1
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
2
|
Kim S, Hong KW, Oh M, An S, Han J, Park S, Kim G, Cho JY. Genetic Variants Associated with Sensitive Skin: A Genome-Wide Association Study in Korean Women. Life (Basel) 2024; 14:1352. [PMID: 39598151 PMCID: PMC11595562 DOI: 10.3390/life14111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Sensitive skin (SS) is associated with discomfort, including burning, stinging, and itching. These symptoms are often exacerbated by environmental factors and personal care products. In this genome-wide association study (GWAS), we aimed to identify the genetic variants associated with SS in 1690 Korean female participants; 389 and 1301 participants exhibited sensitive and non-sensitive skin, respectively. Using a combination of self-reported questionnaires, patch tests, and sting tests, we selected 115 sensitive and 181 non-sensitive participants for genetic analysis. A GWAS was performed to identify the loci associated with SS. Although none of the single-nucleotide polymorphisms (SNPs) met the genome-wide significance threshold, we identified several SNPs with suggestive associations. SNP rs11689992 in the 2q11.3 region increased SS risk by approximately 3.67 times. SNP rs7614738 in the USP4 locus elevated SS risk by 2.34 times and was found to be an expression quantitative trait locus for GPX1, a gene involved in oxidative stress and inflammation. Additionally, SNPs rs12306124 in the RASSF8 locus and rs10483893 in the NRXN3 region were identified. These results suggest that the genetic variations affecting oxidative stress, cell growth regulation, and neurobiology potentially influence skin sensitivity, providing a basis for further investigation and the development of personalized approaches to manage sensitive skin.
Collapse
Affiliation(s)
- Seoyoung Kim
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung-Won Hong
- Institute of Advanced Technology, Theragen Health Co., Ltd., Seongnam 13493, Republic of Korea;
| | - Mihyun Oh
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Susun An
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Jieun Han
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Sodam Park
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Goun Kim
- Safety and Microbiology Laboratory, Amorepacific R&I Center, Yongin 17074, Republic of Korea; (S.K.); (M.O.); (S.A.); (J.H.); (S.P.); (G.K.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Yoshioka Y, Yamashita H, Uchida T, Shinzato C, Kawamitsu M, Fourreau CJL, Castelló GM, Fiedler BK, van den Eeckhout TM, Borghi S, Reimer JD, Shoguchi E. Azooxanthellate Palythoa (Cnidaria: Anthozoa) Genomes Reveal Toxin-related Gene Clusters and Loss of Neuronal Genes in Hexacorals. Genome Biol Evol 2024; 16:evae197. [PMID: 39240721 DOI: 10.1093/gbe/evae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/08/2024] Open
Abstract
Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa 907-0451, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa 277-8564, Japan
| | - Mayumi Kawamitsu
- Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Guillermo Mironenko Castelló
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Britta Katharina Fiedler
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Timotheus Maximilian van den Eeckhout
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Stefano Borghi
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
4
|
Martone A, Possidente C, Fanelli G, Fabbri C, Serretti A. Genetic factors and symptom dimensions associated with antidepressant treatment outcomes: clues for new potential therapeutic targets? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01873-1. [PMID: 39191930 DOI: 10.1007/s00406-024-01873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Treatment response and resistance in major depressive disorder (MDD) show a significant genetic component, but previous studies had limited power also due to MDD heterogeneity. This literature review focuses on the genetic factors associated with treatment outcomes in MDD, exploring their overlap with those associated with clinically relevant symptom dimensions. We searched PubMed for: (1) genome-wide association studies (GWASs) or whole exome sequencing studies (WESs) that investigated efficacy outcomes in MDD; (2) studies examining the association between MDD treatment outcomes and specific depressive symptom dimensions; and (3) GWASs of the identified symptom dimensions. We identified 13 GWASs and one WES of treatment outcomes in MDD, reporting several significant loci, genes, and gene sets involved in gene expression, immune system regulation, synaptic transmission and plasticity, neurogenesis and differentiation. Nine symptom dimensions were associated with poor treatment outcomes and studied by previous GWASs (anxiety, neuroticism, anhedonia, cognitive functioning, melancholia, suicide attempt, psychosis, sleep, sociability). Four genes were associated with both treatment outcomes and these symptom dimensions: CGREF1 (anxiety); MCHR1 (neuroticism); FTO and NRXN3 (sleep). Other overlapping signals were found when considering genes suggestively associated with treatment outcomes. Genetic studies of treatment outcomes showed convergence at the level of biological processes, despite no replication at gene or variant level. The genetic signals overlapping with symptom dimensions of interest may point to shared biological mechanisms and potential targets for new treatments tailored to the individual patient's clinical profile.
Collapse
Affiliation(s)
- Alfonso Martone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy.
| | - Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
5
|
Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain 2024; 147:1610-1621. [PMID: 38408864 PMCID: PMC11068114 DOI: 10.1093/brain/awae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease that, at present, has no effective cure. Evidence of increased circulating glutamate and hyperexcitability of the motor cortex in patients with amyotrophic lateral sclerosis have provided an empirical support base for the 'dying forward' excitotoxicity hypothesis. The hypothesis postulates that increased activation of upper motor neurons spreads pathology to lower motor neurons in the spinal cord in the form of excessive glutamate release, which triggers excitotoxic processes. Many clinical trials have focused on therapies that target excitotoxicity via dampening neuronal activation, but not all are effective. As such, there is a growing tension between the rising tide of evidence for the 'dying forward' excitotoxicity hypothesis and the failure of therapies that target neuronal activation. One possible solution to these contradictory outcomes is that our interpretation of the current evidence requires revision in the context of appreciating the complexity of the nervous system and the limitations of the neurobiological assays we use to study it. In this review we provide an evaluation of evidence relevant to the 'dying forward' excitotoxicity hypothesis and by doing so, identify key gaps in our knowledge that need to be addressed. We hope to provide a road map from hyperexcitability to excitotoxicity so that we can better develop therapies for patients suffering from amyotrophic lateral sclerosis. We conclude that studies of upper motor neuron activity and their synaptic output will play a decisive role in the future of amyotrophic lateral sclerosis therapy.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2050, Australia
| | - Marcus Dyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Adele Woodhouse
- The Wicking Dementia Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine Blizzard
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
6
|
Giunashvili N, Thomas JM, Schvarcz CA, Viana PHL, Aloss K, Bokhari SMZ, Koós Z, Bócsi D, Major E, Balogh A, Benyó Z, Hamar P. Enhancing therapeutic efficacy in triple-negative breast cancer and melanoma: synergistic effects of modulated electro-hyperthermia (mEHT) with NSAIDs especially COX-2 inhibition in in vivo models. Mol Oncol 2024; 18:1012-1030. [PMID: 38217262 PMCID: PMC10994232 DOI: 10.1002/1878-0261.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1β and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.
Collapse
Grants
- STIA-OTKA-2022 Semmelweis Science and Innovation Fund
- OTKA_ANN 110810 National Research, Development, and Innovation Office
- OTKA_SNN 114619 National Research, Development, and Innovation Office
- ÚNKP-23-3-II-SE-45 National Research, Development, and Innovation Office
- ÚNKP-23-4-I-SE-22 National Research, Development, and Innovation Office
- OTKA_K 145998 National Research, Development, and Innovation Office
- Tempus Foundation
- EFOP-3.6.3-VEKOP-16-2017-00009 Semmelweis Excellence 250+ Scholarship
Collapse
Affiliation(s)
- Nino Giunashvili
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Csaba András Schvarcz
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | | | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | | | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Enikő Major
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
- HUN‐REN‐SU Cerebrovascular and Neurocognitive Diseases Research GroupBudapestHungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis UniversityBudapestHungary
| |
Collapse
|
7
|
Shan D, Song Y, Zhang Y, Ho CW, Xia W, Li Z, Ge F, Ou Q, Dai Z, Dai Z. Neurexin dysfunction in neurodevelopmental and neuropsychiatric disorders: a PRIMSA-based systematic review through iPSC and animal models. Front Behav Neurosci 2024; 18:1297374. [PMID: 38380150 PMCID: PMC10876810 DOI: 10.3389/fnbeh.2024.1297374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Background Neurexins, essential synaptic proteins, are linked to neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD) and schizophrenia. Objective Through this systematic review, we aimed to shed light on the relationship between neurexin dysfunction and its implications in neurodevelopmental and neuropsychiatric manifestations. Both animal and human-induced pluripotent stem cell (hiPSC) models served as our primary investigative platforms. Methods Utilizing the PRISMA 2020 guidelines, our search strategy involved scouring articles from the PubMed and Google Scholar databases covering a span of two decades (2003-2023). Of the initial collection, 27 rigorously evaluated studies formed the essence of our review. Results Our review suggested the significant ties between neurexin anomalies and neurodevelopmental and neuropsychiatric outcomes, most notably ASD. Rodent-based investigations delineated pronounced ASD-associated behaviors, and hiPSC models derived from ASD-diagnosed patients revealed the disruptions in calcium dynamics and synaptic activities. Additionally, our review underlined the integral role of specific neurexin variants, primarily NRXN1, in the pathology of schizophrenia. It was also evident from our observation that neurexin malfunctions were implicated in a broader array of these disorders, including ADHD, intellectual challenges, and seizure disorders. Conclusion This review accentuates the cardinal role neurexins play in the pathological process of neurodevelopmental and neuropsychiatric disorders. The findings underscore a critical need for standardized methodologies in developing animal and hiPSC models for future studies, aiming to minimize heterogeneity. Moreover, we highlight the need to expand research into less studied neurexin variants (i.e., NRXN2 and NRXN3), broadening the scope of our understanding in this field. Our observation also projects hiPSC models as potent tools for bridging research gaps, promoting translational research, and fostering the development of patient-specific therapeutic interventions.
Collapse
Affiliation(s)
- Dan Shan
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Yuming Song
- School of Medical Imaging, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheong Wong Ho
- School of Medicine, University of Galway, Galway, Ireland
| | - Wenxin Xia
- School of Medicine, University of Galway, Galway, Ireland
| | - Zhi Li
- College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Fenfen Ge
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Qifeng Ou
- School of Medicine, University of Galway, Galway, Ireland
| | - Zijie Dai
- Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Zhihao Dai
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
8
|
Kamal N, Jafari Khamirani H, Dara M, Dianatpour M. NRXN3 mutations cause developmental delay, movement disorder, and behavioral problems: CRISPR edited cells based WES results. Gene 2023; 867:147347. [PMID: 36898513 DOI: 10.1016/j.gene.2023.147347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
NRXN3geneencodesneurexin-III which is a Neural Cell Adhesion Molecule (NCAM) with important synaptic functions in the brain. Neurexin-III deficiency could affect synapse development, synaptic signaling and neurotransmitter release. Hitherto, there is no related disorder in the OMIM due to NRXN3 mutation. In this study, two unrelated Iranian families with homozygous (NM_001330195.2:c.3995G>A, p.Arg1332His) and compound heterozygous (NM_001330195.2:c.4442G>A, p.Arg1481Gln; c.3142+3A>G) variants in theNRXN3gene were detected for the first time. The proband of the first family manifested learning disability, developmental delay, inability to walk, and behavioral problems such as difficulty in social communication. Also, global development delay, intellectual disability, abnormal gait, severe speech problems, muscle weakness, and behavioral problems were observed in the affected individual in the second family. In addition, deciphering the pathogenicity of NRXN3 variants was done by functional studies such as CRISPR edited cells, in-silico analysis, and NGS results. All of these data together with phenotype similarity between observed phenotypes in our patients and manifested symptoms in the homozygousNrxn3α/β knockout mice, demonstrate the homozygous and compound heterozygous mutations of NRXN3 could cause a novel syndromic mendelian genetic disorder with autosomal recessive inheritance. The main phenotype of patients with neurexin-III deficiency includes developmental delay, learning disability, movement disorder, and behavioral problems.
Collapse
Affiliation(s)
- Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|