1
|
Yu X, Yu Z, Chen X, Liu M, Yang F, Cheung KCP. Research Progress on the Relationship Between Artificial Sweeteners and Breast Cancer. Biomedicines 2024; 12:2871. [PMCID: PMC11673533 DOI: 10.3390/biomedicines12122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Artificial sweeteners, as low-calorie sugar substitutes, have attracted much attention in recent years, especially in terms of their potential health effects. Although they add almost no calories, studies have shown that artificial sweeteners may affect metabolism by stimulating insulin secretion and changing the intestinal microbiota, increasing the risk of metabolic syndrome and type 2 diabetes. Breast cancer, as the most common cancer in the world, is related to multiple factors such as genetics and hormone levels. The results of studies on artificial sweeteners and breast cancer risk are conflicting, with some showing a positive correlation between the two and others failing to confirm it. Differences in study design, participant characteristics, and the types of sweeteners have led to this ambiguity. Although some studies have focused on mechanisms such as hormone disorders, insulin response, and changes in the intestinal microbiota, further exploration is needed to establish a causal relationship. Our review aims to comprehensively analyze the potential association between artificial sweeteners and breast cancer and its mechanisms, as well as encourage future studies to reveal its long-term health effects.
Collapse
Affiliation(s)
- Xianqiang Yu
- Qingdao Municipal Hospital, Qingdao 266005, China;
| | - Zeng Yu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Xiaoli Chen
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Meijun Liu
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| | - Feng Yang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kenneth C. P. Cheung
- Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (Z.Y.); (X.C.); (M.L.)
| |
Collapse
|
2
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
3
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
5
|
Furuta S. Microbiome-Stealth Regulator of Breast Homeostasis and Cancer Metastasis. Cancers (Basel) 2024; 16:3040. [PMID: 39272898 PMCID: PMC11394247 DOI: 10.3390/cancers16173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cumulative evidence attests to the essential roles of commensal microbes in the physiology of hosts. Although the microbiome has been a major research subject since the time of Luis Pasteur and William Russell over 140 years ago, recent findings that certain intracellular bacteria contribute to the pathophysiology of healthy vs. diseased tissues have brought the field of the microbiome to a new era of investigation. Particularly, in the field of breast cancer research, breast-tumor-resident bacteria are now deemed to be essential players in tumor initiation and progression. This is a resurrection of Russel's bacterial cause of cancer theory, which was in fact abandoned over 100 years ago. This review will introduce some of the recent findings that exemplify the roles of breast-tumor-resident microbes in breast carcinogenesis and metastasis and provide mechanistic explanations for these phenomena. Such information would be able to justify the utility of breast-tumor-resident microbes as biomarkers for disease progression and therapeutic targets.
Collapse
Affiliation(s)
- Saori Furuta
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Sun J. Poking at probiotic mechanisms and microbial implications in cancer prevention and treatment. Gut 2024; 73:1408-1409. [PMID: 38889962 DOI: 10.1136/gutjnl-2024-332560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Jun Sun
- University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
- UIC cancer Center, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Naik A, Godbole M. Elucidating the Intricate Roles of Gut and Breast Microbiomes in Breast Cancer Metastasis to the Bone. Cancer Rep (Hoboken) 2024; 7:e70005. [PMID: 39188104 PMCID: PMC11347752 DOI: 10.1002/cnr2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most predominant and heterogeneous cancer in women. Moreover, breast cancer has a high prevalence to metastasize to distant organs, such as the brain, lungs, and bones. Patients with breast cancer metastasis to the bones have poor overall and relapse-free survival. Moreover, treatment using chemotherapy and immunotherapy is ineffective in preventing or reducing cancer metastasis. RECENT FINDINGS Microorganisms residing in the gut and breast, termed as the resident microbiome, have a significant influence on the formation and progression of breast cancer. Recent studies have identified some microorganisms that induce breast cancer metastasis to the bone. These organisms utilize multiple mechanisms, including induction of epithelial-mesenchymal transition, steroid hormone metabolism, immune modification, bone remodeling, and secretion of microbial products that alter tumor microenvironment, and enhance propensity of breast cancer cells to metastasize. However, their involvement makes these microorganisms suitable as novel therapeutic targets. Thus, studies are underway to prevent and reduce breast cancer metastasis to distant organs, including the bone, using chemotherapeutic or immunotherapeutic drugs, along with probiotics, antibiotics or fecal microbiota transplantation. CONCLUSIONS The present review describes association of gut and breast microbiomes with bone metastases. We have elaborated on the mechanisms utilized by breast and gut microbiomes that induce breast cancer metastasis, especially to the bone. The review also highlights the current treatment options that may target both the microbiomes for preventing or reducing breast cancer metastases. Finally, we have specified the necessity of maintaining a diverse gut microbiome to prevent dysbiosis, which otherwise may induce breast carcinogenesis and metastasis especially to the bone. The review may facilitate more detailed investigations of the causal associations between these microbiomes and bone metastases. Moreover, the potential treatment options described in the review may promote discussions and research on the modes to improve survival of patients with breast cancer by targeting the gut and breast microbiomes.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
8
|
Lin S, Zhou Z, Qi Y, Chen J, Xu G, Shi Y, Yu Z, Li M, Chai K. Depression promotes breast cancer progression by regulating amino acid neurotransmitter metabolism and gut microbial disturbance. Clin Transl Oncol 2024; 26:1407-1418. [PMID: 38194019 DOI: 10.1007/s12094-023-03367-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most prevalent type of cancer and has the highest mortality among women worldwide. BC patients have a high risk of depression, which has been recognized as an independent factor in the progression of BC. However, the potential mechanism has not been clearly demonstrated. METHODS To explore the correlation and mechanism between depression and BC progression, we induced depression and tumor in BC mouse models. Depression was induced via chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS). Amino acid (AA) neurotransmitter-targeted metabonomics and gut microbiota 16S rDNA gene sequencing were employed in the mouse model after evaluation with behavioral tests and pathological analysis. RESULTS The tumors in cancer-depression (CD) mice grew faster than those in cancer (CA) mice, and lung metastasis was observed in CD mice. Metabonomics revealed that the neurotransmitters and plasma AAs in CD mice were dysregulated, namely the tyrosine and tryptophan pathways and monoamine neurotransmitters in the brain. Gut microbiota analysis displayed an increased ratio of Firmicutes/Bacteroides. In detail, the abundance of f_Lachnospiraceae and s_Lachnospiraceae increased, whereas the abundance of o_Bacteroidales and s_Bacteroides_caecimuris decreased. Moreover, the gut microbiota was more closely associated with AA neurotransmitters than with plasma AA. CONCLUSION Depression promoted the progression of BC by modulating the abundance of s_Lachnospiraceae and s_Bacteroides_caecimuris, which affected the metabolism of monoamine neurotransmitters in the brain and AA in the blood.
Collapse
Affiliation(s)
- Sisi Lin
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhe Zhou
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yiming Qi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Jiabing Chen
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Guoshu Xu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Yunfu Shi
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Zhihong Yu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Kequn Chai
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
9
|
Qin W, Li J, Gao N, Kong X, Guo L, Chen Y, Huang L, Chen X, Qi F. Multiomics-based molecular subtyping based on the commensal microbiome predicts molecular characteristics and the therapeutic response in breast cancer. Mol Cancer 2024; 23:99. [PMID: 38730464 PMCID: PMC11083817 DOI: 10.1186/s12943-024-02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024] Open
Abstract
The gut microbiota has been demonstrated to be correlated with the clinical phenotypes of diseases, including cancers. However, there are few studies on clinical subtyping based on the gut microbiota, especially in breast cancer (BC) patients. Here, using machine learning methods, we analysed the gut microbiota of BC, colorectal cancer (CRC), and gastric cancer (GC) patients to identify their shared metabolic pathways and the importance of these pathways in cancer development. Based on the gut microbiota-related metabolic pathways, human gene expression profile and patient prognosis, we established a novel BC subtyping system and identified a subtype called "challenging BC". Tumours with this subtype have more genetic mutations and a more complex immune environment than those of other subtypes. A score index was proposed for in-depth analysis and showed a significant negative correlation with patient prognosis. Notably, activation of the TPK1-FOXP3-mediated Hedgehog signalling pathway and TPK1-ITGAE-mediated mTOR signalling pathway was linked to poor prognosis in "challenging BC" patients with high scores, as validated in a patient-derived xenograft (PDX) model. Furthermore, our subtyping system and score index are effective predictors of the response to current neoadjuvant therapy regimens, with the score index significantly negatively correlated with both treatment efficacy and the number of immune cells. Therefore, our findings provide valuable insights into predicting molecular characteristics and treatment responses in "challenging BC" patients.
Collapse
Affiliation(s)
- Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Liang Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
- Department of Breast Surgery, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China.
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, PR China.
| | - Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
10
|
Zhu J, Wang Y, Li Y, Chen Y, Lu F. Risk factors of post-operative diarrhoea in patients with pancreatic cancer after neoadjuvant chemotherapy: A retrospective cohort study. J Clin Nurs 2024; 33:1777-1785. [PMID: 38426618 DOI: 10.1111/jocn.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Post-operative diarrhoea is a common adverse event after pancreatic surgery. While the risk factors for this condition have been identified, the increasing trend of administering chemotherapy before surgery might change these factors. This study aimed to identify the risk factors of post-operative diarrhoea in patients with pancreatic ductal adenocarcinoma (PDAC) who underwent neoadjuvant chemotherapy. DESIGN A retrospective cohort study. METHODS Patients who underwent neoadjuvant chemotherapy and pancreatectomy because of PDAC between 2021 and 2023 were included. The preoperative characteristics of, operative details of and post-operative outcomes in patients with and without post-operative diarrhoea were collected and compared. The independent risk factors of post-operative diarrhoea were identified using logistic regression analysis. STROBE checklist was used. RESULTS Post-operative diarrhoea occurred in 65 out of 145 (44.8%) patients during hospitalization. Elevated white blood cell count, advanced tumour stage, and late abdominal drain removal were independent risk factors for post-operative diarrhoea (p < .001, p = .006 and p = .009, respectively). CONCLUSIONS Some perioperative factors influence post-operative diarrhoea in patients who undergo neoadjuvant chemotherapy. More attention should be paid to patients at a higher risk of post-operative diarrhoea, with an emphasis on high-quality management for these patients.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Nursing, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Li
- Department of Nursing, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingjie Chen
- Department of Nursing, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyan Lu
- Department of Nursing, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13:276. [PMID: 38668232 PMCID: PMC11053856 DOI: 10.3390/pathogens13040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many human diseases, such as skin infection, food poisoning, endocarditis, and sepsis. These diseases can be minor infections or life-threatening, requiring complex medical management resulting in substantial healthcare costs. Meanwhile, as the critically ignored "organ," the intestinal microbiome greatly impacts physiological health, not only in gastrointestinal diseases but also in disorders beyond the gut. However, the correlation between S. aureus infection and intestinal microbial homeostasis is largely unknown. Here, we summarized the recent progress in understanding S. aureus infections and their interactions with the microbiome in the intestine. These summarizations will help us understand the mechanisms behind these infections and crosstalk and the challenges we are facing now, which could contribute to preventing S. aureus infections, effective treatment investigation, and vaccine development.
Collapse
Affiliation(s)
- Aotong Liu
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Wanqing Hong
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- School of Chemistry & Chemical Engineering and Materials Sciences, Shandong Normal University, Jinan 250061, China
| | - Jilei Zhang
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
12
|
Lai H, Yan L, Wang Y, Mei Y, Huang Y, Zeng X, Ge L, Zhao J, Zhu Y, Huang Q, Yang M, Zhao N. Effects of substrates and suppliers of ingredients on microbial community and metabolites of traditional non-salt Suancai. MICROBIOME RESEARCH REPORTS 2024; 3:21. [PMID: 38841414 PMCID: PMC11149085 DOI: 10.20517/mrr.2023.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024]
Abstract
Aim: Non-salt Suancai is an acidic fermented vegetable consumed by the Chinese Yi ethnic group. Traditionally, it is produced by fermentation without salt in a cold environment. The present study aimed to investigate the metabolite and microbial characteristics, and the effects of substrates/suppliers ingredients on non-salt Suancai. Methods: A simulated fermentation system of non-salt Suancai was constructed by using different substrates/suppliers' ingredients. The coherence and differential detection of the metabolite and microbial characteristics were done through non-target metabolomic and metagenomic analysis. Results: Lactic acid was the predominant organic acid across all samples. The enumeration of the Lactic acid bacteria showed no discernible differences between study groups, but that of yeast was highest in the mustard leaf stem (Brassica juncea var. latipa). The three major biological metabolic pathways were metabolism, environmental information, and genetic information processing based on the KEGG database. The metabolite diversity varied with the substrate/supplier of ingredients based on the PLS-DA plot. Lactiplantibacillus, Leuconostoc, and Lactococcus were prevalent in all samples but differentially. The microbial diversity and richness varied significantly, with 36~291 species being identified. Among the various substrates collected from the same supplier, 29, 59, and 29 differential species were identified based on LEfSe [linear discriminant analysis (LDA) > 2, P < 0.05]. Leuconostoc citreum, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactiplantibacillus plantarum, and Leuconostoc lactis were likely to be used as the species to discriminate samples collected from different suppliers. Conclusions: This research contributed to the exploration of microbial and metabolite characteristics behind the ingredient restriction of non-salt Suancai using traditional technology.
Collapse
Affiliation(s)
- Haimei Lai
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang College, Xichang 615000, Sichuan, China
| | - Yali Wang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Yuan Mei
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Yuli Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Xueqing Zeng
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yongqing Zhu
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Qiaolian Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Menglu Yang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
| |
Collapse
|
13
|
Mahno NE, Tay DD, Khalid NS, Yassim ASM, Alias NS, Termizi SA, Kasian J, Mokhtar NM, Ahmad HF. The Relationship Between Gut Microbiome Estrobolome and Breast Cancer: A Systematic Review of Current Evidences. Indian J Microbiol 2024; 64:1-19. [PMID: 38468730 PMCID: PMC10924874 DOI: 10.1007/s12088-023-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is the most frequent kind of cancer and the second leading cause of mortality worldwide, behind heart disease. Next-generation sequencing technologies enables for unprecedented enumeration of human resident gut microorganisms, conferring novel insights into the role of the microbiota in health and individuals with breast cancer. A growing body of research on microbial dysbiosis seems to indicate an elevated risk of health complications including cancer. Although several dysbiosis indices have been proposed, their underlying methodology, as well as the cohorts and conditions of breast cancer patients are significantly different. To date, these indices have not yet been thoroughly reviewed especially when it comes to researching the estrogen-gut microbiota axis. Instead of providing a thorough rating of the most effective diversity measurements, the current work aims to be used to assess the relevance of each study's findings across the demographic data, different subtypes, and stages of breast cancer, and tie them to the estrobolome, which controls the amount of oestrogen that circulates through humans. This review will cover 11 studies which will go into a detailed discussion for the microbiome results of the mentioned studies, leaving to the user the final choice of the most suited indices as well as highlight the observed bacteria found to be related to the estrobolome in hopes of giving the reader a better understanding for the biological cross-talk between gut microbiome and breast cancer progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01135-z.
Collapse
Affiliation(s)
- Noor Ezmas Mahno
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Darren Dean Tay
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
| | - Nurul Syazwani Khalid
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Aini Syahida Mat Yassim
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Nor Syuhada Alias
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Sahrol Azmi Termizi
- Division of Disease Control, Ministry of Health Malaysia, 62590 Putrajaya, Malaysia
| | - Junaini Kasian
- Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Lebuhraya Persiaran Tun Khalil Yaakob, University Malaysia Pahang Al Sultan Abdullah, 26300 Kuantan, Pahang Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Yu C, Xu J, Xu S, Huang Y, Tang L, Zeng X, Yu T, Chen W, Sun Z. Appraising the causal association between Crohn's disease and breast cancer: a Mendelian randomization study. Front Oncol 2024; 13:1275913. [PMID: 38406175 PMCID: PMC10884953 DOI: 10.3389/fonc.2023.1275913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024] Open
Abstract
Background Previous research has indicated that there may be a link between Crohn's disease (CD) and breast cancer (BC), but the causality remains unclear. This study aimed to investigate the causal association between CD and BC using Mendelian randomization (MR) analysis. Methods The summary data for CD (5,956 cases/14,927 controls) was obtained from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). And the summary data for BC (122,977 cases/105,974 controls) was extracted from the Breast Cancer Association Consortium (BCAC). Based on the estrogen receptor status, the cases were classified into two subtypes: estrogen receptor-positive (ER+) BC and estrogen receptor-negative (ER-) BC. We used the inverse variance weighted method as the primary approach for two-sample MR. MR-PRESSO method was used to rule out outliers. Heterogeneity and pleiotropy tests were carried out to improve the accuracy of results. Additionally, multivariable MR was conducted by adjusting for possible confounders to ensure the stability of the results. Results The two-sample MR indicated that CD increased the risks of overall (OR: 1.020; 95% CI: 1.010-1.031; p=0.000106), ER+ (OR: 1.019; 95%CI: 1.006-1.034; p=0.006) and ER- BC (OR: 1.019; 95%CI: 1.000-1.037; p=0.046) after removal of outliers by MR-PRESSO. This result was reliable in the sensitivity analysis, including Cochran's Q and MR-Egger regression. In multivariate MR analyses, after adjusting for smoking and drinking separately or concurrently, the positive association between CD and the risks of overall and ER+ BC remained, but it disappeared in ER- BC. Furthermore, reverse MR analysis suggested that BC did not have a significant impact on CD risk. Conclusion Our findings provide evidence for a possible positive association between CD and the risk of BC. However, further studies are needed to fully understand the underlying mechanisms and establish a stronger causal relationship.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siyi Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lei Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
15
|
Actis S, Cazzaniga M, Bounous VE, D'Alonzo M, Rosso R, Accomasso F, Minella C, Biglia N. Emerging evidence on the role of breast microbiota on the development of breast cancer in high-risk patients. Carcinogenesis 2023; 44:718-725. [PMID: 37793149 DOI: 10.1093/carcin/bgad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
Cancer is a multi-factorial disease, and the etiology of breast cancer (BC) is due to a combination of both genetic and environmental factors. Breast tissue shows a unique microbiota, Proteobacteria and Firmicutes are the most abundant bacteria in breast tissue, and several studies have shown that the microbiota of healthy breast differs from that of BC. Breast microbiota appears to be correlated with different characteristics of the tumor, and prognostic clinicopathologic features. It also appears that there are subtle differences between the microbial profiles of the healthy control and high-risk patients. Genetic predisposition is an extremely important risk factor for BC. BRCA1/2 germline mutations and Li-Fraumeni syndrome are DNA repair deficiency syndromes inherited as autosomal dominant characters that substantially increase the risk of BC. These syndromes exhibit incomplete penetrance of BC expression in carrier subjects. The action of breast microbiota on carcinogenesis might explain why women with a mutation develop cancer and others do not. Among the potential biological pathways through which the breast microbiota may affect tumorigenesis, the most relevant appear to be DNA damage caused by colibactin and other bacterial-derived genotoxins, β-glucuronidase-mediated estrogen deconjugation and reactivation, and HPV-mediated cancer susceptibility. In conclusion, in patients with a genetic predisposition, an unfavorable breast microbiota may be co-responsible for the onset of BC. Prospectively, the ability to modulate the microbiota may have an impact on disease onset and progression in patients at high risk for BC.
Collapse
Affiliation(s)
- Silvia Actis
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | | | - Valentina Elisabetta Bounous
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Marta D'Alonzo
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Roberta Rosso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Francesca Accomasso
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Carola Minella
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| | - Nicoletta Biglia
- Gynecology and Obstetrics Unit, Department of Surgical Sciences, Mauriziano Umberto I Hospital, University of Turin, 10128 Turin, Italy
| |
Collapse
|
16
|
Jotshi A, Sukla KK, Haque MM, Bose C, Varma B, Koppiker CB, Joshi S, Mishra R. Exploring the human microbiome - A step forward for precision medicine in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1877. [PMID: 37539732 PMCID: PMC10644338 DOI: 10.1002/cnr2.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The second most frequent cancer in the world and the most common malignancy in women is breast cancer. Breast cancer is a significant health concern in India with a high mortality-to-incidence ratio and presentation at a younger age. RECENT FINDINGS Recent studies have identified gut microbiota as a significant factor that can have an influence on the development, treatment, and prognosis of breast cancer. This review article aims to describe the influence of microbial dysbiosis on breast cancer occurrence and the possible interactions between oncobiome and specific breast cancer molecular subtypes. The review further also discusses the role of epigenetics and diet/nutrition in the regulation of the gut and breast microbiome and its association with breast cancer prevention, therapy, and recurrence. Additionally, the recent technological advances in microbiome research, including next-generation sequencing (NGS) technologies, genome sequencing, single-cell sequencing, and microbial metabolomics along with recent advances in artificial intelligence (AI) have also been reviewed. This is an attempt to present a comprehensive status of the microbiome as a key cancer biomarker. CONCLUSION We believe that correlating microbiome and carcinogenesis is important as it can provide insights into the mechanisms by which microbial dysbiosis can influence cancer development and progression, leading to the potential use of the microbiome as a tool for prognostication and personalized therapy.
Collapse
Affiliation(s)
- Asmita Jotshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | | | | | - Chandrani Bose
- Life Sciences R&D, TCS Research, Tata Consultancy Services LimitedPuneIndia
| | - Binuja Varma
- TCS Genomics Lab, Tata Consultancy Services LimitedNew DelhiIndia
| | - C. B. Koppiker
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
- Prashanti Cancer Care Mission, Pune, India and Orchids Breast Health Centre, a PCCM initiativePuneIndia
| | - Sneha Joshi
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| | - Rupa Mishra
- Centre for Translational Cancer Research: A Joint Initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM)PuneIndia
| |
Collapse
|
17
|
Shi Q, Wang J, Zhou M, Zheng R, Zhang X, Liu B. Gut Lactobacillus contribute to the progression of breast cancer by affecting the anti-tumor activities of immune cells in the TME of tumor-bearing mice. Int Immunopharmacol 2023; 124:111039. [PMID: 37862739 DOI: 10.1016/j.intimp.2023.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Studies have proven that gut microbiota dysbiosis may influence the carcinogenesis and outcomes of multiple cancers. However, it is still unclear whether gut microbiota dysbiosis affect the progression of breast cancer, especially triple-negative breast cancer. In the present study, by using gut microbiota dysbiosis murine model established by treatment of mice with streptomycin, we found Lactobacillus and the metabolite-lactic acid are the pivotal factors for 4T1 tumor progression. In fact, streptomycin-treated mice exhibited slower tumor growth, in parallel with less abundance of Lactobacillus in the gut. Supplementation with Lactobacillus resulted in a rapid tumor growth, following a decrease in the expression of mRNAs for anti-tumor-related factors but an increase in the M2 polarization. The elevated percentages of IFN-γ-producing CD4+T cells and CD8+T cells in the tumor microenvironment of streptomycin-treated tumor-bearing mice may be vanished by supplementation of Lactobacillus. It seems likely that lactobacillus-mediated pro-tumor effect is related to the production of lactic acid. A decrease in the levels of lactic acid in the cecal feces and tumor tissues were observed in streptomycin-treated tumor bearing mice. However, supplementation of Lactobacillus can restore streptomycin-reduced concentration of lactic acid in the tumor tissues, suggesting that gut Lactobacillus are the source of lactic acid. Bioinformatics analysis result suggests high concentration of lactic acid in tumor sites may be related to the diminished anti-tumor immunity in the TME. This study reveals a correlation between gut Lactobacillus and tumor progression in a murine 4T1 tumor model, providing experimental evidence for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Xiaoli Zhang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Chapadgaonkar SS, Bajpai SS, Godbole MS. Gut microbiome influences incidence and outcomes of breast cancer by regulating levels and activity of steroid hormones in women. Cancer Rep (Hoboken) 2023; 6:e1847. [PMID: 37311575 PMCID: PMC10644331 DOI: 10.1002/cnr2.1847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Breast cancer, the leading cancer type in women worldwide, is affected by reproductive and nonreproductive factors. Estrogen and progesterone influence the incidence and progression of breast cancer. The microbiome of the gut, a complex organ that plays a vital role in digestion and homeostasis, enhances availability of estrogen and progesterone in the host. Thus, an altered gut microbiome may influence the hormone-induced breast cancer incidence. This review describes the current understanding of the roles of gut microbiome in influencing the incidence and progression of breast cancer, with an emphasis on the microbiome-induced metabolism of estrogen and progesterone. RECENT FINDINGS Microbiome has been recognized as a promising hallmark of cancer. Next-generation sequencing technologies have aided in rapid identification of components of the gut microbiome that are capable of metabolizing estrogen and progesterone. Moreover, studies have indicated a wider role of the gut microbiome in metabolizing chemotherapeutic and hormonal therapy agents and reducing their efficacy in patients with breast cancer, with a predominant effect in postmenopausal women. CONCLUSION The gut microbiome and variations in its composition significantly alter the incidence and therapy outcomes of patients with breast cancer. Thus, a healthy and diverse microbiome is required for better response to anticancer therapies. Finally, the review emphasizes the requirement of studies to elucidate mechanisms that may aid in improving the gut microbiome composition, and hence, survival outcomes of patients with breast cancer.
Collapse
Affiliation(s)
- Shilpa S. Chapadgaonkar
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Srashti S. Bajpai
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
19
|
Desalegn Z, Smith A, Yohannes M, Cao X, Anberber E, Bekuretsion Y, Assefa M, Bauer M, Vetter M, Kantelhardt EJ, Abebe T, Starlard-Davenport A. Human Breast Tissue Microbiota Reveals Unique Microbial Signatures that Correlate with Prognostic Features in Adult Ethiopian Women with Breast Cancer. Cancers (Basel) 2023; 15:4893. [PMID: 37835588 PMCID: PMC10571711 DOI: 10.3390/cancers15194893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer mortality among women in Ethiopia. Overall, women of African ancestry have the highest death toll due to BC compared to other racial/ethnic groups. The cause of the disparity in mortality is unclear. Recently, studies conducted in the United States and other high-income countries highlighted the role of microbial dysbiosis in BC initiation, tumor growth, and treatment outcome. However, the extent to which inter-individual differences in the makeup of microbiota are associated with clinical and histopathological outcomes in Ethiopian women has not been studied. The goal of our study was to profile the microbiome in breast tumor and normal adjacent to tumor (NAT) tissues of the same donor and to identify associations between microbial composition and abundance and clinicopathological factors in Ethiopian women with BC. We identified 14 microbiota genera in breast tumor tissues that were distinct from NAT tissues, of which Sphingobium, Anaerococcus, Corynebacterium, Delftia, and Enhydrobacter were most significantly decreased in breast tumors compared to NAT tissues. Several microbial genera significantly differed by clinicopathological factors in Ethiopian women with BC. Specifically, the genus Burkholderia more strongly correlated with aggressive triple negative (TNBC) and basal-like breast tumors. The genera Alkanindiges, Anoxybacillus, Leifsonia, and Exiguobacterium most strongly correlated with HER2-E tumors. Luminal A and luminal B tumors also correlated with Anoxybacillus but not as strongly as HER2-E tumors. A relatively higher abundance of the genus Citrobacter most significantly correlated with advanced-stage breast tumors compared to early-stage tumors. This is the first study to report an association between breast microbial dysbiosis and clinicopathological factors in Ethiopian women.
Collapse
Affiliation(s)
- Zelalem Desalegn
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Alana Smith
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Meron Yohannes
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- School of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Xueyuan Cao
- Department of Health Promotion and Disease Prevention, College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Endale Anberber
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Martina Vetter
- Department of Gynecology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Eva Johanna Kantelhardt
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- Department of Gynecology, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences Addis Ababa University, Addis Ababa 9086, Ethiopia; (Z.D.); (M.Y.); (T.A.)
- Global Health Working Group, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany;
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
20
|
Walker JN, Hanson BM, Hunter T, Simar SR, Duran Ramirez JM, Obernuefemann CLP, Parikh RP, Tenenbaum MM, Margenthaler JA, Hultgren SJ, Myckatyn TM. A prospective randomized clinical trial to assess antibiotic pocket irrigation on tissue expander breast reconstruction. Microbiol Spectr 2023; 11:e0143023. [PMID: 37754546 PMCID: PMC10581127 DOI: 10.1128/spectrum.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial infection is the most common complication following staged post-mastectomy breast reconstruction initiated with a tissue expander (TE). To limit bacterial infection, antibiotic irrigation of the surgical site is commonly performed despite little high-quality data to support this practice. We performed a prospective randomized control trial to compare the impact of saline irrigation alone to a triple antibiotic irrigation regimen (1 g cefazolin, 80 mg gentamicin, and 50,000 units of bacitracin in 500 mL of saline) for breast implant surgery. The microbiome in breasts with cancer (n = 16) was compared to those without (n = 16), as all patients (n = 16) had unilateral cancers but bilateral mastectomies (n = 32). Biologic and prosthetic specimens procured both at the time of mastectomy and during TE removal months later were analyzed for longitudinal comparison. Outcomes included clinical infection, bacterial abundance, and relative microbiome composition. No patient in either group suffered a reconstructive failure or developed an infection. Triple antibiotic irrigation administered at the time of immediate TE reconstruction did not reduce bacterial abundance or impact microbial diversity relative to saline irrigation at the time of planned exchange. Implanted prosthetic material adopted the microbial composition of the surrounding host tissue. In cancer-naïve breasts, relative to saline, antibiotic irrigation increased bacterial abundance on periprosthetic capsules (P = 0.03) and acellular dermal matrices (P = 0.04) and altered the microbiota on both. These data show that, relative to saline only, the use of triple antibiotic irrigation in TE breast reconstruction does impact the bacterial abundance and diversity of certain biomaterials from cancer-naïve breasts. IMPORTANCE The lifetime risk of breast cancer is ~13% in women and is treated with a mastectomy in ~50% of cases. The majority are reconstructed, usually starting with a tissue expander to help restore the volume for a subsequent permanent breast implant or the women's own tissues. The biopsychosocial benefits of breast reconstruction, though, can be tempered by a high complication rate of at least 7% but over 30% in some women. Bacterial infection is the most common complication, and can lead to treatment delays, patient physical and emotional distress and escalating health care cost. To limit this risk, plastic surgeons have tried a variety of strategies to limit bacterial infection including irrigating the pocket created after removing the breast implant with antibiotic solutions, but good-quality data are scarce. Herein, we study the value of antibiotics in pocket irrigation using a robust randomized clinical trial design and molecular microbiology approaches.
Collapse
Affiliation(s)
- Jennifer N. Walker
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Tayler Hunter
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Shelby R. Simar
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Sciences Center, Houston, Texas, USA
- Division of Infectious Disease, Department of Pediatrics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Jesus M. Duran Ramirez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rajiv P. Parikh
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marissa M. Tenenbaum
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Julie A. Margenthaler
- Division of Surgical Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
21
|
Zhang S, Zhang W, Ren H, Xue R, Wang Z, Wang Z, Lv Q. Mendelian randomization analysis revealed a gut microbiota-mammary axis in breast cancer. Front Microbiol 2023; 14:1193725. [PMID: 37680534 PMCID: PMC10482102 DOI: 10.3389/fmicb.2023.1193725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background Observational epidemiological studies suggested an association between the gut microbiota and breast cancer, but it remains unclear whether the gut microbiota causally influences the risk of breast cancer. We employed two-sample Mendelian randomization (MR) analysis to investigate this association. Methods We used summary statistics of the gut microbiome from a genome-wide association study (GWAS) of 18,340 individuals in the MiBioGen study. GWAS summary statistics for overall breast cancer risk and hormone receptor subtype-specific analyses were obtained from the UK Biobank and FinnGen databases, totaling 400,000 individuals. The inverse variance-weighted (IVW) MR method was used to examine the causal relationship between the gut microbiome and breast cancer and its subtypes. Sensitivity analyses were conducted using maximum likelihood, MR-Egger, and MR pleiotropic residual sums and outliers methods. Results The IVW estimates indicated that an increased abundance of Genus_Sellimonas is causally associated with an increased risk of ER+ breast cancer [odds ratio (OR) = 1.09, p = 1.72E-04, false discovery rate (FDR) = 0.02], whereas an increased abundance of Genus_Adlercreutzia was protective against ER+ breast cancer (OR = 0.88, p = 6.62E-04, FDR = 0.04). For Her2+ breast cancer, an increased abundance of Genus_Ruminococcus2 was associated with a decreased risk (OR = 0.77, p = 4.91E-04, FDR = 0.04), whereas an increased abundance of Genus_Erysipelatoclostridium was associated with an increased risk (OR = 1.25, p = 6.58E-04, FDR = 0.04). No evidence of heterogeneity or horizontal pleiotropy was found. Conclusion Our study revealed a gut microbiota-mammary axis, providing important data supporting the potential use of the gut microbiome as a candidate target for breast cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shuwan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Xue
- School of Medicine, Chongqing University, Chongqing, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Hoskinson C, Jiang RY, Stiemsma LT. Elucidating the roles of the mammary and gut microbiomes in breast cancer development. Front Oncol 2023; 13:1198259. [PMID: 37664075 PMCID: PMC10470065 DOI: 10.3389/fonc.2023.1198259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The mammary microbiome is a newly characterized bacterial niche that might offer biological insight into the development of breast cancer. Together with in-depth analysis of the gut microbiome in breast cancer, current evidence using next-generation sequencing and metabolic profiling suggests compositional and functional shifts in microbial consortia are associated with breast cancer. In this review, we discuss the fundamental studies that have progressed this important area of research, focusing on the roles of both the mammary tissue microbiome and the gut microbiome. From the literature, we identified the following major conclusions, (I) There are unique breast and gut microbial signatures (both compositional and functional) that are associated with breast cancer, (II) breast and gut microbiome compositional and breast functional dysbiosis represent potential early events of breast tumor development, (III) specific breast and gut microbes confer host immune responses that can combat breast tumor development and progression, and (IV) chemotherapies alter the microbiome and thus maintenance of a eubiotic microbiome may be key in breast cancer treatment. As the field expectantly advances, it is necessary for the role of the microbiome to continue to be elucidated using multi-omic approaches and translational animal models in order to improve predictive, preventive, and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | - Leah T. Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
23
|
Sun Y, Zhou Q, Chen F, Gao X, Yang L, Jin X, Wink M, Sharopov FS, Sethi G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol Res 2023:106817. [PMID: 37315824 DOI: 10.1016/j.phrs.2023.106817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
A potential role of berberine, a benzyl isoquinoline alkaloid, in cancer therapy is apparent. Its underlying mechanisms of berberine against breast carcinoma under hypoxia have not been elucidated. We focused on the doubt how berberine restrains breast carcinoma under hypoxia in vitro and in vivo. A molecular analysis of the microbiome via 16S rDNA gene sequencing of DNA from mouse faeces confirmed that the abundances and diversity of gut microbiota were significantly altered in 4T1/Luc mice with higher survival rate following berberine treatment. A metabolome analysis liquid chromatography-mass spectrometer/mass spectrometer (LC-MS/MS) revealed that berberine regulated various endogenous metabolites, especially L-palmitoylcarnitine. Furthermore, the cytotoxicity of berberine was investigated in MDA-MB-231, MCF-7, and 4T1 cells. In vitro to simulate under hypoxic environment, MTT assay showed that berberine inhibited the proliferation of MDA-MB-231, MCF-7, and 4T1 cells with IC50 values of 4.14 ± 0.35μM, 26.53 ± 3.12μM and 11.62 ± 1.44μM, respectively. Wound healing and trans-well invasion studies revealed that berberine inhibited the invasion and migration of breast cancer cells. RT-qPCR analysis shed light that berberine reduced the expression of hypoxia-inducible factor-1α (HIF-1α) gene. Immunofluorescence and western blot demonstrated that berberine decreased the expression of E-cadherin and HIF-1α protein. Taken together, these results provide evidence that berberine efficiently suppresses breast carcinoma growth and metastasis in a hypoxic microenvironment, highlighting the potential of berberine as a promising anti-neoplastic agent to combat breast carcinoma.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - QianQian Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangming Chen
- Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Linjun Yang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Xiaoyan Jin
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Rudaki Avenue 33, 734025 Dushanbe, Tajikistan
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, Building MD3, 117600 Medical Drive, Singapore.
| |
Collapse
|
24
|
Niccolai E, Baldi S, Nannini G, Gensini F, Papi L, Vezzosi V, Bianchi S, Orzalesi L, Ramazzotti M, Amedei A. Breast cancer: the first comparative evaluation of oncobiome composition between males and females. Biol Sex Differ 2023; 14:37. [PMID: 37277847 DOI: 10.1186/s13293-023-00523-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that breast microbiota dysbiosis contributes to cancer initiation, progression, prognosis and treatment efficacy. Anyway, available data are referred only to female patients, and studies on males are completely missing. Male breast cancer (MBC) is 70-100 times less frequent, but the mortality rate adjusted to incidence is higher in men than in females. Currently, MBC diagnostic approaches and treatments have generally been extrapolated from the clinical experience gained in women, while few studies focus on characterizing male cancer biology. Taking into account the rising importance of the oncobiome field and the need of MBC targeted studies, we explored the breast cancer oncobiome of male and female patients. METHODS 16S rRNA gene sequencing was performed in 20 tumor and 20 non-pathological adjacent FFPE breast tissues from male and female patients. RESULTS We documented, for the first time, the presence of a sexually dimorphic breast-associated microbiota, here defined as "breast microgenderome". Moreover, the paired analysis of tumor and non-pathological adjacent tissues suggests the presence of a cancer-associated dysbiosis in male patients, with surrounding tissue conserving a healthier microbiome, whereas in female patients, the entire breast tissue is predisposed to cancer development. Finally, the phylum Tenericutes, especially the genera Mesoplasma and Mycobacterium, could to be involved in breast carcinogenesis, in both sexes, deserving further investigation, not only for its role in cancer development but even as potential prognostic biomarker. CONCLUSIONS Breast microbiota characterization can enhance the understanding of male breast cancer pathogenesis, being useful for detection of new prognostic biomarkers and development of innovative personalized therapies, remarking the relevant gender differences.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Francesca Gensini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Vania Vezzosi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lorenzo Orzalesi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
25
|
Wu H, Van Der Pol WJ, Dubois LG, Morrow CD, Tollefsbol TO. Dietary Supplementation of Inulin Contributes to the Prevention of Estrogen Receptor-Negative Mammary Cancer by Alteration of Gut Microbial Communities and Epigenetic Regulations. Int J Mol Sci 2023; 24:9015. [PMID: 37240357 PMCID: PMC10218871 DOI: 10.3390/ijms24109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is among the most frequently diagnosed malignant cancers in women in the United States. Diet and nutrition supplementation are closely related to BC onset and progression, and inulin is commercially available as a health supplement to improve gut health. However, little is known with respect to inulin intake for BC prevention. We investigated the effect of an inulin-supplemented diet on the prevention of estrogen receptor-negative mammary carcinoma in a transgenic mouse model. Plasma short-chain fatty acids were measured, the gut microbial composition was analyzed, and the expression of proteins related to cell cycle and epigenetics-related genes was measured. Inulin supplementation greatly inhibited tumor growth and significantly delayed tumor latency. The mice that consumed inulin had a distinct microbiome and higher diversity of gut microbial composition compared to the control. The concentration of propionic acid in plasma was significantly higher in the inulin-supplemented group. The protein expression of epigenetic-modulating histone deacetylase 2 (Hdac2), Hdac8, and DNA methyltransferase 3b decreased. The protein expression of factors related to tumor cell proliferation and survival, such as Akt, phospho-PI3K, and NF-kB, also decreased with inulin administration. Furthermore, sodium propionate showed BC prevention effect in vivo through epigenetic regulations. These studies suggest that modulating microbial composition through inulin consumption may be a promising strategy for BC prevention.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - William J. Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura G. Dubois
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27701, USA
| | - Casey D. Morrow
- Department of Cell, Departmental & Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, College of Arts and Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center of Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
27
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
28
|
Zhang YG, Xia Y, Zhang J, Deb S, Garrett S, Sun J. Intestinal vitamin D receptor protects against extraintestinal breast cancer tumorigenesis. Gut Microbes 2023; 15:2202593. [PMID: 37074210 PMCID: PMC10120454 DOI: 10.1080/19490976.2023.2202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The microbiota plays critical roles in regulating the function and health of the intestine and extraintestinal organs. A fundamental question is whether an intestinal-microbiome-breast axis exists during the development of breast cancer. If so, what are the roles of host factors? Vitamin D receptor (VDR) involves host factors and the human microbiome. Vdr gene variation shapes the human microbiome, and VDR deficiency leads to dysbiosis. We hypothesized that intestinal VDR protects hosts against tumorigenesis in the breast. We examined a 7,12-dimethylbenzanthracene (DMBA)-induced breast cancer model in intestinal epithelial VDR knockout (VDRΔIEC) mice with dysbiosis. We reported that VDRΔIEC mice with dysbiosis are more susceptible to breast cancer induced by DMBA. Intestinal and breast microbiota analysis showed that VDR deficiency leads to a bacterial profile shift from normal to susceptible to carcinogenesis. We found enhanced bacterial staining within breast tumors. At the molecular and cellular levels, we identified the mechanisms by which intestinal epithelial VDR deficiency led to increased gut permeability, disrupted tight junctions, microbial translocation, and enhanced inflammation, thus increasing tumor size and number in the breast. Furthermore, treatment with the beneficial bacterial metabolite butyrate or the probiotic Lactobacillus plantarum reduced breast tumors, enhanced tight junctions, inhibited inflammation, increased butyryl-CoA transferase, and decreased levels of breast Streptococcus bacteria in VDRΔIEC mice. The gut microbiome contributes to the pathogenesis of diseases not only in the intestine but also in the breast. Our study provides insights into the mechanism by which intestinal VDR dysfunction and gut dysbiosis lead to a high risk of extraintestinal tumorigenesis. Gut-tumor-microbiome interactions represent a new target in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
- UIC Cancer Center, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Nandi D, Parida S, Sharma D. The gut microbiota in breast cancer development and treatment: The good, the bad, and the useful! Gut Microbes 2023; 15:2221452. [PMID: 37305949 PMCID: PMC10262790 DOI: 10.1080/19490976.2023.2221452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Regardless of the global progress in early diagnosis and novel therapeutic regimens, breast carcinoma poses a devastating threat, and the advances are somewhat marred by high mortality rates. Breast cancer risk prediction models based on the known risk factors are extremely useful, but a large number of breast cancers develop in women with no/low known risk. The gut microbiome exerts a profound impact on the host health and physiology and has emerged as a pivotal frontier in breast cancer pathogenesis. Progress in metagenomic analysis has enabled the identification of specific changes in the host microbial signature. In this review, we discuss the microbial and metabolomic changes associated with breast cancer initiation and metastatic progression. We summarize the bidirectional impact of various breast cancer-related therapies on gut microbiota and vice-versa. Finally, we discuss the strategies to modulate the gut microbiota toward a more favorable state that confers anticancer effects.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
30
|
Wang N, Yang J, Han W, Han M, Liu X, Jiang L, Cao H, Jing M, Sun T, Xu J. Identifying distinctive tissue and fecal microbial signatures and the tumor-promoting effects of deoxycholic acid on breast cancer. Front Cell Infect Microbiol 2022; 12:1029905. [PMID: 36583106 PMCID: PMC9793878 DOI: 10.3389/fcimb.2022.1029905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction A growing body of evidence indicates that the dysbiosis of both mammary and intestinal microbiota is associated with the initiation and progression of breast tumors. However, the microbial characteristics of patients with breast tumors vary widely across studies, and replicable biomarkers for early-stage breast tumor diagnosis remain elusive. Methods We demonstrate a machine learning-based method for the analysis of breast tissue and gut microbial differences among patients with benign breast disease, patients with breast cancer (BC), and healthy individuals using 16S rRNA sequence data retrieved from eight studies. QIIME 2.0 and R software (version 3.6.1) were used for consistent processing. A naive Bayes classifier was trained on the RDP v16 reference database to assign taxonomy using the Vsearch software. Results After re-analyzing with a total of 768 breast tissue samples and 1,311 fecal samples, we confirmed that Halomonas and Shewanella were the most representative genera of BC tissue. Bacteroides are frequently and significantly enriched in the intestines of patients with breast tumor. The areas under the curve (AUCs) of random forest models were 74.27% and 68.08% for breast carcinoma tissues and stool samples, respectively. The model was validated for effectiveness via cohort-to-cohort transfer (average AUC =0.65) and leave-one-cohort-out (average AUC = 0.66). The same BC-associated biomarker Clostridium_XlVa exists in the tissues and the gut. The results of the in-vitro experiments showed that the Clostridium-specific-related metabolite deoxycholic acid (DCA) promotes the proliferation of HER2-positive BC cells and stimulates G0/G1 phase cells to enter the S phase, which may be related to the activation of peptide-O-fucosyltransferase activity functions and the neuroactive ligand-receptor interaction pathway. Discussion The results of this study will improve our understanding of the microbial profile of breast tumors. Changes in the microbial population may be present in both the tissues and the gut of patients with BC, and specific markers could aid in the early diagnosis of BC. The findings from in-vitro experiments confirmed that Clostridium-specific metabolite DCA promotes the proliferation of BC cells. We propose the use of stool-based biomarkers in clinical application as a non-invasive and convenient diagnostic method.
Collapse
Affiliation(s)
- Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Jun Yang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Xiaolin Liu
- Department of Medicine, Liaoning Kanghui Biotechnology Co., Ltd., Shenyang, China
| | - Lei Jiang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Hui Cao
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Mingxi Jing
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China,*Correspondence: Junnan Xu, ; Tao Sun,
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China,*Correspondence: Junnan Xu, ; Tao Sun,
| |
Collapse
|
31
|
Dacrema M, Ali A, Ullah H, Khan A, Di Minno A, Xiao J, Martins AMC, Daglia M. Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers (Basel) 2022; 14:cancers14225682. [PMID: 36428774 PMCID: PMC9688386 DOI: 10.3390/cancers14225682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.
Collapse
Affiliation(s)
- Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
32
|
He Y, Huang J, Li Q, Xia W, Zhang C, Liu Z, Xiao J, Yi Z, Deng H, Xiao Z, Hu J, Li H, Zu X, Quan C, Chen J. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022; 14:5317. [PMID: 36358736 PMCID: PMC9656981 DOI: 10.3390/cancers14215317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota is a large symbiotic community of anaerobic and facultative aerobic bacteria inhabiting the human intestinal tract, and its activities significantly affect human health. Increasing evidence has suggested that the gut microbiome plays an important role in tumor-related immune regulation. In the tumor microenvironment (TME), the gut microbiome and its metabolites affect the differentiation and function of immune cells regulating the immune evasion of tumors. The gut microbiome can indirectly influence individual responses to various classical tumor immunotherapies, including immune checkpoint inhibitor therapy and adoptive immunotherapy. Microbial regulation through antibiotics, prebiotics, and fecal microbiota transplantation (FMT) optimize the composition of the gut microbiome, improving the efficacy of immunotherapy and bringing a new perspective and hope for tumor treatment.
Collapse
Affiliation(s)
- Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiaorong Li
- Department of Ultrasound, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiping Xia
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
33
|
Qin C, Chen Z, Cao R, Shi M, Tian Y. Integrated Analysis of the Fecal Metagenome and Metabolome in Bladder Cancer in a Chinese Population. Genes (Basel) 2022; 13:1967. [PMID: 36360204 PMCID: PMC9690037 DOI: 10.3390/genes13111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/13/2023] Open
Abstract
Bladder cancer (BLCA) is a common malignancy of the urinary system. The gut microbiome produces various metabolites that play functional roles in tumorigenesis and tumor progression. However, the integrative analysis of the gut microbiome and metabolome in BLCA has still been lacking. Thus, the aim of this study was to identify microbial and functional characteristics and metabolites in BLCA in a Chinese population. Metagenomics, targeted metabolomics, bioinformatics, and integrative analysis were used in fecal samples of BLCA patients and healthy individuals. We found gut microbiomes were significantly dysregulated in BLCA patients, including Bifidobacterium, Lactobacillus, Streptococcus, Blautia, and Eubacterium. We also found 11Z-eicosenoic acid, 3-methoxytyrosine, abrine, aniline-2-sulfonate, arachidic acid, conjugated linoleic acids, elaidic acid, glycylleucine, glycylproline, leucyl-glycine, linoelaidic acid, linoleic acid, nicotinamide hypoxanthine dinucleotide, oleic acid, petroselinic acid, and ricinoleic acid to be significantly decreased, while cholesterol sulfate was significantly increased in BLCA patients. Integration of metagenomics and metabolomics revealed interactions between gut microbiota and metabolites and the host. We identified the alterations of gut microbiomes and metabolites in BLCA in a Chinese population. Moreover, we preliminarily revealed the associations between specific gut microbiomes and metabolites. These findings determined potential causative links among gut dysbiosis, dysregulated metabolites, and BLCA.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100068, China
| |
Collapse
|
34
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
35
|
Bawaneh A, Wilson AS, Levi N, Howard-McNatt MM, Chiba A, Soto-Pantoja DR, Cook KL. Intestinal Microbiota Influence Doxorubicin Responsiveness in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:4849. [PMID: 36230772 PMCID: PMC9563306 DOI: 10.3390/cancers14194849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with a poor 5-year survival rate. Targeted therapy options are limited and most TNBC patients are treated with chemotherapy. This study aimed to determine whether doxorubicin (Dox) shifts the gut microbiome and whether gut microbiome populations influence chemotherapeutic responsiveness. Female BALB/c mice (n = 115) were injected with 4T1-luciferase cells (a murine syngeneic TNBC model) and treated with Dox and/or antibiotics, high-fat diet-derived fecal microbiota transplant (HFD-FMT), or exogenous lipopolysaccharide (LPS). Metagenomic sequencing was performed on fecal DNA samples. Mice that received Dox were stratified into Dox responders or Dox nonresponders. Mice from the Dox responders and antibiotics + Dox groups displayed reduced tumor weight and metastatic burden. Metagenomic analysis showed that Dox was associated with increased Akkermansia muciniphila proportional abundance. Moreover, Dox responders showed an elevated proportional abundance of Akkermansia muciniphila prior to Dox treatment. HFD-FMT potentiated tumor growth and decreased Dox responsiveness. Indeed, lipopolysaccharide, a structural component of Gram-negative bacteria, was increased in the plasma of Dox nonresponders and FMT + Dox mice. Treatment with exogenous LPS increases intestinal inflammation, reduces Dox responsiveness, and increases lung metastasis. Taken together, we show that modulating the gut microbiota through antibiotics, HFD-FMT, or by administering LPS influenced TNBC chemotherapy responsiveness, lung metastasis, and intestinal inflammation.
Collapse
Affiliation(s)
- Alaa Bawaneh
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Integrative Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam S. Wilson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Akiko Chiba
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
36
|
Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 2022; 32:100829. [PMID: 35933824 PMCID: PMC9364013 DOI: 10.1016/j.neo.2022.100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
A myriad of microbes living together with the host constitutes the microbiota, and the microbiota exerts very diverse functions in the regulation of host physiology. Microbiota regulates cancer initiation, progression, metastasis, and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic functions of microbiota, and mechanisms of how microbes can shape tumor microenvironment and affect cancer cells as well as activation and functionality of immune and stromal cells within the tumor. While some of these mechanisms are distal, often distinct members of microbiota travel with and establish colonization with the tumors in the distant organs. We further briefly describe recent findings regarding microbiota composition in metastasis and highlight important future directions and considerations for the manipulation of microbiota for cancer treatment.
Collapse
Affiliation(s)
- Elena A Ivleva
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
37
|
Li X, Sun X, Zhang A, Pang J, Li Y, Yan M, Xu Z, Yu Y, Yang Z, Chen X, Wang X, Cao XC, Tang NJ. Breast microbiome associations with breast tumor characteristics and neoadjuvant chemotherapy: A case-control study. Front Oncol 2022; 12:926920. [PMID: 36172155 PMCID: PMC9510588 DOI: 10.3389/fonc.2022.926920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCommensal microbiota have been proven to colonize the mammary gland, but whether their composition is altered in patients with breast cancer (BC) remains elusive. This study intends to explore the breast microbiome differences between benign and malignant diseases and to investigate the impact of neoadjuvant chemotherapy (NAC) on the breast microbiota in patients with BC.MethodsBreast normal adipose tissues (NATs) were collected from 79 patients with BC and 15 controls between July 2019 and November 2021. The BC group consisted of 29 patients who had received NAC and 50 who were non-NAC patients. Participants diagnosed with benign breast disease were recruited as controls. 16S rRNA gene sequencing was used to analyze the bacterial diversity of NATs.ResultsThe community structure of the NAT microbiome was significantly different between the BC and control groups. Proteobacteria decreased (47.40% versus 39.74%), whereas Firmicutes increased (15.71% versus 25.33%) in patients with BC when compared with that in control tissues. Nine genera were enriched in BC NATs, and four genera levels increased in the control group. The associations between differential bacterial genera and breast tumor grade were calculated by Spearman’s correlation. The results showed that tumor grade was positively associated with the relative abundance of Streptococcus and negatively related to Vibrio, Pseudoalteromonas, RB41, and Photobacterium. Moreover, menopause was associated with the microbiota composition change of non-NAC BC patients and related to the significant reduction in the abundance level of Pseudoalteromonas, Veillonella, and Alcaligenes. In addition, NAC was related to the beta diversity of patients with BC and associated with the decrease of Clostridium_sensu_stricto_7 and Clostridium_sensu_stricto_2 in postmenopausal patients. Of note, Tax4Fun functional prediction analysis revealed that the metabolic state was more exuberant in the BC group with upregulating of multiple metabolism-related pathways.ConclusionOur results offer new insight into the relationship between NAC and breast microbiota and help to better characterize the breast microbial dysbiosis that occurs in patients with BC. Further epidemiological studies with larger sample size and well-designed animal experiments are required to elucidate the role of breast microbiota in the therapeutic outcome of BC.
Collapse
Affiliation(s)
- Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xiaohu Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Jing Pang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yun Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Mengfan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Zhen Xu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhengjun Yang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- *Correspondence: Xu-Chen Cao, ; Nai-jun Tang,
| | - Nai-jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
- *Correspondence: Xu-Chen Cao, ; Nai-jun Tang,
| |
Collapse
|
38
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
39
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
40
|
Gut Metabolites and Breast Cancer: The Continuum of Dysbiosis, Breast Cancer Risk, and Potential Breast Cancer Therapy. Int J Mol Sci 2022; 23:ijms23169490. [PMID: 36012771 PMCID: PMC9409206 DOI: 10.3390/ijms23169490] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The complex association between the gut microbiome and cancer development has been an emerging field of study in recent years. The gut microbiome plays a crucial role in the overall maintenance of human health and interacts closely with the host immune system to prevent and fight infection. This review was designed to draw a comprehensive assessment and summary of recent research assessing the anticancer activity of the metabolites (produced by the gut microbiota) specifically against breast cancer. In this review, a total of 2701 articles were screened from different scientific databases (PubMed, Scopus, Embase and Web of Science) with 72 relevant articles included based on the predetermined inclusion and exclusion criteria. Metabolites produced by the gut microbial communities have been researched for their health benefits and potential anticancer activity. For instance, the short-chain fatty acid, butyrate, has been evaluated against multiple cancer types, including breast cancer, and has demonstrated anticancer potential via various molecular pathways. Similarly, nisin, a bacteriocin, has presented with a range of anticancer properties primarily against gastrointestinal cancers, with nominal evidence supporting its use against breast cancer. Comparatively, a natural purine nucleoside, inosine, though it has not been thoroughly investigated as a natural anticancer agent, has shown promise in recent studies. Additionally, recent studies demonstrated that gut microbial metabolites influence the efficacy of standard chemotherapeutics and potentially be implemented as a combination therapy. Despite the promising evidence supporting the anticancer action of gut metabolites on different cancer types, the molecular mechanisms of action of this activity are not well established, especially against breast cancer and warrant further investigation. As such, future research must prioritise determining the dose-response relationship, molecular mechanisms, and conducting animal and clinical studies to validate in vitro findings. This review also highlights the potential future directions of this field.
Collapse
|
41
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
42
|
Composition and Functional Potential of the Human Mammary Microbiota Prior to and Following Breast Tumor Diagnosis. mSystems 2022; 7:e0148921. [PMID: 35642922 PMCID: PMC9239270 DOI: 10.1128/msystems.01489-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbiota studies have reported changes in the microbial composition of the breast upon cancer development. However, results are inconsistent and limited to the later phases of cancer development (after diagnosis). We analyzed and compared the resident bacterial taxa of histologically normal breast tissue (healthy, H, n = 49) with those of tissues donated prior to (prediagnostic, PD, n = 15) and after (adjacent normal, AN, n = 49, and tumor, T, n = 46) breast cancer diagnosis (n total = 159). DNA was isolated from tissue samples and submitted for Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S gene. To infer bacterial function in breast cancer, we predicted the functional bacteriome from the 16S sequencing data using PICRUSt2. Bacterial compositional analysis revealed an intermediary taxonomic signature in the PD tissue relative to that of the H tissue, represented by shifts in Bacillaceae, Burkholderiaceae, Corynebacteriaceae, Streptococcaceae, and Staphylococcaceae. This compositional signature was enhanced in the AN and T tissues. We also identified significant metabolic reprogramming of the microbiota of the PD, AN, and T tissue compared with the H tissue. Further, preliminary correlation analysis between host transcriptome profiling and microbial taxa and genes in H and PD tissues identified altered associations between the human host and mammary microbiota in PD tissue compared with H tissue. These findings suggest that compositional shifts in bacterial abundance and metabolic reprogramming of the breast tissue microbiota are early events in breast cancer development that are potentially linked with cancer susceptibility. IMPORTANCE The goal of this study was to determine the role of resident breast tissue bacteria in breast cancer development. We analyzed breast tissue bacteria in healthy breast tissue and breast tissue donated prior to (precancerous) and after (postcancerous) breast cancer diagnosis. Compared to healthy tissue, the precancerous and postcancerous breast tissues demonstrated differences in the amounts of breast tissue bacteria. In addition, breast tissue bacteria exhibit different functions in pre-cancerous and post-cancerous breast tissues relative to healthy tissue. These differences in function are further emphasized by altered associations of the breast tissue bacteria with gene expression in the human host prior to cancer development. Collectively, these analyses identified shifts in bacterial abundance and metabolic function (dysbiosis) prior to breast tumor diagnosis. This dysbiosis may serve as a therapeutic target in breast cancer prevention.
Collapse
|
43
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
44
|
Gadaleta E, Thorn GJ, Ross-Adams H, Jones LJ, Chelala C. Field cancerization in breast cancer. J Pathol 2022; 257:561-574. [PMID: 35362092 PMCID: PMC9322418 DOI: 10.1002/path.5902] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer affects one in seven women worldwide during their lifetime. Widespread mammographic screening programs and education campaigns allow for early detection of the disease, often during its asymptomatic phase. Current practice in treatment and recurrence monitoring is based primarily on pathological evaluations but can also encompass genomic evaluations, both of which focus on the primary tumor. Although breast cancer is one of the most studied cancers, patients still recur at a rate of up to 15% within the first 10 years post‐surgery. Local recurrence was originally attributed to tumor cells contaminating histologically normal (HN) tissues beyond the surgical margin, but advances in technology have allowed for the identification of distinct aberrations that exist in the peri‐tumoral tissues themselves. One leading theory to explain this phenomenon is the field cancerization theory. Under this hypothesis, tumors arise from a field of molecularly altered cells that create a permissive environment for malignant evolution, which can occur with or without morphological changes. The traditional histopathology paradigm dictates that molecular alterations are reflected in the tissue phenotype. However, the spectrum of inter‐patient variability of normal breast tissue may obfuscate recognition of a cancerized field during routine diagnostics. In this review, we explore the concept of field cancerization focusing on HN peri‐tumoral tissues: we present the pathological and molecular features of field cancerization within these tissues and discuss how the use of peri‐tumoral tissues can affect research. Our observations suggest that pathological and molecular evaluations could be used synergistically to assess risk and guide the therapeutic management of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emanuela Gadaleta
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Graeme J Thorn
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Helen Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louise J Jones
- Centre for Tumour Biology Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
45
|
Mekadim C, Skalnikova HK, Cizkova J, Cizkova V, Palanova A, Horak V, Mrazek J. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol 2022; 22:63. [PMID: 35216552 PMCID: PMC8881828 DOI: 10.1186/s12866-022-02458-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/29/2022] [Indexed: 12/11/2022] Open
Abstract
Background The microbiome alterations are associated with cancer growth and may influence the immune system and response to therapy. Particularly, the gut microbiome has been recently shown to modulate response to melanoma immunotherapy. However, the role of the skin microbiome has not been well explored in the skin tumour microenvironment and the link between the gut microbiome and skin microbiome has not been investigated in melanoma progression. Therefore, the aim of the present study was to examine associations between dysbiosis in the skin and gut microbiome and the melanoma growth using MeLiM porcine model of melanoma progression and spontaneous regression. Results Parallel analysis of cutaneous microbiota and faecal microbiota of the same individuals was performed in 8 to 12 weeks old MeLiM piglets. The bacterial composition of samples was analysed by high throughput sequencing of the V4-V5 region of the 16S rRNA gene. A significant difference in microbiome diversity and richness between melanoma tissue and healthy skin and between the faecal microbiome of MeLiM piglets and control piglets were observed. Both Principal Coordinate Analysis and Non-metric multidimensional scaling revealed dissimilarities between different bacterial communities. Linear discriminant analysis effect size at the genus level determined different potential biomarkers in multiple bacterial communities. Lactobacillus, Clostridium sensu stricto 1 and Corynebacterium 1 were the most discriminately higher genera in the healthy skin microbiome, while Fusobacterium, Trueperella, Staphylococcus, Streptococcus and Bacteroides were discriminately abundant in melanoma tissue microbiome. Bacteroides, Fusobacterium and Escherichia-Shigella were associated with the faecal microbiota of MeLiM piglets. Potential functional pathways analysis based on the KEGG database indicated significant differences in the predicted profile metabolisms between the healthy skin microbiome and melanoma tissue microbiome. The faecal microbiome of MeLiM piglets was enriched by genes related to membrane transports pathways allowing for the increase of intestinal permeability and alteration of the intestinal mucosal barrier. Conclusion The associations between melanoma progression and dysbiosis in the skin microbiome as well as dysbiosis in the gut microbiome were identified. Results provide promising information for further studies on the local skin and gut microbiome involvement in melanoma progression and may support the development of new therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02458-5.
Collapse
Affiliation(s)
- Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Jana Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Veronika Cizkova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 128 00, Prague, Czech Republic
| | - Anna Palanova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Jakub Mrazek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
46
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
47
|
Mao AW, Barck H, Young J, Paley A, Mao JH, Chang H. Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients. Clin Transl Oncol 2021; 24:597-604. [PMID: 34741726 DOI: 10.1007/s12094-021-02725-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prognosis of breast cancer (BC) patients differs considerably and identifying reliable prognostic biomarker(s) is imperative. With evidence that the microbiome plays a critical role in the response to cancer therapies, we aimed to identify a cancer microbiome signature for predicting the prognosis of BC patients. METHODS The TCGA BC microbiome data (TCGA-BRCA-microbiome) was downloaded from cBioPortal. Univariate and multivariate Cox regression analyses were used to examine association of microbial abundance with overall survival (OS) and to identify a microbial signature for creating a prognostic scoring model. The performance of the scoring model was assessed by the area under the ROC curve (AUC). Nomograms using the microbial signature, clinical factors, and molecular subtypes were established to predict OS and progression-free survival (PFS). RESULTS Among 1406 genera, the abundances of 94 genera were significantly associated with BC patient OS in TCGA-BRCA-microbiome dataset. From that set we identified a 15-microbe prognostic signature and developed a 15-microbial abundance prognostic scoring (MAPS) model. Patients in low-risk group significantly prolong OS and PFS as compared to those in high-risk group. The time-dependent ROC curves with MAPS showed good predictive efficacy both in OS and PFS. Moreover, MAPS is an independent prognostic factor for OS and PFS over clinical factors and PAM50-based molecular subtypes and superior to the previously published 12-gene signature. The integration of MAPS into nomograms significantly improved prognosis prediction. CONCLUSION MAPS was successfully established to have independent prognostic value, and our study provides a new avenue for developing prognostic biomarkers by microbiome profiling.
Collapse
Affiliation(s)
- A W Mao
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - H Barck
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J Young
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Paley
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J -H Mao
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - H Chang
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
48
|
De Silva S, Tennekoon KH, Karunanayake EH. Interaction of Gut Microbiome and Host microRNAs with the Occurrence of Colorectal and Breast Cancer and Their Impact on Patient Immunity. Onco Targets Ther 2021; 14:5115-5129. [PMID: 34712050 PMCID: PMC8548058 DOI: 10.2147/ott.s329383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and colorectal cancers are two primary malignancies on which most of the research done worldwide investigates the potential genetic and environmental risk factors and thereby tries to develop therapeutic methods to improve prognosis. Breast cancer is the most diagnosed cancer type in women, while colorectal cancer is diagnosed in males as the third most and females as the second most cancer type. Though these two cancer types are predominantly seen in adult patients worldwide, in the current context, these malignancies are diagnosed at a younger age with a significant rate of incidents than previous. Such early-onset cancers are generally present at an advanced stage of the most aggressive type with a poor prognosis. In the past, the focus of the research was mainly on studying possible candidate genes to understand the onset. However, it is now recognized that genetics, epigenetics, and other environmental factors play a pivotal role in cancer susceptibility. Thus, most studies were diversified to study the behavior of host microRNAs, and the involvement of gut microbiota and good communication between them surfaced in the occurrence and state of the disease. It is understood that the impact of these factors affects the outcome of the disease. Out of the adverse outcomes identified relating to the disease, immunosuppression is one of the most concerning outcomes in the current world, where such individuals remain vulnerable to infections. Recent studies revealed that microbiome and microRNA could create a considerable impact on immunosuppression. This review focused on the behavior of host microRNAs and gut microbiome for the onset of the disease and progression, thereby influencing an individual's immunosuppression. Understanding the interactions among microRNA, microbiome, presentation of the disease, and impact on the immune system will be immensely useful for developing future therapeutic strategies based on targeting host microRNA and the patient's gut microbiome. Therapies such as inhibitory-miRNA therapies, miRNA mimic-based therapeutics, immune checkpoint blockade therapies, and bacteria-assisted tumor-targeted therapies help modulate cancer. At the same time, it paid equal attention to potential noninvasive biomarkers in diagnosis, prognosis, and therapeutics in both cancers.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 03, Sri Lanka
| |
Collapse
|
49
|
The Search for the Elixir of Life: On the Therapeutic Potential of Alkaline Reduced Water in Metabolic Syndromes. Processes (Basel) 2021. [DOI: 10.3390/pr9111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our body composition is enormously influenced by our lifestyle choices, which affect our health and longevity. Nutrition and physical activities both impact overall metabolic condition, thus, a positive energy balance causes oxidative stress and inflammation, hastening the development of metabolic syndrome. With this knowledge, boosting endogenous and exogenous antioxidants has emerged as a therapeutic strategy for combating metabolic disorders. One of the promising therapeutic inventions is the use of alkaline reduced water (ARW). Aside from its hydrating and non-caloric properties, ARW has demonstrated strong antioxidant and anti-inflammatory properties that can help stabilize physiologic turmoil caused by oxidative stress and inflammation. This review article is a synthesis of studies where we elaborate on the intra- and extracellular effects of drinking ARW, and relate these to the pathophysiology of common metabolic disorders, such as obesity, diabetes mellitus, non-alcoholic fatty liver disease, and some cancers. Highlighting the health-promoting benefits of ARW, we also emphasize the importance of maintaining a healthy lifestyle by incorporating exercise and practicing a balanced diet as forms of habit.
Collapse
|
50
|
Caballero AM, Villagrán VAS, Serna AJ, Farrés A. Challenges in the production and use of probiotics as therapeuticals in cancer treatment or prevention. J Ind Microbiol Biotechnol 2021; 48:6356962. [PMID: 34427674 DOI: 10.1093/jimb/kuab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Probiotics were defined as microbial strains that confer health benefits to their consumers. The concept has evolved during the last twenty years, and today metabolites produced by the strains, known as postbiotics, and even dead cells, known as paraprobiotics are closely associated to them. The isolation of commensal strains from human microbiome has led to the development of next generation probiotics. This review aims to present an overview of the developments in the area of cancer prevention and treatment, intimately related to advances in the knowledge of the microbiome role in its genesis and therapy. Strain identification and characterization, production processes, delivery strategies and clinical evaluation are crucial to translate results into the market with solid scientific support. Examples of recent tools in isolation, strain typification, quality control and development of new probiotic strains are described. Probiotics market and regulation were originally developed in the food sector, but these new strategies will impact the pharmaceutical and health sectors, requiring new considerations in regulatory frameworks.
Collapse
Affiliation(s)
- Alejandra Mejía Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Insituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, México
| | - Vianey Anahi Salas Villagrán
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Alaide Jiménez Serna
- Centro de Investigación y Capacitación en Gastronomía, Universidad del Claustro de Sor Juana, 06080 Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| |
Collapse
|