1
|
Dai Y, Ying Y, Zhu G, Xu Y, Ji K. STAT3 drives the expression of HIF1alpha in cancer cells through a novel super-enhancer. Biochem Biophys Res Commun 2024; 735:150483. [PMID: 39098275 DOI: 10.1016/j.bbrc.2024.150483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Aerobic glycolysis is one of the major hallmarks of malignant tumors. This metabolic reprogramming benefits the rapid proliferation of cancer cells, facilitates the formation of tumor microenvironment to support their growth and survival, and impairs the efficacy of various tumor therapies. Therefore, the elucidation of the mechanisms driving aerobic glycolysis in tumors represents a pivotal breakthrough in developing therapeutic strategies for solid tumors. HIF1α serves as a central regulator of aerobic glycolysis with elevated mRNA and protein expression across multiple tumor types. However, the mechanisms contributing to this upregulation remain elusive. This study reports the identification of a novel HIF1α super enhancer (HSE) in multiple cancer cells using bioinformatics analysis, chromosome conformation capture (3C), chromatin immunoprecipitation (ChIP), and CRISPR/Cas9 genome editing techniques. Deletion of HSE in cancer cells significantly reduces the expression of HIF1α, glycolysis, cell proliferation, colony and tumor formation ability, confirming the role of HSE as the enhancer of HIF1α in cancer cells. Particularly, we demonstrated that STAT3 promotes the expression of HIF1α by binding to HSE. The discovery of HSE will help elucidate the pathways driving tumor aerobic glycolysis, offering new therapeutic targets and potentially resolving the bottleneck in solid tumor treatment.
Collapse
Affiliation(s)
- Yonghui Dai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yue Ying
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaoyang Zhu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0322, USA.
| | - Kaiyuan Ji
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Zhu Q, Li J, Sun H, Fan Z, Hu J, Chai S, Lin B, Wu L, Qin W, Wang Y, Hsieh-Wilson LC, Yi W. O-GlcNAcylation of enolase 1 serves as a dual regulator of aerobic glycolysis and immune evasion in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2408354121. [PMID: 39446384 PMCID: PMC11536113 DOI: 10.1073/pnas.2408354121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 10/27/2024] Open
Abstract
Aerobic glycolysis and immune evasion are two key hallmarks of cancer. However, how these two features are mechanistically linked to promote tumor growth is not well understood. Here, we show that the glycolytic enzyme enolase-1 (ENO1) is dynamically modified with an O-linked β-N-acetylglucosamine (O-GlcNAcylation), and simultaneously regulates aerobic glycolysis and immune evasion via differential glycosylation. Glycosylation of threonine 19 (T19) on ENO1 promotes its glycolytic activity via the formation of active dimers. On the other hand, glycosylation of serine 249 (S249) on ENO1 inhibits its interaction with PD-L1, decreases association of PD-L1 with the E3 ligase STUB1, resulting in stabilization of PD-L1. Consequently, blockade of T19 glycosylation on ENO1 inhibits glycolysis, and decreases cell proliferation and tumor growth. Blockade of S249 glycosylation on ENO1 reduces PD-L1 expression and enhances T cell-mediated immunity against tumor cells. Notably, elimination of glycosylation at both sites synergizes with PD-L1 monoclonal antibody therapy to promote antitumor immune response. Clinically, ENO1 glycosylation levels are up-regulated and show a positive correlation with PD-L1 levels in human colorectal cancers. Thus, our findings provide a mechanistic understanding of how O-GlcNAcylation bridges aerobic glycolysis and immune evasion to promote tumor growth, suggesting effective therapeutic opportunities.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Jingchao Li
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Zhiya Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Jiating Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Siyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing100026, China
| | - Yong Wang
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
| | - Linda C. Hsieh-Wilson
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wen Yi
- Department of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Biophysics, College of Life Sciences, Zhejiang University,Hangzhou310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou310002, China
| |
Collapse
|
3
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2024. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Zheng Q, Xie Y, Xu L, Chen D, Wu J, Liu S, Wu L, Fang P, Xie F. LDHA as a predictive biomarker and its association with the infiltration of immune cells in pancreatic adenocarcinoma. J Gastrointest Oncol 2024; 15:1746-1759. [PMID: 39279982 PMCID: PMC11399852 DOI: 10.21037/jgo-24-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its high expression has been linked to tumorigenesis and patient survival in various human cancers. However, the full implications of LDHA's role and its correlation with clinicopathological features in pancreatic adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis and treatment. Methods In an extensive systems analysis, we searched through numerous databases, including The Cancer Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and its correlation with tumor immune status. Results Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA's influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog (K-Ras), transforming growth factor-β (TGF-β), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into managing this aggressive cancer. Conclusions Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel target for future PAAD immunotherapy.
Collapse
Affiliation(s)
- Qiuqing Zheng
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luyin Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Delian Chen
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuxun Liu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Lili Wu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Peiwei Fang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fajun Xie
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
7
|
Wang L, Zhang L, Dunmall LC, Wang YY, Fan Z, Cheng Z, Wang Y. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett 2024; 591:216871. [PMID: 38604310 DOI: 10.1016/j.canlet.2024.216871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy, as an adoptive immunotherapy, is playing an increasingly important role in the treatment of malignant tumors. CAR-T cells are referred to as "living drugs" as they not only target tumor cells directly, but also induce long-term immune memory that has the potential to provide long-lasting protection. CD19.CAR-T cells have achieved complete response rates of over 90 % for acute lymphoblastic leukemia and over 60 % for non-Hodgkin's lymphoma. However, the response rate of CAR-T cells in the treatment of solid tumors remains extremely low and the side effects potentially severe. In this review, we discuss the limitations that the solid tumor microenvironment poses for CAR-T application and the solutions that are being developed to address these limitations, in the hope that in the near future, CAR-T cell therapy for solid tumors can attain the same success rates as are now being seen clinically for hematological malignancies.
Collapse
Affiliation(s)
- Lihong Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China; National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lufang Zhang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yang Yang Wang
- Department of General Pediatrics, Newham General Hospital, E13 8SL, London, United Kingdom
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center, PLA, Beijing, China
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China; Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
8
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
9
|
Liang H, Zhan J, Chen Y, Xing Z, He ZNT, Liu Y, Li X, Chen Y, Li Z, Kuang C, Yang D, Yang Q. Tryptophan deficiency induced by indoleamine 2,3-dioxygenase 1 results in glucose transporter 1-dependent promotion of aerobic glycolysis in pancreatic cancer. MedComm (Beijing) 2024; 5:e555. [PMID: 38706741 PMCID: PMC11066657 DOI: 10.1002/mco2.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.
Collapse
Affiliation(s)
- Heng Liang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Jiani Zhan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yunqiu Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zikang Xing
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yuying Liu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Xuewen Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Yijia Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Zhiyao Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghaiChina
| | - Dan Yang
- Department of OrthopedicsShanghai Children's HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qing Yang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesMOE Engineering Research Center of Gene TechnologyShanghai Engineering Research Center of Industrial MicroorganismsFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Dong Z, Liu Y, Wang C, Hao Y, Fan Q, Yang Z, Li Q, Feng L, Liu Z. Tumor Microenvironment Modulating CaCO 3 -Based Colloidosomal Microreactors Can Generally Reinforce Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308254. [PMID: 37918820 DOI: 10.1002/adma.202308254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Tumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO3 ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia, and suppress lactate production upon intratumoral administration. Consequently, CCaP CSs treatment can activate potent antitumor immunity and thus significantly enhance the therapeutic potency of coloaded anti-programmed death-1 (anti-PD-1) antibodies in both murine subcutaneous CT26 and orthotopic 4T1 tumor xenografts. In addition, such CCaP CSs treatment also markedly reinforces the therapeutic potency of epidermal growth factor receptor expressing chimeric antigen receptor T (EGFR-CAR-T) cells toward a human triple-negative breast cancer xenograft by promoting their tumor infiltration and effector cytokine secretion. Therefore, this study highlights that chemical modulation of tumor acidity and hypoxia can collectively reverse tumor immunosuppression and thus significantly potentiate both immune checkpoint blockade and CAR-T cell immunotherapies toward solid tumors.
Collapse
Affiliation(s)
- Ziliang Dong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Cancer Institute, Department of Biochemistry, College of Life Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chunjie Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yu Hao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Qin Fan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhijuan Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Quguang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
11
|
Tan M, Pan Q, Yu C, Zhai X, Gu J, Tao L, Xu D. PIGT promotes cell growth, glycolysis, and metastasis in bladder cancer by modulating GLUT1 glycosylation and membrane trafficking. J Transl Med 2024; 22:5. [PMID: 38169393 PMCID: PMC10763284 DOI: 10.1186/s12967-023-04805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bladder cancer is very common worldwide. PIGT is a subunit of the glycosylphosphatidylinositol transamidase which involves in tumorigenesis and invasiveness. m6A modification of mRNA has been linked to cell proliferation, tumor progression and other biological events. However, how PIGT is regulated and what is the function of PIGT in bladder cancer remains to be elucidated. METHODS PIGT was silenced or overexpressed to study its role in regulating bladder cancer. Cell proliferation and invasion were examined with the Cell Counting Kit-8, colony formation and Transwell assay, respectively. Cellular oxygen consumption rates or extracellular acidification rates were detected by a XF24 Analyzer. Quantitative RT-PCR and immunoblots were performed to detect mRNA and protein levels. RESULTS PIGT was overexpressed in bladder cancer. Silencing PIGT inhibited cell proliferation, oxidative phosphorylation, and glycolysis. Overexpressing PIGT promoted cell proliferation, oxidative phosphorylation, glycolysis in vitro and tumor metastasis in vivo by activating glucose transporter 1 (GLUT1). PIGT also promoted GLUT1 glycosylation and membrane trafficking. Wilms' tumor 1-associated protein (WTAP) mediated PIGT m6A modification, and m6A reader, insulin-like growth factor 2 mRNA-binding protein (IGF2BP2), binds to the methylated PIGT to promote the stability of PIGT, leading to up-regulation of PIGT. CONCLUSION WTAP mediates PIGT m6A modification to increase the stability of PIGT via the IGF2BP2, which enhances cell proliferation, glycolysis, and metastasis in bladder cancer by modulating GLUT1 glycosylation and membrane trafficking.
Collapse
Affiliation(s)
- Mingyue Tan
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Qi Pan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chao Yu
- Department of Urology and Andrology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xinyu Zhai
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Jianyi Gu
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Le Tao
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New Area, Shanghai, 200127, China.
| | - Dongliang Xu
- Urology Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
12
|
Li J, Yue Z, Tang M, Wang W, Sun Y, Sun T, Chen C. Strategies to Reverse Hypoxic Tumor Microenvironment for Enhanced Sonodynamic Therapy. Adv Healthc Mater 2024; 13:e2302028. [PMID: 37672732 DOI: 10.1002/adhm.202302028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as a highly effective modality for the treatment of malignant tumors owing to its powerful penetration ability, noninvasiveness, site-confined irradiation, and excellent therapeutic efficacy. However, the traditional SDT, which relies on oxygen availability, often fails to generate a satisfactory level of reactive oxygen species because of the widespread issue of hypoxia in the tumor microenvironment of solid tumors. To address this challenge, various approaches are developed to alleviate hypoxia and improve the efficiency of SDT. These strategies aim to either increase oxygen supply or prevent hypoxia exacerbation, thereby enhancing the effectiveness of SDT. In view of this, the current review provides an overview of these strategies and their underlying principles, focusing on the circulation of oxygen from consumption to external supply. The detailed research examples conducted using these strategies in combination with SDT are also discussed. Additionally, this review highlights the future prospects and challenges of the hypoxia-alleviated SDT, along with the key considerations for future clinical applications. These considerations include the development of efficient oxygen delivery systems, the accurate methods for hypoxia detection, and the exploration of combination therapies to optimize SDT outcomes.
Collapse
Affiliation(s)
- Jialun Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhengya Yue
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Minglu Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wenxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
13
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
14
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
15
|
Salken I, Provencio JJ, Coulibaly AP. A potential therapeutic target: The role of neutrophils in the central nervous system. Brain Behav Immun Health 2023; 33:100688. [PMID: 37767236 PMCID: PMC10520304 DOI: 10.1016/j.bbih.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophils play a critical role in immune defense as the first recruited and most abundant leukocytes in the innate immune system. As such, regulation of neutrophil effector functions have strong implications on immunity. These cells display a wide heterogeneity of function, including both inflammatory and immunomodulatory roles. Neutrophils commonly infiltrate the central nervous system (CNS) in response to varied pathological conditions. There is still little understanding of the role these cells play in the CNS in such conditions. In the present review, we will summarize what is known of neutrophil's role in cancer and Alzheimer's disease (AD), with a focus on highlighting the gaps in our understanding.
Collapse
Affiliation(s)
- Isabel Salken
- College of Arts and Science, University of Virginia, USA
| | | | | |
Collapse
|
16
|
Margawati H, Yustisia I, Hardjo M, Natsir R, Azis I, Hafiyani L, Aswad H. GLUT5, GLUT7, and GLUT11 expression and Bcl-2/Bax ratio on Breast Cancer Cell Line MCF-7 Treated with Fructose and Glucose. Asian Pac J Cancer Prev 2023; 24:3917-3924. [PMID: 38019251 PMCID: PMC10772771 DOI: 10.31557/apjcp.2023.24.11.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Fructose and glucose are types of sugars commonly found in the diet that have been linked to cancer development. Glucose transporters (GLUTs) are facilitating the uptake of these hexoses. Expression of GLUT5 is higher in cancer cells than in healthy tissue. GLUT7 and GLUT11 facilitate the transport of glucose and fructose; however, their expression in breast cancer has not been extensively studied. The Bcl-2 family has been known as a regulator of the cell's survival and death. Here, we investigated the effect of the fructose-glucose combination in MCF-7 breast cancer cells on the viability, migration, and expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax ratio. METHODS Breast cancer cells MCF-7 were treated with fructose, glucose, and combinations of fructose:glucose (75%:25%, 50%:50%, 25%:75%). Cell viability was assessed using an MTT test. Cell migration was examined with a wound-healing assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax. RESULTS The viability and migration of MCF-7 breast cancer cells elevated when treated with a combination of fructose and glucose, and glucose alone, compared to fructose alone. The expression levels of GLUT5 and GLUT7 were highest in combination of fructose:glucose (75%:25%). Conversely, the expression of GLUT11 was consistently low across all treated media. The highest Bcl-2/Bax ratio was shown in fructose:glucose combination (25%:75%). CONCLUSION The viability, migration, and Bcl-2/Bax ratio are enhanced in the combination media with higher glucose. In contrast, when the fructose composition was higher in the media, expression of GLUT5 and GLUT7 increased.
Collapse
Affiliation(s)
- Harlindah Margawati
- Master Programme of Biomedical Sciences, Graduate School Universitas Hasanuddin, Makassar, Indonesia.
- Makassar Medical State Laboratory, Indonesian Ministry of Health, Makassar, Indonesia.
| | - Ika Yustisia
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Marhaen Hardjo
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Rosdiana Natsir
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Ilhamuddin Azis
- Department of Biochemistry, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Lia Hafiyani
- Department of Pharmacology, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia.
| | - Hijral Aswad
- Hasanuddin University Medical Research Centre (HUMRC), Makassar, Indonesia.
| |
Collapse
|
17
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
18
|
Zhao Q, Wang L, Lv Z, Wang X, Xu Z, Wang K. Knowledge mapping and current trends of Warburg effect in the field of cancer. Front Oncol 2023; 13:1264083. [PMID: 38023133 PMCID: PMC10660690 DOI: 10.3389/fonc.2023.1264083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Since abnormal aerobic glycolysis was first identified in cancer cells, many studies have focused on its mechanisms. The purpose of this study was to analyze the global research status of the Warburg effect in cancer using bibliometrics. Methods Articles published from 01 January 2013 to 31 December 2022 (n=2,067) were retrieved from the Web of Science core collection database and analyzed using VOSviewer and CiteSpace software. Results Over the past decade, there was an overall increase in the number of annual publications. China was the most productive country with 790 articles, while the United States received the most citations, with 25,657 citations in total. Oncotarget was the most productive and most cited journal, with 99 articles and 4,191 citations, respectively. International cooperation was common, with the USA cooperating most with other countries. Lactate metabolism, citrate production, and non-coding RNAs related to the Warburg effect have received increasing attention in cancer research. These areas may become future research trends. Conclusion The study findings help summarize the research status and hotspots of the Warburg effect cancer, and will inform subsequent research.
Collapse
Affiliation(s)
- Quan Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zhou X, Wang S, Li Y, Zhao H, Han X, Yu Y, Chen Y, Yang Y, Ma X, Huo H, Zhang M, Zhao Y, Ma N. Monocarboxylate transporter 4 promotes the migration of non‑cancerous L929 fibroblast cells by activating the IGF1/IGF1R/PIK3R3/SGK1 axis. Oncol Lett 2023; 26:460. [PMID: 37745980 PMCID: PMC10512108 DOI: 10.3892/ol.2023.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) and Warburg effect are critical for the regulation of tumor metastasis. The monocarboxylate transporter (MCT) family members, particularly MCT4, which is encoded by the solute carrier family 16 member 3 gene, play an important role in the regulation of the TME and mediation of the Warburg effect by transporting lactate out of cancer cells. Migration and invasion are two key features of metastasis. Few studies have investigated the mechanism by which MCT4 promotes cell migration, and the suggested mechanisms by which MCT4 promotes migration vary in different tumor cell models. The purpose of the present study was to use non-cancerous cells as a research model to investigate the specific mechanism underlying the promotion of migration by MCT4. In a previous study, murine L929 cells overexpressing human MCT4 (MCT4-L929 cells) were generated and MCT4 was demonstrated to promote the migration and invasion of these non-cancerous cells. In the present study, MCT4-L929 cells and control-L929 cells were used to investigate the potential pathways and mechanisms through which MCT4 promotes cell migration. RNA sequencing analysis revealed 872 differentially expressed genes, comprising 337 and 535 upregulated and downregulated genes, respectively, in the MCT4-L929 cells. Reverse transcription-quantitative analysis and western blotting revealed that MCT4 overexpression increased the transcription and protein levels of insulin-like growth factor 1 (IGF1). In a wound healing assay, the migration of exogenous mouse IGF1-treated control-L929 cells was similar to that of MCT4-L929 cells. Additionally, the inhibition of IGF1 receptor (IGF1R) or serum/glucocorticoid regulated kinase 1 (SGK1), a downstream protein in the IGF1 and phosphoinositide 3-kinase PI3K regulatory subunit 3 (PIK3R3) pathways, in MCT4-L929 cells mitigated the cell migration-promoting effect of MCT4. These novel findings suggest that MCT4 may promote the migration of L929 fibroblast cells via activation of the IGF1/IGF1R/PIK3R3/SGK1 axis.
Collapse
Affiliation(s)
- Xiaoju Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yanyan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - He Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xue Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yue Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaonan Ma
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Hongjing Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Manting Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
20
|
Nur-E-Alam M, Maurya DK, Yap BK, Rajabi A, Doroody C, Bin Mohamed H, Khandaker MU, Islam MA, Kiong Tiong S. Physical-Vapor-Deposited Metal Oxide Thin Films for pH Sensing Applications: Last Decade of Research Progress. SENSORS (BASEL, SWITZERLAND) 2023; 23:8194. [PMID: 37837022 PMCID: PMC10575361 DOI: 10.3390/s23198194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In the last several decades, metal oxide thin films have attracted significant attention for the development of various existing and emerging technological applications, including pH sensors. The mandate for consistent and precise pH sensing techniques has been increasing across various fields, including environmental monitoring, biotechnology, food and agricultural industries, and medical diagnostics. Metal oxide thin films grown using physical vapor deposition (PVD) with precise control over film thickness, composition, and morphology are beneficial for pH sensing applications such as enhancing pH sensitivity and stability, quicker response, repeatability, and compatibility with miniaturization. Various PVD techniques, including sputtering, evaporation, and ion beam deposition, used to fabricate thin films for tailoring materials' properties for the advanced design and development of high-performing pH sensors, have been explored worldwide by many research groups. In addition, various thin film materials have also been investigated, including metal oxides, nitrides, and nanostructured films, to make very robust pH sensing electrodes with higher pH sensing performance. The development of novel materials and structures has enabled higher sensitivity, improved selectivity, and enhanced durability in harsh pH environments. The last decade has witnessed significant advancements in PVD thin films for pH sensing applications. The combination of precise film deposition techniques, novel materials, and surface functionalization strategies has led to improved pH sensing performance, making PVD thin films a promising choice for future pH sensing technologies.
Collapse
Affiliation(s)
- Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- School of Engineering and Technology, Central Queensland University Australia, Melbourne, VIC 3000, Australia
| | - Devendra Kumar Maurya
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India;
| | - Boon Kar Yap
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Armin Rajabi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
| | - Camellia Doroody
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Hassan Bin Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
21
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
22
|
Nogales JMS, Parras J, Zazo S. DDQN-based optimal targeted therapy with reversible inhibitors to combat the Warburg effect. Math Biosci 2023; 363:109044. [PMID: 37414271 DOI: 10.1016/j.mbs.2023.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
We cover the Warburg effect with a three-component evolutionary model, where each component represents a different metabolic strategy. In this context, a scenario involving cells expressing three different phenotypes is presented. One tumour phenotype exhibits glycolytic metabolism through glucose uptake and lactate secretion. Lactate is used by a second malignant phenotype to proliferate. The third phenotype represents healthy cells, which performs oxidative phosphorylation. The purpose of this model is to gain a better understanding of the metabolic alterations associated with the Warburg effect. It is suitable to reproduce some of the clinical trials obtained in colorectal cancer and other even more aggressive tumours. It shows that lactate is an indicator of poor prognosis, since it favours the setting of polymorphic tumour equilibria that complicates its treatment. This model is also used to train a reinforcement learning algorithm, known as Double Deep Q-networks, in order to provide the first optimal targeted therapy based on experimental tumour growth inhibitors as genistein and AR-C155858. Our in silico solution includes the optimal therapy for all the tumour state space and also ensures the best possible quality of life for the patients, by considering the duration of treatment, the use of low-dose medications and the existence of possible contraindications. Optimal therapies obtained with Double Deep Q-networks are validated with the solutions of the Hamilton-Jacobi-Bellman equation.
Collapse
Affiliation(s)
- Jose M Sanz Nogales
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain.
| | - Juan Parras
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain
| | - Santiago Zazo
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
23
|
Miethe C, Raign K, Zamora M, Price RS. The differential role of resistin on invasive liver cancer cells. Horm Mol Biol Clin Investig 2023; 44:285-293. [PMID: 36867542 DOI: 10.1515/hmbci-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES To determine whether inhibition of kinase signaling will suppress resistin-induced liver cancer progression. Resistin is located in monocytes and macrophages of adipose tissue. This adipocytokine is an important link between obesity, inflammation, insulin resistance, and cancer risk. Pathways that resistin is known to be involved include but are not limited to mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinases (ERK). The ERK pathway promotes cellular proliferation, migration, survival of cancer cells, and tumor progression. The Akt pathway is known to be up-regulated in many cancers including liver cancer. METHODS Using an in vitro model, HepG2 and SNU-449 liver cancer cells were exposed to resistin ± ERK, Akt, or both inhibitors. The following physiological parameters were assessed: cellular proliferation, ROS, lipogenesis, invasion, MMP, and lactate dehydrogenase activity. RESULTS The inhibition of kinase signaling suppressed resistin-induced invasion and lactate dehydrogenase in both cell lines. In addition, in SNU-449 cells, resistin increased proliferation, ROS, and MMP-9 activity. Inhibition of PI3K and ERK decreased phosphorylated Akt and ERK, and pyruvate dehydrogenase. CONCLUSIONS In this study, we describe the effect of Akt and ERK inhibitors to determine if inhibition suppresses resistin-induced liver cancer progression. Resistin promotes cellular proliferation, ROS, MMP, invasion and LDH activity in SNU-449 liver cancer cells which is differentially mediated by Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Candace Miethe
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Kelsie Raign
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Megan Zamora
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | | |
Collapse
|
24
|
Cheung AHK, Wong KY, Liu X, Ji F, Hui CHL, Zhang Y, Kwan JSH, Chen B, Dong Y, Lung RWM, Yu J, Lo KW, Wong CC, Kang W, To KF. MLK4 promotes glucose metabolism in lung adenocarcinoma through CREB-mediated activation of phosphoenolpyruvate carboxykinase and is regulated by KLF5. Oncogenesis 2023; 12:35. [PMID: 37407566 DOI: 10.1038/s41389-023-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
MLK4, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, has been implicated in cancer progression. However, its role in lung adenocarcinoma has not been characterized. Here, we showed that MLK4 was overexpressed in a significant subset of lung adenocarcinoma, associated with a worse prognosis, and exerted an oncogenic function in vitro and in vivo. Bioinformatics analyses of clinical datasets identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a novel target of MLK4. We validated that MLK4 regulated PCK1 expression at transcriptional level, by phosphorylating the transcription factor CREB, which in turn mediated PCK1 expression. We further demonstrated that PCK1 is an oncogenic factor in lung adenocarcinoma. Given the importance of PCK1 in the regulation of cellular metabolism, we next deciphered the metabolic effects of MLK4. Metabolic and mass spectrometry analyses showed that MLK4 knockdown led to significant reduction of glycolysis and decreased levels of glycolytic pathway metabolites including phosphoenolpyruvate and lactate. Finally, the promoter analysis of MLK4 unravelled a binding site of transcription factor KLF5, which in turn, positively regulated MLK4 expression in lung adenocarcinoma. In summary, we have revealed a KLF5-MLK4-PCK1 signalling pathway involved in lung tumorigenesis and established an unusual link between MAP3K signalling and cancer metabolism.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kit-Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fenfen Ji
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yihan Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yujuan Dong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
25
|
Pathmanapan S, Poon R, De Renshaw TB, Nadesan P, Nakagawa M, Seesankar GA, Ho Loe AK, Zhang HH, Guinovart JJ, Duran J, Newgard CB, Wunder JS, Alman BA. Mutant IDH regulates glycogen metabolism from early cartilage development to malignant chondrosarcoma formation. Cell Rep 2023; 42:112578. [PMID: 37267108 PMCID: PMC10592452 DOI: 10.1016/j.celrep.2023.112578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Chondrosarcomas are the most common malignancy of cartilage and are associated with somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes. Somatic IDH mutations are also found in its benign precursor lesion, enchondromas, suggesting that IDH mutations are early events in malignant transformation. Human mutant IDH chondrosarcomas and mutant Idh mice that develop enchondromas investigated in our studies display glycogen deposition exclusively in mutant cells from IDH mutant chondrosarcomas and Idh1 mutant murine growth plates. Pharmacologic blockade of glycogen utilization induces changes in tumor cell behavior, downstream energetic pathways, and tumor burden in vitro and in vivo. Mutant IDH1 interacts with hypoxia-inducible factor 1α (HIF1α) to regulate expression of key enzymes in glycogen metabolism. Here, we show a critical role for glycogen in enchondromas and chondrosarcomas, which is likely mediated through an interaction with mutant IDH1 and HIF1α.
Collapse
Affiliation(s)
- Sinthu Pathmanapan
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Raymond Poon
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Makoto Nakagawa
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Gireesh A Seesankar
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Kwan Ho Loe
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Hongyuan H Zhang
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona, Barcelona, Spain
| | - Christopher B Newgard
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute and the University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON, Canada
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Kopeć K, Szleszkowski S, Koziorowski D, Szlufik S. Glymphatic System and Mitochondrial Dysfunction as Two Crucial Players in Pathophysiology of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10366. [PMID: 37373513 DOI: 10.3390/ijms241210366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Neurodegenerative diseases are a complex problem affecting millions of people around the world. The pathogenesis is not fully understood, but it is known that both insufficiency of the glymphatic system and mitochondrial disorders affect the development of pathology. It appears that these are not just two independent factors that coexist in the processes of neurodegeneration, but that they often interact and drive each other. Bioenergetics disturbances are potentially associated with the accumulation of protein aggregates and impaired glymphatic clearance. Furthermore, sleep disorders characteristic of neurodegeneration may impair the work of both the glymphatic system and the activity of mitochondria. Melatonin may be one of the elements linking sleep disorders with the function of these systems. Moreover, noteworthy in this context is the process of neuroinflammation inextricably linked to mitochondria and its impact not only on neurons, but also on glia cells involved in glymphatic clearance. This review only presents possible direct and indirect connections between the glymphatic system and mitochondria in the process of neurodegeneration. Clarifying the connection between these two areas in relation to neurodegeneration could lead to the development of new multidirectional therapies, which, due to the complexity of pathogenesis, seems to be worth considering.
Collapse
Affiliation(s)
- Kamila Kopeć
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanisław Szleszkowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
27
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Mishra V, Tripathi V, Yadav P, Singh MP. Beta glucan as an immune stimulant in tumor microenvironment - Insight into lessons and promises from past decade. Int J Biol Macromol 2023; 234:123617. [PMID: 36758755 DOI: 10.1016/j.ijbiomac.2023.123617] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Cancer is characterized by a perturbed immune landscape. Inside tumor microenvironment, immune system is reprogrammed to facilitate tumor growth and survival rather than eliminating it. This immune evasive mechanism needs to be reversed to normal for effective anticancer therapeutic strategy. Immunotherapy has emerged as a novel strategy for redeployment of immune cells against cancer. However, they suffer in their efficacy, response rate and side effects. This necessitated us to turn toward natural repertoires which can act as a substitute to conventional immunotherapeutics. Beta glucan, a polysaccharide derived from mushroom, serves the role of immunomodulator inside tumor microenvironment. It acts as pathogen associated molecular pattern and bind to various pattern recognition receptors expressed on surface of immune cells thereby facilitating their activation and crosstalk. This result in resurgence of suppressed immune surveillance in the tumor milieu. In this review, we highlight in brief the advances and limitation of cancer immunotherapy. Alongside, we have discussed the detailed mechanistic principle and recent advances underlying restoration of immune functionality by beta glucan.
Collapse
Affiliation(s)
- Vartika Mishra
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Priyanka Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, India.
| |
Collapse
|
29
|
Yang ES, Do Y, Cheon SY, Kim B, Ling J, Cho MK, Kim T, Bae SJ, Ha KT. Andrographolide suppresses aerobic glycolysis and induces apoptotic cell death by inhibiting pyruvate dehydrogenase kinase 1 expression. Oncol Rep 2023; 49:72. [PMID: 36825595 PMCID: PMC9996679 DOI: 10.3892/or.2023.8509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Metabolic disorder is a major characteristic of cancer cells, and controlling genes involved in metabolic shifts can be an effective strategy for cancer treatment. Andrographolide (AG), a diterpenoid lactone, is widely recognized as a natural anticancer drug due to its ability to inhibit cancer growth. The present study aimed to investigate the mechanism underlying the mitochondrial‑mediated anticancer effect of AG by inhibiting pyruvate dehydrogenase kinase 1 (PDK1) expression in lung cancer cells. Cells were treated with AG and PDK1 mRNA and protein expression was determined using reverse transcription‑quantitative PCR and western blotting, respectively. As a result, AG significantly inhibited the viability of human lung cancer cells and suppressed aerobic glycolysis by decreasing lactate generation. AG further decreased the PDK1 protein and mRNA levels in a dose‑dependent manner. AG‑induced cell death was assessed by flow cytometry and fluorescence microscopy. AG induced apoptotic cell death that was associated with the cleavage of poly (ADP ribose) polymerase, activation of caspase‑3, and mitochondrial damage, which was associated with an increase in reactive oxygen species and loss of mitochondrial membrane potential. AG‑induced cell death was partially suppressed via PDK1 overexpression in lung cancer cells. Therefore, the anticancer effects of AG on human lung cancer cells may negatively regulate the expression of PDK1.
Collapse
Affiliation(s)
- Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Yunju Do
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Jin Ling
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Min Kyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
30
|
Macharia JM, Kaposztas Z, Varjas T, Budán F, Zand A, Bodnar I, Bence RL. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment? Biomed Pharmacother 2023; 160:114371. [PMID: 36758316 DOI: 10.1016/j.biopha.2023.114371] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Even though the pathophysiology of colorectal cancer (CRC) is complicated and poorly understood, interactions between risk factors appear to be key in the development and progression of the malignancy. The popularity of using lactic acid bacteria (LAB) prebiotics and probiotics to modulate the tumor microenvironment (TME) has grown widely over the past decade. The objective of this study was therefore to determine the detrimental effects of LAB-derived lactic acid in the colonic mucosa in colorectal cancer management. Six library databases and a web search engine were used to execute a structured systematic search of the existing literature, considering all publications published up until August 2022. A total of 7817 papers were screened, all of which were published between 1995 and August 2022. However, only 118 articles met the inclusion criterion. Lactic acid has been directly linked to the massive proliferation of cancerous cells since the glycolytic pathway provides cancerous cells with not only ATP, but also biosynthetic intermediates for rapid growth and proliferation. Our research suggests that targeting LAB metabolic pathways is capable of suppressing tumor growth and that the LDH gene is critical for tumorigenesis. Silencing of Lactate dehydrogenase, A (LDHA), B (LDHB), (LDHL), and hicD genes should be explored to inhibit fermentative glycolysis yielding lactic acid as the by-product. More studies are necessary for a solid understanding of this topic so that LAB and their corresponding lactic acid by-products do not have more adverse effects than their widely touted positive outcomes in CRC management.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary.
| | | | - Tímea Varjas
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Ferenc Budán
- University of Pẻcs, Medical School, Institute of Transdisciplinary Discoveries, City of Pẻcs, Hungary; University of Pécs, Medical School, Institute of Physiology, City of Pécs, Hungary
| | - Afshin Zand
- University of Pẻcs, Medical School, Department of Public Health Medicine, City of Pẻcs, Hungary
| | - Imre Bodnar
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, City of Pẻcs, Hungary
| | | |
Collapse
|
31
|
Hu S, Ottemann KM. Helicobacter pylori initiates successful gastric colonization by utilizing L-lactate to promote complement resistance. Nat Commun 2023; 14:1695. [PMID: 36973281 PMCID: PMC10042806 DOI: 10.1038/s41467-023-37160-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The complement system has long been appreciated for its role in bloodborne infections, but its activities in other places, including the gastrointestinal tract, remain elusive. Here, we report that complement restricts gastric infection by the pathogen Helicobacter pylori. This bacterium colonized complement-deficient mice to higher levels than wild-type counterparts, particularly in the gastric corpus region. H. pylori uses uptake of the host molecule L-lactate to create a complement-resistant state that relies on blocking the deposition of the active complement C4b component on H. pylori's surface. H. pylori mutants unable to achieve this complement-resistant state have a significant mouse colonization defect that is largely corrected by mutational removal of complement. This work highlights a previously unknown role for complement in the stomach, and has revealed an unrecognized mechanism for microbial-derived complement resistance.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
32
|
Yavari B, Athari SS, Omidi Y, Jalali A, Najafi R. EpCAM aptamer activated 5-FU-loaded PLGA nanoparticles in CRC treatment; in vitro and in vivo study. J Drug Target 2023; 31:296-309. [PMID: 36398476 DOI: 10.1080/1061186x.2022.2148679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, epithelial cell adhesion molecule (EpCAM) aptamer-activated nanoparticles (Ap-NPs) were synthesised to enhance treatment efficiency in colorectal cancer (CRC). PLGA [poly(d, l-lactide-co-glycolide)] copolymer was fabricated by conjugation of COOH-PEG-NH2 to PLGA-COOH through an EDC/NHS-mediated chemistry. Afterwards, 5-fluorouracil-loaded (FU) nanoparticles were prepared using the water/oil/water double emulsion solvent evaporation method. The in vitro cytotoxicity of formulations was evaluated using the MTT assay in HCT-116, CT-26 and HEK-293 cell lines. For in vivo study, tumour-bearing BALB/c mice were established by subcutaneous injection of CT-26 cell line. The results indicated that fabricated AP-FU-NPs had 101 nm size with a spherical surface, relatively homogeneously and, satisfactory encapsulation efficiency (83.93%). In vitro experiments revealed that Ap-FU-NPs had a superior in vitro cytotoxicity than both FU-NPs and free 5-FU in CT-26 and HCT-116 cells but, were significantly low toxic against HEK-293 cells relative to free 5-FU. Furthermore, in vivo results showed no significant haemolytic effect, hepatic and renal injury, or weight loss. After treatment of various animal groups with formulations, notable tumour growth delay was observed following the order: Ap-FU-NPs < FU-NPs < 5-FU < PBS. The results suggest that AP-FU-NPs could be an effective and promising carrier for 5-FU delivery to the EpCAM overexpressing CRC cells.
Collapse
Affiliation(s)
- Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Akram Jalali
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Zhang L, Liu Z, Yu L, Peng W, Chen Y, Zhang S. Ultrasound-enhanced cascade chemodynamic tumor nanotherapy with lactic acid-enabled hydrogen peroxide self-production. Biomater Sci 2023; 11:1486-1498. [PMID: 36602180 DOI: 10.1039/d2bm01267g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemodynamic therapy (CDT) is an effective therapeutic modality for cancer treatment with the action of a catalytic Fenton-like chemoreactive process. To furnish sufficient hydrogen peroxide (H2O2) for CDT, catalysts similar to superoxide dismutase are designed to be in cooperation with nanoplatforms. In this work, we rationally integrate lactate oxidase (LOD) with ultrasmall superparamagnetic iron oxide nanoparticles (USPION) to achieve high efficiency of the cascade Fenton reaction for efficient tumor therapy. During the sequential reaction, LOD converts lactic acid into H2O2 and pyruvate (PA) in situ, and then USPION with peroxidase-like activity generates large amounts of toxic hydroxyl radicals (˙OH) under the action of H2O2. Moreover, the reaction effectively utilizes the excess lactic acid of the tumor microenvironment (TME) as a new target of cancer treatment. To further achieve high-performance tumor treatment, ultrasound has been introduced for augmenting this specific chemoreactive tumor therapy, which can affect cancer cells mainly through sonoporation, cavitation, and thermal effect. With the effects of ultrasound irradiation, this work has constructed an efficient oncology treatment system for tumors. Moreover, the presence of USPION is highly desirable for contrast-enhanced T1-weighted MRI for monitoring the therapeutic process of cancer in real time.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Institute of Medical Imaging, Shanghai 200032, P. R. China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences Shanghai University, Shanghai 200444, P. R. China.
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences Shanghai University, Shanghai 200444, P. R. China.
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.,Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
| |
Collapse
|
34
|
Dowaraka-Persad B, Neergheen VS. Mushroom-Derived Compounds as Metabolic Modulators in Cancer. Molecules 2023; 28:1441. [PMID: 36771106 PMCID: PMC9920867 DOI: 10.3390/molecules28031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer is responsible for lifelong disability and decreased quality of life. Cancer-associated changes in metabolism, in particular carbohydrate, lipid, and protein, offer a new paradigm of metabolic hits. Hence, targeting the latter, as well as related cross-linked signalling pathways, can reverse the malignant phenotype of transformed cells. The systemic toxicity and pharmacokinetic limitations of existing drugs prompt the discovery of multi-targeted and safe compounds from natural products. Mushrooms possess biological activities relevant to disease-fighting and to the prevention of cancer. They have a long-standing tradition of use in ethnomedicine and have been included as an adjunct therapy during and after oncological care. Mushroom-derived compounds have also been reported to target the key signature of cancer cells in in vitro and in vivo studies. The identification of metabolic pathways whose inhibition selectively affects cancer cells appears as an interesting approach to halting cell proliferation. For instance, panepoxydone exerted protective mechanisms against breast cancer initiation and progression by suppressing lactate dehydrogenase A expression levels and reinducing lactate dehydrogenase B expression levels. This further led to the accumulation of pyruvate, the activation of the electron transport chain, and increased levels of reactive oxygen species, which eventually triggered mitochondrial apoptosis in the breast cancer cells. Furthermore, the inhibition of hexokinase 2 by neoalbaconol induced selective cytotoxicity against nasopharyngeal carcinoma cell lines, and these effects were also observed in mouse models. Finally, GL22 inhibited hepatic tumour growth by downregulating the mRNA levels of fatty acid-binding proteins and blocking fatty acid transport and impairing cardiolipin biosynthesis. The present review, therefore, will highlight how the metabolites isolated from mushrooms can target potential biomarkers in metabolic reprogramming.
Collapse
Affiliation(s)
- Bhoomika Dowaraka-Persad
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
35
|
Akl MG, Widenmaier SB. Immunometabolic factors contributing to obesity-linked hepatocellular carcinoma. Front Cell Dev Biol 2023; 10:1089124. [PMID: 36712976 PMCID: PMC9877434 DOI: 10.3389/fcell.2022.1089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.
Collapse
Affiliation(s)
- May G. Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, University of Alexandria, Alexandria, Egypt
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
36
|
Identification and Validation of a Novel Glycolysis-Related Gene Signature for Predicting the Prognosis and Therapeutic Response in Triple-Negative Breast Cancer. Adv Ther 2023; 40:310-330. [PMID: 36316558 DOI: 10.1007/s12325-022-02330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A high malignancy rate and poor prognosis are common problems with triple-negative breast cancer (TNBC). There is increasing evidence that glycolysis plays vital roles in tumorigenesis, tumor invasion, immune evasion, chemoresistance, and metastasis. However, a comprehensive analysis of the diagnostic and prognostic significance of glycolysis in TNBC is lacking. METHODS Transcriptomic and clinical data of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, respectively. Glycolysis-related genes (GRGs) were collected from the Molecular Signatures Database (MSigDB). Differential comparative analysis was performed to obtain the differentially expressed (DE)-GRGs associated with TNBC. Based on the DE-GRGs, a glycolysis-related risk signature was established using Least Absolute Shrinkage and Selector Operation (LASSO) and multivariable Cox regression analyses. The prognostic value, tumor microenvironment, mutation status, and chemotherapy response of different risk groups were analyzed. An independent cohort from the METABRIC database was used for external validation. Furthermore, the expression patterns of five genes derived from the prognostic model were validated by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS The glycolysis-related prognostic signature included five genes (IFNG, ACSS2, IRS2, GFUS, and GAL3ST1) and predicted the prognosis of TNBC patients independent of clinical factors (p < 0.05). Patients were divided into high- and low-risk groups based on the median risk score. Compared to low-risk TNBC patients, high-risk patients had significantly decreased overall survival (HR = 2.718, p < 0.001). Receiver operating characteristic and calibration curves demonstrated that the model had high performance in terms of predicting survival and risk stratification. The results remained consistent after external verification. Additionally, the tumor immune microenvironment significantly differed between the risk groups. Low-risk TNBC patients had a better immunotherapy response than high-risk patients. High-risk TNBC patients with a poor prognosis may benefit from targeted therapy. CONCLUSIONS This study developed a novel glycolysis and prognosis-related (GRP) signature based on GRGs to predict the prognosis of TNBC patients, and may aid clinical decision-making for these patients.
Collapse
|
37
|
High-Dose Intravenous Ascorbate in Sepsis, a Pro-Oxidant Enhanced Microbicidal Activity and the Effect on Neutrophil Functions. Biomedicines 2022; 11:biomedicines11010051. [PMID: 36672559 PMCID: PMC9855518 DOI: 10.3390/biomedicines11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vitamin C (ascorbic acid), a water-soluble essential vitamin, is well-known as an antioxidant and an essential substrate for several neutrophil functions. Because of (i) the importance of neutrophils in microbial control and (ii) the relatively low vitamin C level in neutrophils and in plasma during stress, vitamin C has been studied in sepsis (a life-threatening organ dysfunction from severe infection). Surprisingly, the supraphysiologic blood level of vitamin C (higher than 5 mM) after the high-dose intravenous vitamin C (HDIVC) for 4 days possibly induces the pro-oxidant effect in the extracellular space. As such, HDIVC demonstrates beneficial effects in sepsis which might be due to the impacts on an enhanced microbicidal activity through the improved activity indirectly via enhanced neutrophil functions and directly from the extracellular pro-oxidant effect on the organismal membrane. The concentration-related vitamin C properties are also observed in the neutrophil extracellular traps (NETs) formation as ascorbate inhibits NETs at 1 mM (or less) but facilitates NETs at 5 mM (or higher) concentration. The longer duration of HDIVC administration might be harmful in sepsis because NETs and pro-oxidants are partly responsible for sepsis-induced injuries, despite the possible microbicidal benefit. Despite the negative results in several randomized control trials, the short course HDIVC might be interesting to use in some selected groups, such as against anti-biotic resistant organisms. More studies on the proper use of vitamin C, a low-cost and widely available drug, in sepsis are warranted.
Collapse
|
38
|
Bonelli J, Velasco-de Andrés M, Isidro N, Bayó C, Chumillas S, Carrillo-Serradell L, Casadó-Llombart S, Mok C, Benítez-Ribas D, Lozano F, Rocas J, Marchán V. Novel Tumor-Targeted Self-Nanostructured and Compartmentalized Water-in-Oil-in-Water Polyurethane-Polyurea Nanocapsules for Cancer Theragnosis. Pharmaceutics 2022; 15:pharmaceutics15010058. [PMID: 36678687 PMCID: PMC9862617 DOI: 10.3390/pharmaceutics15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Neus Isidro
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Cristina Bayó
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Laura Carrillo-Serradell
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Cheryl Mok
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona (UB), Villarroel 170, E-08036 Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
39
|
Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. Int J Nanomedicine 2022; 17:6131-6155. [PMID: 36514378 PMCID: PMC9741821 DOI: 10.2147/ijn.s386037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-cancer conventional chemotherapeutic drugs novel formula progress, nowadays, uses nano technology for targeted drug delivery, specifically tailored to overcome therapeutic agents' delivery challenges. Polymer drug delivery systems (DDS) play a crucial role in minimizing off-target side effects arising when using standard cytotoxic drugs. Using nano-formula for targeted localized action, permits using larger effective cytotoxic doses on a single special spot, that can seriously cause harm if it was administered systemically. Therefore, various nanoparticles (NPs) specifically have attached groups for targeting capabilities, not seen in bulk materials, which then need activation. In this review, we will present a simple innovative, illustrative, in a cartoon-way, enumeration of NP anti-cancer drug targeting delivery system activation-types. Area(s) covered in this review are the mechanisms of various NP activation techniques.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Georgette Eskander
- Faculty of Pharmacy, Ain Shams University, Postgraduate Student, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
40
|
Papadaki S, Magklara A. Regulation of Metabolic Plasticity in Cancer Stem Cells and Implications in Cancer Therapy. Cancers (Basel) 2022; 14:5912. [PMID: 36497394 PMCID: PMC9741285 DOI: 10.3390/cancers14235912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells with self-renewal capacity, have been associated with tumor initiation, progression, and therapy resistance. While the bulk of tumor cells mainly use glycolysis for energy production, CSCs have gained attention for their ability to switch between glycolysis and oxidative phosphorylation, depending on their energy needs and stimuli from their microenvironment. This metabolic plasticity is mediated by signaling pathways that are also implicated in the regulation of CSC properties, such as the Wnt/β-catenin, Notch, and Hippo networks. Two other stemness-associated processes, autophagy and hypoxia, seem to play a role in the metabolic switching of CSCs as well. Importantly, accumulating evidence has linked the metabolic plasticity of CSCs to their increased resistance to treatment. In this review, we summarize the metabolic signatures of CSCs and the pathways that regulate them; we especially highlight research data that demonstrate the metabolic adaptability of these cells and their role in stemness and therapy resistance. As the development of drug resistance is a major challenge for successful cancer treatment, the potential of specific elimination of CSCs through targeting their metabolism is of great interest and it is particularly examined.
Collapse
Affiliation(s)
- Styliani Papadaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki Magklara
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute–Foundation for Research and Technology, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
41
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022; 13:1056622. [PMID: 36479131 PMCID: PMC9720167 DOI: 10.3389/fimmu.2022.1056622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.
Collapse
|
43
|
Precise delivery of doxorubicin and imiquimod through pH-responsive tumor microenvironment-active targeting micelles for chemo- and immunotherapy. Mater Today Bio 2022; 17:100482. [DOI: 10.1016/j.mtbio.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
44
|
Zhou Y, Gu H, Shao B, Zhang S, Pall H, Peixoto RD, Mok SRS, Zhu G. Glycolysis-related gene dihydrolipoamide acetyltransferase promotes poor prognosis in hepatocellular carcinoma through the Wnt/β-catenin and PI3K/Akt signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1240. [PMID: 36544660 PMCID: PMC9761179 DOI: 10.21037/atm-22-5272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Background Recent research suggests that dihydrolipoamide acetyltransferase (DLAT), which is a copper-induced cell death-related gene, is involved in multiple biological events in tumors. This study sought to investigate the relationship between DLAT and hepatocellular carcinoma (HCC). Methods In the Cancer Genome Atlas (TCGA) database, we first identified the differentially expressed gene (i.e., DLAT), then confirmed DLAT expression, and found a link between it and the prognosis of HCC patients. An internal validation nomogram was built based on a multivariate Cox regression analysis. Data from the Tumor Immune Estimation Resource (TIMER) database was used to examine the association between DLT and immunological cells. A gene set enrichment analysis (GSEA) was conducted to investigate the probable mechanism of action. Finally, in vitro cytological research was conducted to further examin the involvement of DLAT in HCC-related unfavorable biological events. Results The database screenings showed that DLAT was a differentially expressed molecule; that is, DLAT was more highly expressed in the cancer tissues than normal tissues. TCGA results and Kaplan-Meier-plotter data sets showed that HCC patients with reduced DLAT expression had greater disease-specific survival (DSS), overall survival (OS), and progression-free interval (PFI). The prediction model had a concordance index of 0.659 (0.614-0.704), which indicates high accuracy. According to the TIMER database, tumor cells in the HCC microenvironment may be able to bypass the immune system due to the expression of DLAT. The in vitro cytological tests showed that DLAT knockdown significantly decreased the proliferation and invasion of the HCC cells. It also inhibited the activity of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and Wnt/β-catenin signaling pathways. Conclusions Decreased DLAT expression significantly prolongs the OS, PFI, and DSS of HCC patients. DLAT may be employed as a new predictive biomarker for HCC, and may be linked to the immune system in HCC patients. The tumor microenvironment (TME) may have a significant effect on the ability of tumor cells to evade the immune system. The PI3K/Akt and Wnt/β-catenin signaling pathways may affect the prognosis of HCC by interfering with DLAT. Given these findings, HCC may be an ideal target for the development of anti-cancer therapies.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Hepatobiliary Surgery, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China;,Southeast University School of Medicine, Nanjing, China
| | - Haijuan Gu
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Bingfeng Shao
- Department of Hepatobiliary Surgery, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Suqing Zhang
- Department of Hepatobiliary Surgery, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, China
| | - Harpreet Pall
- Department of Pediatrics, Hackensack Meridian School of Medicine, Hackensack Meridian K. Hovnanian Children’s Hospital, Jersey Shore University Medical Center, Neptune, NJ, USA
| | | | - Shaffer R. S. Mok
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Guodong Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
45
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Transcription profiling of feline mammary carcinomas and derived cell lines reveals biomarkers and drug targets associated with metabolic and cell cycle pathways. Sci Rep 2022; 12:17025. [PMID: 36220861 PMCID: PMC9553959 DOI: 10.1038/s41598-022-20874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular heterogeneity of feline mammary carcinomas (FMCs) represents a prognostic and therapeutic challenge. RNA-Seq-based comparative transcriptomic profiling serves to identify recurrent and exclusive differentially expressed genes (DEGs) across sample types and molecular subtypes. Using mass-parallel RNA-Seq, we identified DEGs and performed comparative function-based analysis across 15 tumours (four basal-like triple-negative [TN], eight normal-like TN, and three luminal B fHER2 negative [LB fHER2-]), two cell lines (CL, TiHo-0906, and TiHo-1403) isolated from the primary tumours (LB fHER2-) of two cats included in this study, and 13 healthy mammary tissue controls. DEGs in tumours were predominantly upregulated; dysregulation of CLs transcriptome was more extensive, including mostly downregulated genes. Cell-cycle and metabolic-related DEGs were upregulated in both tumours and CLs, including therapeutically-targetable cell cycle regulators (e.g. CCNB1, CCNB2, CDK1, CDK4, GTSE1, MCM4, and MCM5), metabolic-related genes (e.g. FADS2 and SLC16A3), heat-shock proteins (e.g. HSPH1, HSP90B1, and HSPA5), genes controlling centrosome disjunction (e.g. RACGAP1 and NEK2), and collagen molecules (e.g. COL2A1). DEGs specifically upregulated in basal-like TN tumours were involved in antigen processing and presentation, in normal-like TN tumours encoded G protein-coupled receptors (GPCRs), and in LB fHER2- tumours were associated with lysosomes, phagosomes, and endosomes formation. Downregulated DEGs in CLs were associated with structural and signalling cell surface components. Hence, our results suggest that upregulation of genes enhancing proliferation and metabolism is a common feature among FMCs and derived CLs. In contrast, the dissimilarities observed in dysregulation of membrane components highlight CLs' disconnection with the tumour microenvironment. Furthermore, recurrent and exclusive DEGs associated with dysregulated pathways might be useful for the development of prognostically and therapeutically-relevant targeted panels.
Collapse
|
47
|
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2211-2234. [PMID: 36053324 DOI: 10.1007/s00432-022-04328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 12/25/2022]
Abstract
Ovarian cancer (OC) is among the most common human malignancies and the first cause of deaths among gynecologic cancers. Early diagnosis can help improving prognosis in those patients, and accordingly exploring novel molecular mechanisms may lead to find therapeutic targets. Circular RNAs (circRNAs) comprise a group of non-coding RNAs in multicellular organisms, which are identified with characteristic circular structure. CircRNAs have been found with substantial functions in regulating gene expression through interacting with RNA-binding proteins, targeting microRNAs, and transcriptional regulation. They have been found to be involved in regulating several critical processes such as cell growth, and death, organ development, signal transduction, and tumorigenesis. Accordingly, circRNAs have been implicated in a number of human diseases including malignancies. They are particularly reported to contribute to several hallmarks of cancer leading to cancer development and progression, although a number also are described with tumor-suppressor function. In OC, circRNAs are linked to regulation of cell growth, invasiveness, metastasis, angiogenesis, and chemoresistance. Notably, clinical studies also have shown potentials in diagnosis, prediction of prognosis, and therapeutic targets for OC. In this review, I have an overview to the putative mechanisms, and functions of circRNAs in regulating OC pathogenesis in addition to their clinical potentials.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomed Pharmacother 2022; 153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
|
49
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
50
|
Kasparkova J, Kostrhunova H, Novohradsky V, Ma L, Zhu G, Milaeva ER, Shtill AA, Vinck R, Gasser G, Brabec V, Nazarov AA. Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug? METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6618656. [PMID: 35759404 DOI: 10.1093/mtomcs/mfac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 μM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Lili Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Elena R Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexender A Shtill
- Blokhin Cancer Center, Russian Academy of Medical Sciences, 115478 Moscow, Russian Federation
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|