PI3K/AKT pathway in glioma. J Transl Med 2024; 22:951. [PMID: 39434175 PMCID: PMC11492732 DOI: 10.1186/s12967-024-05755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Interleukin-18, a member of the interleukin - 1 family of cytokines, is upregulated in glioma. However, its effects on glioma remain unclear. This study aimed to explore the role and underlying mechanisms of interleukin-18 expression in glioma. Here, we demonstrated that interleukin-18 enhanced resistance to temozolomide by increasing proliferation and inhibiting apoptosis in cultured glioma cells. Further in vivo studies revealed that interleukin-18 promoted temozolomide resistance in BALB/c nude mice bearing tumor. Mechanical exploration indicated that interleukin-18 stimulation could activate the PI3K/AKT signaling pathway in glioma cells, and PI3K inhibition could reduce the temozolomide resistance promoted by interleukin-18. We found that interleukin-18 upregulated CD274 expression in glioma, revealing its potential effects on the microenvironment. Furthermore, we established a tumor xenograft model and explored the therapeutic efficacy of anti-interleukin-18 monoclonal antibody. Targeting interleukin-18 prolonged survival and attenuated CD274 expression in the mice bearing tumor. Combined treatment with anti-interleukin-18 and anti-PD-1 monoclonal antibody showed better efficacy in suppressing tumor growth than either treatment alone in mice bearing tumor. Collectively, these data present that interleukin-18 promotes temozolomide chemoresistance in glioma cells via PI3K/Akt activation and establishes an immunosuppressive milieu by modulating CD274. This study highlights the therapeutic value of interleukin-18 in glioma.
Collapse
Affiliation(s)
- Huangyi Ji
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Pengpeng Xing
- ZhiXin High School, No. 152, ZhiXin South Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenhui Tang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hongbin Chen
- The Second Clinical School, Southern Medical University, Guangzhou, 510515, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-Oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
39
|
Desai S, Thorat P, Majumdar A. A promise of nose to brain delivery of bevacizumab intranasal sol-gel formulation substantiated in rat C6 glioma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03536-3. [PMID: 39417842 DOI: 10.1007/s00210-024-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Glioblastoma is one of the rapidly spreading cancers, with its potent malignancy often linked to pronounced angiogenesis within tumors. To mitigate this vascularization profile, bevacizumab (Avastin®), a monoclonal antibody, has been utilized for its antiangiogenic activity. However, its effectiveness is hindered by challenges in crossing the blood-brain barrier and the risk of off-target organ toxicity. Delivering drugs directly from the nose to the brain through the olfactory or trigeminal nerves bypassing the blood-brain barrier offers enhanced bioavailability and a more precise targeting strategy. To overcome these challenges, we aimed to develop bevacizumab in situ gel loaded mesoporous silica nanoparticles for intranasal delivery and further examine their pharmacokinetic and pharmacodynamic characteristics. The intranasal gel of mesoporous silica nanoparticles loaded with bevacizumab was optimized and formulated using a factorial and quality by design approach. In the case of bevacizumab mesoporous silica nanoparticles, lower particle size and most negative zeta potential were selected as quality target product profiles which is important for drug loading on the mesoporous silica nanoparticles and also transport of these nanoparticles across the nasal mucosa to the brain. A design space with a multidimensional combination of input variables and process parameters has been demonstrated to assure quality. To optimize the design space and achieve the desired quality standards, the base catalyst and surfactant concentration were chosen as the critical process parameters, while particle size and zeta potential were identified as the critical quality attributes. The novel formulation was assessed for physicochemical parameters such as particle size, zeta potential, entrapment efficiency, appearance, color, consistency, and pH. Additionally, studies on in vitro release, ex vivo permeation, stability, nasal toxicity, organ safety, and bioavailability were conducted. The efficacy study was conducted in an orthotopic murine glioblastoma rat model in which C6 Luc cells were instilled in the striatum of the rat's brain. In vivo, bioluminescence imaging of brain tumors was carried out to observe the tumor regression after treatment with the intranasal and intravenous bevacizumab formulation. Biochemical parameters and histopathology were performed for organ safety studies. The optimized intranasal formulation exhibited an average particle size of 318.8 nm and a zeta potential of - 14.7 mV for the mesoporous silica nanoparticles. The formulation also demonstrated an entrapment efficiency of 91.34% and a loading capacity of 45.67%. Further pharmacokinetic studies revealed that the optimized intranasal bevacizumab formulation achieved a significantly higher brain concentration Cmax = 147.9 ng/ml, indicating improved bioavailability compared to rats administered with intravenous bevacizumab formulation (BEVATAS®), which had a Cmax of 127.2 ng/ml. Moreover, this nanoparticle formulation entirely mitigated systemic exposure to bevacizumab. Organ safety evaluation of different biochemical parameters and histopathological analyses revealed that the intranasal bevacizumab-treated group was showing less off-target organ toxicity compared to the group treated with intravenous bevacizumab formulation. Subsequently, the efficacy of this nanosystem was evaluated in an orthotopic glioblastoma rat model, monitoring tumor growth over time through in vivo bioluminescence imaging and assessing anti-angiogenic effects. Twenty-one days post-induction, mesoporous silica nanoparticles loaded with bevacizumab in situ gel exhibited a marked reduction in average bioluminescence radiance (4.39 × 103) from day 7 (1.35 × 107) emphasizing an enhanced anti-angiogenic effect compared to the group treated with intravenous bevacizumab formulation which showed a gradual decrease in average bioluminescence radiance (4.82 × 104) from day 7 (1.42 × 107). These results suggest that the proposed novel formulation of mesoporous silica nanoparticles loaded bevacizumab in situ gel could serve as a promising avenue to enhance glioblastoma treatment efficacy, thereby potentially improving patient quality of life and survival rates significantly. Furthermore, the success of this delivery method could open new avenues for treating other neurological disorders, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. By providing effective brain-targeted therapies, this approach has the potential to revolutionize treatment options and improve outcomes for a broad spectrum of neurological conditions.
Collapse
Affiliation(s)
- Siddhesh Desai
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Prajakta Thorat
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Santacruz East, Mumbai, 400098, India.
| |
Collapse
|
40
|
Guerra G, Wendt G, McCoy L, Hansen HM, Kachuri L, Molinaro AM, Rice T, Guan V, Capistrano L, Hsieh A, Kalsi V, Sallee J, Taylor JW, Clarke JL, Rodriguez Almaraz E, Wiencke JK, Eckel-Passow JE, Jenkins RB, Wrensch M, Francis SS. Functional germline variants in DNA damage repair pathways are associated with altered survival in adults with glioma treated with temozolomide. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.13.23296963. [PMID: 39417102 PMCID: PMC11482862 DOI: 10.1101/2023.10.13.23296963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes. Methods We evaluated TMZ-related survival associations of pathogenic germline SNPs and genetically predicted transcript levels within 34 DNA repair genes among 1504 glioma patients from the UCSF Adult Glioma Study and Mayo Clinic whose diagnoses spanned pre- and post-TMZ eras within the major known glioma prognostic molecular subtypes. Results Among those who received TMZ, 5 SNPs were associated with overall survival, but not in those who did not receive TMZ. Only rs2308321-G, in MGMT, was associated with decreased survival (HR=1.21, p=0.019) for all glioma subtypes. Rs73191162-T (near UNG), rs13076508-C (near PARP3), rs7840433-A (near NEIL2), and rs3130618-A (near MSH5) were only associated with survival and TMZ treatment for certain subtypes, suggesting subtype-specific germline chemo-sensitization.Genetically predicted elevated compared to normal brain expression of PNKP was associated with dramatically worse survival for TMZ-treated patients with IDH-mutant and 1p/19q non-codeleted gliomas (p=0.015). Similarly, NEIL2 and TDG expressions were associated with altered TMZ-related survival only among certain subtypes. Conclusions Functional germline alterations within DNA repair genes were associated with TMZ sensitivity, measured by overall survival, among adults with glioma, these variants should be evaluated in prospective analyses and functional studies.
Collapse
Affiliation(s)
- Geno Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - George Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Helen M. Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Victoria Guan
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Lianne Capistrano
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Allison Hsieh
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Veruna Kalsi
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Jaimie Sallee
- School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Jennie W. Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L. Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Eduardo Rodriguez Almaraz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - John K. Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S. Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Li S, Li X, Wang N, Zhang C, Sang Y, Sun Y, Xia X, Zheng M. Brain targeted biomimetic siRNA nanoparticles for drug resistance glioblastoma treatment. J Control Release 2024; 376:67-78. [PMID: 39368706 DOI: 10.1016/j.jconrel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive intracranial neoplasm, remains incurable at present, primarily due to drug resistance, which significantly contributes to elevated recurrence rates and dismal prognosis. Signal transducer and activator of transcription 3 (STAT3) is a critical gene closely associated with GBM drug resistance and the progression of GBM stem cells (GSCs), making it a promising therapeutic target. In this study, we developed cancer cell membrane-cloaked biomimetic nanoparticles to deliver STAT3 siRNA to reverse drug resistance in homologous GBM. These biomimetic nanoparticles leverage homotypic targeting, rapid endosome escape, and fast siRNA release, leading to efficient in vitro STAT3 knockdown in both temozolomide-resistant U251-TR cells and X01 GSCs. Moreover, benefited from the membrane functionalization, significant prolonged blood circulation, improved blood brain barrier (BBB) penetration and GBM tumor accumulation are achieved by these siRNA biomimetic nanoparticles. Importantly, these nanoparticles effectively inhibit tumor proliferation, significantly extending median survival time in orthotopic U251-TR (43.5 d versus 20 d for PBS control) and X01 GSC-bearing mouse xenografts (52 d versus 19.5 d for PBS control). Altogether, this biomimetic siRNA platform offers a promising strategy for gene therapy targeting drug-resistant GBM.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaozhe Li
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Chen Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yujing Sang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yajing Sun
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
42
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
43
|
Liang J, Xie J, He J, Li Y, Wei D, Zhou R, Wei G, Liu X, Chen Q, Li D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep (Hoboken) 2024; 7:e70031. [PMID: 39453684 PMCID: PMC11505515 DOI: 10.1002/cnr2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Glioblastoma multiforme (GBM) is considered the most assailant subtype of gliomas, presenting a formidable obstacle because of its inherent resistance to temozolomide (TMZ). This study aimed to characterize the function of lncRNA NEAT1 in facilitating the advancement of gliomas. METHODS The expression level of NEAT1 in glioma tissues and cells was detected by qRT-PCR. RNA interference experiment, cell proliferation assay, FITC/PI detection assay, immunoblotting, bioinformatics prediction, a double luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, SLDT assay and correlation analysis of clinical samples were performed to explore the regulatory effects of NEAT1, miR-454-3p and Cx43 and their role in malignant progression of GBM. The role of NEAT1 in vivo was investigated by an intracranial tumor formation experiment in mice. RESULTS The results showed that recurring gliomas displayed elevated levels of NEAT1 compared to primary gliomas. The suppression of NEAT1 led to a restoration of sensitivity in GBM cells to TMZ. NEAT1 functioned as a competitive endogenous RNA against miR-454-3p. Connexin 43 was identified as a miR-454-3p target. NEAT1 was found to regulate gap junctional intercellular communication by modulating Connexin 43, thereby impacting the response of GBM cells to TMZ chemotherapy. Downregulation of NEAT1 resulted in enhanced chemosensitivity to TMZ and extended the survival of mice. CONCLUSIONS Overall, these results indicated that the NEAT1/miR-454-3p/Connexin 43 pathway influences GBM cell response to TMZ and could offer a potential new strategy for treating GBM.
Collapse
Affiliation(s)
- Jinxing Liang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Jia‐xiu Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Junhui He
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Yi Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Dongmei Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Rongfei Zhou
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Guining Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Xuehua Liu
- Department of CardiologySir Run Run Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing'an District Center Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
44
|
Zhang L, He J, Zhao W, Zhou Y, Li J, Li S, Zhao W, Zhang L, Tang Z, Tan G, Chen S, Zhang B, Zhang YW, Wang Z. CD2AP promotes the progression of glioblastoma multiforme via TRIM5-mediated NF-kB signaling. Cell Death Dis 2024; 15:722. [PMID: 39353894 PMCID: PMC11445578 DOI: 10.1038/s41419-024-07094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
CD2-associated protein (CD2AP) is a scaffolding/adaptive protein that regulates intercellular adhesion and multiple signaling pathways. Although emerging evidence suggests that CD2AP is associated with several malignant tumors, there is no study investigating the expression and biological significance of CD2AP in glioblastoma multiforme (GBM). Here by studying public datasets, we found that CD2AP expression was significantly elevated in GBM and that glioma patients with increased CD2AP expression had a worse prognosis. We also confirmed the increase of CD2AP expression in clinical GBM samples and GBM cell lines. CD2AP overexpression in GBM cells promoted their proliferation, colony formation, migration, and invasion in vitro and their tumorigenesis in vivo, and reduced cell apoptosis both at basal levels and in response to temozolomide. While CD2AP knockdown had the opposite effects. Mechanistically, we revealed that CD2AP interacted with TRIM5, an NF-κB modulator. CD2AP overexpression and knockdown increased and decreased TRIM5 levels as well as the NF-κB activity, respectively. Moreover, downregulation of TRIM5 reversed elevated NF-κB activity in GBM cells with CD2AP overexpression; and inhibition of the NF-κB activity attenuated malignant features of GBM cells with CD2AP overexpression. Our findings demonstrate that CD2AP promotes GBM progression through activating TRIM5-mediated NF-κB signaling and that downregulation of CD2AP can attenuate GBM malignancy, suggesting that CD2AP may become a biomarker and the CD2AP-TRIM5-NF-κB axis may become a therapeutic target for GBM.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaobo Li
- Department of Neurosurgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ziqian Tang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guowei Tan
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Neurosurgical Quality Control Center, Xiamen, China.
| |
Collapse
|
45
|
Zhang W, Wang Y, Chen L, Chen H, Qi H, Zheng Y, Du Y, Zhang L, Wang T, Li Q. Dihydroartemisinin suppresses glioma growth by repressing ERRα-mediated mitochondrial biogenesis. Mol Cell Biochem 2024; 479:2809-2825. [PMID: 38072894 DOI: 10.1007/s11010-023-04892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 10/06/2024]
Abstract
Malignant gliomas are an exceptionally lethal form of cancer with limited treatment options. Dihydroartemisinin (DHA), a sesquiterpene lactone antimalarial compound, has demonstrated therapeutic effects in various solid tumors. In our study, we aimed to investigate the mechanisms underlying the anticancer effects of DHA in gliomas. To explore the therapeutic and molecular mechanisms of DHA, we employed various assays, including cell viability, flow cytometry, mitochondrial membrane potential, glucose uptake and glioma xenograft models. Our data demonstrated that DHA significantly inhibited glioma cell proliferation in both temozolomide-resistant cells and glioma stem-like cells. We found that DHA-induced apoptosis occurred via the mitochondria-mediated pathway by initiating mitochondrial dysfunction before promoting apoptosis. Moreover, we discovered that DHA treatment substantially reduced the expression of the mitochondrial biogenesis-related gene, ERRα, in glioma cells. And the ERRα pathway is a critical target in treating glioma with DHA. Our results also demonstrated that the combination of DHA and temozolomide synergistically inhibited the proliferation of glioma cells. In vivo, DHA treatment remarkably extended survival time in mice bearing orthotopic glioblastoma xenografts. Thus, our findings suggest that DHA has a novel role in modulating cancer cell metabolism and suppressing glioma progression by activating the ERRα-regulated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yan Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Yong Zheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yongli Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
46
|
Kriuchkovskaia V, Eames EK, Riggins RB, Harley BA. Acquired Temozolomide Resistance Instructs Patterns of Glioblastoma Behavior in Gelatin Hydrogels. Adv Healthc Mater 2024; 13:e2400779. [PMID: 39030879 PMCID: PMC11518645 DOI: 10.1002/adhm.202400779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, a 3D engineered model of acquired TMZ resistance is reported using two isogenically matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. Response of TMZ-resistant versus TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform is benchmarked and drug response at physiologically relevant TMZ concentrations is further validated. The changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production are shown as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing the understanding of GBM progression and treatment response to guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Victoria Kriuchkovskaia
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Ela K. Eames
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, University Medical Center, Washington, DC, 20007
| | - Brendan A.C. Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
47
|
Gerlach SL, Metcalf JS, Dunlop RA, Banack SA, Her C, Krishnan VV, Göransson U, Gunasekera S, Slazak B, Cox PA. Kalata B1 Enhances Temozolomide Toxicity to Glioblastoma Cells. Biomedicines 2024; 12:2216. [PMID: 39457529 PMCID: PMC11505038 DOI: 10.3390/biomedicines12102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive cancer originating in the brain, but unfortunately combination treatments with resection, radiation, and chemotherapy are relatively ineffective. Therefore, novel methods of adjuvant therapy are critically needed. Cyclotides are plant-derived circular peptides that chemosensitize drug-resistant breast cancer to doxorubicin. We analyzed naturally occurring and synthetic cyclotides (Cycloviolacin O3, Cycloviolacin O19, natural Kalata B1, synthetic Kalata B1, and Vitri E) alone and in co-exposure treatments with the drug temozolomide (TMZ) in human glioblastoma cells. The cyclotides were identified by UPLC-PDA and HPLC-UV. The synthetic Kalata B1 sequence was verified with orbitrap LC-MS, and structural confirmation was provided by NMR spectroscopy. The cyclotides displayed dose-dependent cytotoxicity (IC50 values 2.4-21.1 µM) both alone and as chemosensitizers of U-87 MG and T 98 cells to TMZ. In fact, a 16-fold lower concentration of TMZ (100 µM) was needed for significant cytotoxicity in U-87 MG cells co-exposed to synthetic Kalata B (0.5 µM). Similarly, a 15-fold lower concentration of TMZ (75 µM) was required for a significant reduction in cell viability in T 98 cells co-exposed to synthetic Kalata B1 (0.25 µM). Kalata B1 remained stable in human serum stability assays. The data support the assertion that cyclotides may chemosensitize glioblastoma cells to TMZ.
Collapse
Affiliation(s)
- Samantha L. Gerlach
- Department of Biology, Dillard University, New Orleans, LA 70122, USA
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA or (J.S.M.); (R.A.D.); (S.A.B.)
| | - James S. Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA or (J.S.M.); (R.A.D.); (S.A.B.)
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Rachael A. Dunlop
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA or (J.S.M.); (R.A.D.); (S.A.B.)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA or (J.S.M.); (R.A.D.); (S.A.B.)
| | - Cheenou Her
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA;
| | - Viswanathan V. Krishnan
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA;
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 574, 751 23 Uppsala, Sweden; (U.G.); (S.G.); (B.S.)
| | - Sunithi Gunasekera
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 574, 751 23 Uppsala, Sweden; (U.G.); (S.G.); (B.S.)
| | - Blazej Slazak
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 574, 751 23 Uppsala, Sweden; (U.G.); (S.G.); (B.S.)
- W. Szafer Institute of Botany, Polish Academy of Sciences, 46 Lubicz, 31-512 Cracow, Poland
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA or (J.S.M.); (R.A.D.); (S.A.B.)
| |
Collapse
|
48
|
Tan J, Lin G, Zhang R, Wen Y, Luo C, Wang R, Wang F, Peng S, Zhang J. Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma. Antioxidants (Basel) 2024; 13:1179. [PMID: 39456433 PMCID: PMC11505062 DOI: 10.3390/antiox13101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feiyun Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Shoujiao Peng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| |
Collapse
|
49
|
Morcos A, Jung Y, Galvan Bustillos J, Fuller RN, Caba Molina D, Bertucci A, Boyle KE, Vazquez ME, Wall NR. A Comprehensive Review of the Antitumor Properties and Mechanistic Insights of Duocarmycin Analogs. Cancers (Basel) 2024; 16:3293. [PMID: 39409913 PMCID: PMC11475672 DOI: 10.3390/cancers16193293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The duocarmycin family is a group of potent cytotoxic agents originally isolated from the bacterium Streptomyces. This discovery has spurred significant interest due to duocarmycins' unique chemical structures and powerful mechanism of action. This review comprehensively details the history of the duocarmycin family, the current understanding of their therapeutic potential, and the major clinical trials that have been conducted. Chemically, the duocarmycin family is characterized by a DNA-binding unit that confers specificity, a subunit-linking amide that positions the molecule within the DNA helix, and an alkylating unit that interacts with the DNA. This configuration allows them to bind selectively to the minor groove of DNA and alkylate adenine bases, a notable deviation from the more common guanine targeting performed by other alkylating agents. Duocarmycin's mechanism of action involves the formation of covalent adducts with DNA, leading to the disruption of the DNA architecture and subsequent inhibition of replication and transcription. Recent advancements in drug delivery systems, such as antibody-drug conjugates (ADCs), have further elevated the therapeutic prospects of duocarmycin analogs by providing a promising mechanism for enhancing intracellular concentrations and selective tumor delivery. Preclinical studies have highlighted the efficacy of duocarmycin derivatives in various in vitro models, providing a strong foundation for translational research. However, further biological research is required to fully understand the toxicology of duocarmycin family members before it can be clinically relevant. The major focus of this review is to cache the major biologically relevant findings of different duocarmycin analogs as well as their biological shortcomings to propose next steps in the field of cancer therapy with these potent therapeutics.
Collapse
Affiliation(s)
- Ann Morcos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yeonkyu Jung
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Ryan N. Fuller
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Antonella Bertucci
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Nuclear Response & Analysis, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | | | - Marcelo E. Vazquez
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Nathan R. Wall
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
50
|
Zhang X, Li L, Li Y, Dong C, Shi J, Guo X, Sui A. The role of trimethylation on histone H3 lysine 27 (H3K27me3) in temozolomide resistance of glioma. Brain Res 2024; 1846:149252. [PMID: 39326722 DOI: 10.1016/j.brainres.2024.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China; Graduate School, Hebei North University, Zhangjiakou 075132, Hebei, China
| | - Li Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Yitong Li
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Changzheng Dong
- Second Department of Neurosurgery, Hebei General Hospital, Shijiazhuang 050057, Hebei, China
| | - Jian Shi
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xiaoqiang Guo
- Department of Sports Human Sciences, Hebei Sport University, Shijiazhuang 050041, Hebei, China.
| | - Aixia Sui
- Sixth Department of Oncology, Hebei General Hospital, Shijiazhuang 050057, Hebei, China.
| |
Collapse
|