In-Silico Drug Designing of Spike Receptor with Its ACE2 Receptor and Nsp10/Nsp16 MTase Complex Against SARS-CoV-2.
Int J Pept Res Ther 2021;
27:1633-1640. [PMID:
33746660 PMCID:
PMC7966892 DOI:
10.1007/s10989-021-10196-x]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
The realm Riboviria constitutes Coronaviruses, which led to the emergence of the pandemic COVID 19 in the twenty-first century affected millions of lives. At present, the management of COVID 19 largely depends on antiviral therapeutics along with the anti-inflammatory drug. The vaccine is under the final clinical phase, and emergency use is available. We aim at ACE2 and Nsp10/Nsp16 MTase as potential drug candidate in COVID 19 management in the present work. For drug designing, various computational simulation strategies have been employed like Swiss-Model, Hawk Dock, HDOCK, py Dock, and PockDrug for homology modeling, binding energies of the molecule with a target, simulate the conformation and binding poses, statistics of protein lock with target key and drug ability, respectively. The current in-silico screening depicts that the spike protein receptor is complementary to the target when bound to each other and forms a stable complex. The MMGBSA free energy binding property of receptor and ligand is critical. The intermolecular Statistics with the target Nsp10/Nsp16 MTase complex are plausible. We have also observed a high-affinity pocket binding site with the target. Therefore, the favorable intermolecular interactions and Physico-chemical properties emanate as a drug candidate treating COVID-19. This study has approached computational tools to analyze the conformation, binding affinity, and drug ability of receptor-ligand. Thus, the spike receptor with its ACE2 receptor with Nsp10/Nsp16 MTase complex would be a potent drug against SARS CoV-2 and can cure the infection as per consensus scoring.
Collapse