1
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion generated from long-read sequencing. Pain 2024; 165:2468-2481. [PMID: 38809314 PMCID: PMC11511651 DOI: 10.1097/j.pain.0000000000003255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 05/30/2024]
Abstract
ABSTRACT Splicing is a posttranscriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long-read sequencing to document isoform expression in the human dorsal root ganglia from 3 organ donors and validated in silico by confirming expression in short-read sequencing from 3 independent organ donors. Nineteen thousand five hundred forty-seven isoforms of protein-coding genes were detected and validated. We identified 763 isoforms with at least one previously undescribed splice junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3 , MRGPRX1 , and HNRNPK , were identified. In the novel isoforms of ASIC3 , a region comprising approximately 35% of the 5'UTR was excised. By contrast, a novel splice junction was used in isoforms of MRGPRX1 to include an additional exon upstream of the start codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified, which used previously unannotated splice sites to both excise exon 14 and include a sequence in the 3' end of exon 13. This novel insertion is predicted to introduce a tyrosine phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the human dorsal root ganglia obtained using long-read sequencing.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
2
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the complexity of the transcriptome in hematopoiesis. Exp Hematol 2024:104655. [PMID: 39393608 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of beta-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multi-color flowcytometric cell sorting with bulk and single cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Yadav B, Yadav P, Yadav S, Pandey AK. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma. Drug Discov Today 2024; 29:104140. [PMID: 39168403 DOI: 10.1016/j.drudis.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly severe primary brain tumor. Despite extensive research, effective treatments remain elusive. Long noncoding RNAs (lncRNAs) play a significant role in both cancer and normal biology. They influence alternative splicing (AS), which is crucial in cancer. Advances in lncRNA-specific microarrays and next-generation sequencing have enhanced understanding of AS. Abnormal AS contributes to cancer invasion, metastasis, apoptosis, therapeutic resistance, and tumor development, including glioma. lncRNA-mediated AS affects several cellular signaling pathways, promoting or suppressing cancer malignancy. This review discusses the lncRNAs regulating AS in glioblastoma and their mechanisms.
Collapse
Affiliation(s)
- Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Pooja Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Sunita Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
5
|
Vo K, Sharma Y, Paul A, Mohamadi R, Mohamadi A, Fields PE, Rumi MAK. Importance of Transcript Variants in Transcriptome Analyses. Cells 2024; 13:1502. [PMID: 39273072 PMCID: PMC11394320 DOI: 10.3390/cells13171502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that aggregate all the transcripts produced under a single gene identifier, overlooking the complexity of transcript variants arising from different transcription start sites or alternative splicing. Transcript variants may encode proteins with diverse functional domains, or noncoding RNAs. This study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the 1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS) cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 downregulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identified only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated. The other 703 transcripts were either upregulated or showed no significant change. Additionally, the 682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05). Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent transcripts expression from the same gene. Our findings show that by including transcript variants in RNA-Seq analyses, we can generate a precise understanding of a gene's functional and regulatory landscape; ignoring the variants may result in an erroneous interpretation.
Collapse
Affiliation(s)
- Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yashica Sharma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anohita Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amelia Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
8
|
Dorant Y, Quillien V, Le Luyer J, Ky CL. Comparative transcriptomics identifies genes underlying growth performance of the Pacific black-lipped pearl oyster Pinctada margaritifera. BMC Genomics 2024; 25:717. [PMID: 39049022 PMCID: PMC11270918 DOI: 10.1186/s12864-024-10636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In bivalves, the rate at which organisms grow is a major functional trait underlying many aspects of their commercial production. Growth is a highly polygenic trait, which is typically regulated by many genes with small to moderate effects. Due to its complexity, growth variability in such shellfish remains poorly understood. In this study, we aimed to investigate differential gene expression among spat of the pearl oyster Pinctada margaritifera with distinct growth phenotypes. RESULTS We selected two groups of P. margaritifera spat belonging to the same F2 cohort based on their growth performance at 5.5 months old. Transcriptome profile analysis identified a total of 394 differentially expressed genes between these Fast-growing (F) and Slow-growing (S) phenotypes. According to functional enrichment analysis, S oysters overexpressed genes associated with stress-pathways and regulation of innate immune responses. In contrast, F oysters up-regulated genes associated with cytoskeleton activity, cell proliferation, and apoptosis. Analysis of genome polymorphism identified 16 single nucleotide polymorphisms (SNPs) significantly associated with the growth phenotypes. SNP effect categorization revealed one SNP identified for high effect and annotated for a stop codon gained mutation. Interestingly, this SNP is located within a gene annotated for scavenger receptor class F member 1 (SRF1), which is known to modulate apoptosis. Our analyses also revealed that all F oysters showed up-regulation for this gene and were homozygous for the stop-codon mutation. Conversely, S oysters had a heterozygous genotype and a reduced expression of this gene. CONCLUSIONS Altogether, our findings suggest that differences in growth among the same oyster cohort may be explained by contrasted metabolic allocation between regulatory pathways for growth and the immune system. This study provides a valuable contribution towards our understanding of the molecular components associated with growth performance in the pearl oyster P. margaritifera and bivalves in general.
Collapse
Affiliation(s)
- Y Dorant
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France.
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France.
| | - V Quillien
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - J Le Luyer
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - C L Ky
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France
| |
Collapse
|
9
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
10
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Munaron L, Chinigò G, Scarpellino G, Ruffinatti FA. The fallacy of functional nomenclature in the kingdom of biological multifunctionality: physiological and evolutionary considerations on ion channels. J Physiol 2024; 602:2367-2381. [PMID: 37635695 DOI: 10.1113/jp284422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Living organisms are multiscale complex systems that have evolved high degrees of multifunctionality and redundancy in the structure-function relationship. A number of factors, only in part determined genetically, affect the jobs of proteins. The overall structural organization confers unique molecular properties that provide the potential to perform a pattern of activities, some of which are co-opted by specific environments. The variety of multifunctional proteins is expanding, but most cases are handled individually and according to the still dominant 'one structure-one function' approach, which relies on the attribution of canonical names typically referring to the first task identified for a given protein. The present topical review focuses on the multifunctionality of ion channels as a paradigmatic example. Mounting evidence reports the ability of many ion channels (including members of voltage-dependent, ligand-gated and transient receptor potential families) to exert biological effects independently of their ion conductivity. 'Functionally based' nomenclature (the practice of naming a protein or family of proteins based on a single purpose) is a conceptual bias for three main reasons: (i) it increases the amount of ambiguity, deceiving our understanding of the multiple contributions of biomolecules that is the heart of the complexity; (ii) it is in stark contrast to protein evolution dynamics, largely based on multidomain arrangement; and (iii) it overlooks the crucial role played by the microenvironment in adjusting the actions of cell structures and in tuning protein isoform diversity to accomplish adaptational requirements. Biological information in protein physiology is distributed among different entwined layers working as the primary 'locus' of natural selection and of evolutionary constraints.
Collapse
Affiliation(s)
- Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
12
|
Li S, Wang J, Ren G. CircRNA: An emerging star in plant research: A review. Int J Biol Macromol 2024; 272:132800. [PMID: 38825271 DOI: 10.1016/j.ijbiomac.2024.132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CircRNAs are a class of covalently closed non-coding RNA formed by linking the 5' terminus and the 3' terminus after reverse splicing. CircRNAs are widely found in eukaryotes, and they are highly conserved, with spatio-temporal expression specificity and stability. CircRNAs can act as miRNA sponges to regulate the expression of downstream target genes, regulating the transcription of parental genes and some can even be translated into peptides or proteins. Research on circRNAs in plants is still in its infancy compared to that in animals. With the deepening of research, the results of a variety of plant circRNAs suggest that they play an important role in growth and development, and tolerance towards abiotic stresses such as salt, drought, low temperature, high temperature and other adverse environments. In this review paper, we elaborated the molecular characteristics, mechanism of action, function and bioinformatics databases of plant circRNAs, combined with the progress of circRNA research in animals, discussed the potential mechanism of action of plant circRNAs, and proposed the unsolved problems and prospects for future application of plant circRNAs.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Institute, Shandong Normal University, Dongying 257000, China.
| |
Collapse
|
13
|
Zhong Y, Luo Y, Sun J, Qin X, Gan P, Zhou Z, Qian Y, Zhao R, Zhao Z, Cai W, Luo J, Chen LL, Song JM. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. THE PLANT CELL 2024; 36:2117-2139. [PMID: 38345423 PMCID: PMC11132889 DOI: 10.1093/plcell/koae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinliang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuemei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ping Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zuwen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongqing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Rupeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiyuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
14
|
Zeng X, Wu C, Zhang L, Lan L, Fu W, Wang S. Molecular Mechanism of Resistance to Alternaria alternata Apple Pathotype in Apple by Alternative Splicing of Transcription Factor MdMYB6-like. Int J Mol Sci 2024; 25:4353. [PMID: 38673937 PMCID: PMC11050356 DOI: 10.3390/ijms25084353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
As a fruit tree with great economic value, apple is widely cultivated in China. However, apple leaf spot disease causes significant damage to apple quality and economic value. In our study, we found that MdMYB6-like is a transcription factor without auto-activation activity and with three alternative spliced variants. Among them, MdMYB6-like-β responded positively to the pathogen infection. Overexpression of MdMYB6-like-β increased the lignin content of leaves and improved the pathogenic resistance of apple flesh callus. In addition, all three alternative spliced variants of MdMYB6-like could bind to the promoter of MdBGLU H. Therefore, we believe that MdMYB6-like plays an important role in the infection process of the pathogen and lays a solid foundation for breeding disease-resistant cultivars of apple in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.Z.); (C.W.); (L.Z.); (L.L.); (W.F.)
| |
Collapse
|
15
|
Lu JX, Sun JY, Wang Z, Ren WC, Xing NN, Liu MQ, Zhang ZP, Kong LY, Su XY, Liu XB, Ma W. In Silico Genome-Wide Analysis of B3 Transcription Factors in Cannabis sativa L. Cannabis Cannabinoid Res 2024; 9:495-512. [PMID: 36516081 DOI: 10.1089/can.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: The B3 transcription factor has been identified in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum, among other species. This family of transcription factors regulates seed growth, development, and stress. Cannabis is a valuable crop with numerous applications; however, no B3 transcription factors have been identified in this plant. Materials and Methods: The cannabis B3 gene family was identified and analyzed using bioinformatics analysis tools, such as the NCBI database, plantTFDB website, TBtools, and MEGA software. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were used to confirm its function. Results: The cannabis B3 family contains 65 members spread across 10 chromosomes. The isoelectric point ranged from 10.03 to 4.65, and the molecular weight ranged from 99,542.88 to 14,310.9 Da. Most of the members were found in the nucleus. The upstream promoter region of the gene contains a variety of cis-acting elements related to the stress response. RNA-seq data and qRT-PCR results showed that CsB3 genes were expressed differently in five organs of female Diku plants and in glandular hairs of nine distinct types of female cannabis inflorescences. Collinearity analysis revealed that there were more homologous genes between cannabis and dicotyledons than monocotyledonous plants, which was consistent with the evolutionary relationship. Conclusions: Hormones and external environmental factors might influence CsB3 expression. Furthermore, some genes such as CsB3-02, CsB3-07, CsB3-50, CsB3-62, and CsB3-65 may participate in cannabis growth and development and play a role in secondary metabolite synthesis. This study provides a solid foundation for further research into the gene function of the cannabis B3 family.
Collapse
Affiliation(s)
- Jia-Xin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia-Ying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Chao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Nan-Nan Xing
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei-Qi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhan-Ping Zhang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling-Yang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Yue Su
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiu-Bo Liu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
16
|
Bühring S, Brunner A, Heeb K, Mergard MP, Schmauck G, Jacob S. An array of signal-specific MoYpd1 isoforms determines full virulence in the pathogenic fungus Magnaporthe oryzae. Commun Biol 2024; 7:265. [PMID: 38438487 PMCID: PMC10912366 DOI: 10.1038/s42003-024-05941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Magnaporthe oryzae is placed first on a list of the world's top ten plant pathogens with the highest scientific and economic importance. The locus MGG_07173 occurs only once in the genome of M. oryzae and encodes the phosphotransfer protein MoYpd1p, which plays an important role in the high osmolarity glycerol (HOG) signaling pathway for osmoregulation. Originating from this locus, at least three MoYPD1 isoforms are produced in a signal-specific manner. The transcript levels of these MoYPD1-isoforms were individually affected by external stress. Salt (KCI) stress raised MoYPD1_T0 abundance, whereas osmotic stress by sorbitol elevates MoYPD1_T1 levels. In line with this, signal-specific nuclear translocation of green fluorescent protein-fused MoYpd1p isoforms in response to stress was observed. Mutant strains that produce only one of the MoYpd1p isoforms are less virulent, suggesting a combination thereof is required to invade the host successfully. In summary, we demonstrate signal-specific production of MoYpd1p isoforms that individually increase signal diversity and orchestrate virulence in M. oryzae.
Collapse
Affiliation(s)
- Sri Bühring
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Antonia Brunner
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Klemens Heeb
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Marius-Peter Mergard
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Greta Schmauck
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
17
|
Ding Y, Li J, Yan K, Jin L, Fan C, Bi R, Kong H, Pan Y, Shang Q. CF2-II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3406-3414. [PMID: 38329423 DOI: 10.1021/acs.jafc.3c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chengcheng Fan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, PR China
| | - Haoran Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
18
|
Yang Y, Xie Y, Li Z, Diala C, Ali M, Li R, Xu Y, Wu A, Kim P, Hosseini SR, Bi E, Zhao H, Zheng WJ. Systematic characterization of protein structural features of alternative splicing isoforms using AlphaFold 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578053. [PMID: 38464054 PMCID: PMC10925173 DOI: 10.1101/2024.01.30.578053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alternative splicing is an important cellular process in eukaryotes, altering pre-mRNA to yield multiple protein isoforms from a single gene. However, our understanding of the impact of alternative splicing events on protein structures is currently constrained by a lack of sufficient protein structural data. To address this limitation, we employed AlphaFold 2, a cutting-edge protein structure prediction tool, to conduct a comprehensive analysis of alternative splicing for approximately 3,000 human genes, providing valuable insights into its impact on the protein structural. Our investigation employed state of the art high-performance computing infrastructure to systematically characterize structural features in alternatively spliced regions and identified changes in protein structure following alternative splicing events. Notably, we found that alternative splicing tends to alter the structure of residues primarily located in coils and beta-sheets. Our research highlighted a significant enrichment of loops and highly exposed residues within human alternatively spliced regions. Specifically, our examination of the Septin-9 protein revealed potential associations between loops and alternative splicing, providing insights into its evolutionary role. Furthermore, our analysis uncovered two missense mutations in the Tau protein that could influence alternative splicing, potentially contributing to the pathogenesis of Alzheimer's disease. In summary, our work, through a thorough statistical analysis of extensive protein structural data, sheds new light on the intricate relationship between alternative splicing, evolution, and human disease.
Collapse
|
19
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
20
|
Song Y, Zhang C, Omenn GS, O’Meara MJ, Welch JD. Predicting the Structural Impact of Human Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572928. [PMID: 38187531 PMCID: PMC10769328 DOI: 10.1101/2023.12.21.572928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Protein structure prediction with neural networks is a powerful new method for linking protein sequence, structure, and function, but structures have generally been predicted for only a single isoform of each gene, neglecting splice variants. To investigate the structural implications of alternative splicing, we used AlphaFold2 to predict the structures of more than 11,000 human isoforms. We employed multiple metrics to identify splicing-induced structural alterations, including template matching score, secondary structure composition, surface charge distribution, radius of gyration, accessibility of post-translational modification sites, and structure-based function prediction. We identified examples of how alternative splicing induced clear changes in each of these properties. Structural similarity between isoforms largely correlated with degree of sequence identity, but we identified a subset of isoforms with low structural similarity despite high sequence similarity. Exon skipping and alternative last exons tended to increase the surface charge and radius of gyration. Splicing also buried or exposed numerous post-translational modification sites, most notably among the isoforms of BAX. Functional prediction nominated numerous functional differences among isoforms of the same gene, with loss of function compared to the reference predominating. Finally, we used single-cell RNA-seq data from the Tabula Sapiens to determine the cell types in which each structure is expressed. Our work represents an important resource for studying the structure and function of splice isoforms across the cell types of the human body.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D. Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Zeng X, Wang W, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Wang J, Xu D, Cheng J, Li W, Zhou B, Lin C, Yang X, Zhai R, Ma Z, Liu J, Cui P, Weng X, Wu W, Zhang X, Zheng W. Polymorphism and expression level of the FADS3 gene and associated with the growth traits in Hu sheep. Anim Biotechnol 2023; 34:4793-4802. [PMID: 37040177 DOI: 10.1080/10495398.2023.2196313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Growth traits are the economically important traits of sheep, and screening for genes related to growth and development is helpful for the genetic improvement of ovine growth traits. The fatty acid desaturase 3 (FADS3) is one of the important genes affecting the synthesis and accumulation of polyunsaturated fatty acids in animals. In this study, the expression levels of the FADS3 gene and polymorphism of the FADS3 gene associated with growth traits in Hu sheep were detected using quantitative real-time PCR (qRT-PCR), Sanger sequencing, and KAspar assay. The result showed that the expression levels of the FADS3 gene were widely expressed in all tissues, and the expression level of FADS3 in the lung was significantly higher than in other tissues (p < .05). Then, the polymorphism locus g. 2918 A > C was detected in intron 2 of the FADS3 gene, and associated analysis showed that the mutation in the FADS3 gene was associated significantly with growth traits (including body weight, body height, body length, and chest circumference, p < .05). Therefore, individuals with AA genotype showed significantly better growth traits than those with CC genotype, and FADS3 gene could be a candidate gene for improving growth traits in Hu sheep.
Collapse
Affiliation(s)
- Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
22
|
Arendt-Tranholm A, Mwirigi JM, Price TJ. RNA isoform expression landscape of the human dorsal root ganglion (DRG) generated from long read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564535. [PMID: 37961262 PMCID: PMC10634934 DOI: 10.1101/2023.10.28.564535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Splicing is a post-transcriptional RNA processing mechanism that enhances genomic complexity by creating multiple isoforms from the same gene. Diversity in splicing in the mammalian nervous system is associated with neuronal development, synaptic function and plasticity, and is also associated with diseases of the nervous system ranging from neurodegeneration to chronic pain. We aimed to characterize the isoforms expressed in the human peripheral nervous system, with the goal of creating a resource to identify novel isoforms of functionally relevant genes associated with somatosensation and nociception. We used long read sequencing (LRS) to document isoform expression in the human dorsal root ganglia (hDRG) from 3 organ donors. Isoforms were validated in silico by confirming expression in hDRG short read sequencing (SRS) data from 3 independent organ donors. 19,547 isoforms of protein-coding genes were detected using LRS and validated with SRS and strict expression cutoffs. We identified 763 isoforms with at least one previously undescribed splice-junction. Previously unannotated isoforms of multiple pain-associated genes, including ASIC3, MRGPRX1 and HNRNPK were identified. In the novel isoforms of ASIC3, a region comprising ~35% of the 5'UTR was excised. In contrast, a novel splice-junction was utilized in isoforms of MRGPRX1 to include an additional exon upstream of the start-codon, consequently adding a region to the 5'UTR. Novel isoforms of HNRNPK were identified which utilized previously unannotated splice-sites to both excise exon 14 and include a sequence in the 5' end of exon 13. The insertion and deletion in the coding region was predicted to excise a serine-phosphorylation site favored by cdc2, and replace it with a tyrosine-phosphorylation site potentially phosphorylated by SRC. We also independently confirm a recently reported DRG-specific splicing event in WNK1 that gives insight into how painless peripheral neuropathy occurs when this gene is mutated. Our findings give a clear overview of mRNA isoform diversity in the hDRG obtained using LRS. Using this work as a foundation, an important next step will be to use LRS on hDRG tissues recovered from people with a history of chronic pain. This should enable identification of new drug targets and a better understanding of chronic pain that may involve aberrant splicing events.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
23
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Cui Q, Wang W, Namani A, Wang H, Hammad A, Huang P, Gao Y, Elshaer M, Wu Y, Wang XJ, Tang X. NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer. Oncogene 2023; 42:2751-2763. [PMID: 37573407 DOI: 10.1038/s41388-023-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2-SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Wei Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Hongyan Wang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Pu Huang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yang Gao
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Yihe Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| |
Collapse
|
25
|
Sun Y, Bae YE, Zhu J, Zhang Z, Zhong H, Cheng C, Deng Y, Wu C, Wu L. A Splicing Transcriptome-Wide Association Study Identifies Candidate Altered Splicing for Prostate Cancer Risk. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:372-380. [PMID: 37486714 DOI: 10.1089/omi.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Prostate cancer (PCa) represents a huge public health burden among men. Many susceptibility genetic factors for PCa still remain unknown. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for PCa risk by assessing 79,194 cases and 61,112 controls of European ancestry in the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia. We identified 120 splicing introns of 97 genes showing an association with PCa risk at false discovery rate (FDR)-corrected threshold (FDR <0.05). Of them, 33 genes were enriched in PCa-related diseases and function categories. Fine-mapping analysis suggested that 21 splicing introns of 19 genes were likely causally associated with PCa risk. Thirty-five splicing introns of 34 novel genes were identified to be related to PCa susceptibility for the first time, and 11 of the genes were enriched in a cancer-related network. Our study identified novel loci and splicing introns associated with PCa risk, which can improve our understanding of the etiology of this common malignancy.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Longyan University, Longyan, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, P.R. China
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chunmei Cheng
- College of Life Science, Longyan University, Longyan, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
26
|
Song G, Chen J, Deng Y, Sun L, Yan Y. TMT Labeling Reveals the Effects of Exercises on the Proteomic Characteristics of the Subcutaneous Adipose Tissue of Growing High-Fat-Diet-Fed Rats. ACS OMEGA 2023; 8:23484-23500. [PMID: 37426235 PMCID: PMC10324099 DOI: 10.1021/acsomega.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Aim: Growing period is an important period for fat remodeling. High-fat diet and exercise are reasons for adipose tissue (AT) remodeling, but existing evidence is not enough. Therefore, the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the proteomic characteristics of the subcutaneous AT of growing rats on normal diet or high-fat diet (HFD) were determined. Methods: Four-week-old male Sprague-Dawley rats (n = 48) were subdivided into six groups: normal diet control group, normal diet-MICT group, normal diet-HIIT group, HFD control group, HFD-MICT group, and HFD-HIIT group. Rats in the training group ran on a treadmill 5 days a week for 8 weeks (MICT: 50 min at 60-70% VO2max intensity; HIIT: 7 min of warm-up and recovery at 70% VO2max intensity, 6 sets of 3 min of 30% VO2max followed by 3 min 90% VO2max). Following physical assessment, inguinal subcutaneous adipose tissue (sWAT) was collected for proteome analysis using tandem mass tag labeling. Results: MICT and HIIT attenuated body fat mass and lean body mass but did not affect weight gain. Proteomics revealed the impact of exercise on ribosome, spliceosome, and the pentose phosphate pathway. However, the effect was reversed on HFD and normal diet. The differentially expressed proteins (DEPs) affected by MICT were related to oxygen transport, ribosome, and spliceosome. In comparison, the DEPs affected by HIIT were related to oxygen transport, mitochondrial electron transport, and mitochondrion protein. In HFD, HIIT was more likely to cause changes in immune proteins than MICT. However, exercise did not seem to reverse the protein effects of HFD. Conclusion: The exercise stress response in the growing period was stronger but increased the energy metabolism and metabolism. MICT and HIIT can reduce fat, increase muscle percentage, and improve maximum oxygen uptake in rats fed with HFD. However, in rats with normal diet, MICT and HIIT triggered more immune responses of sWAT, especially HIIT. In addition, spliceosomes may be the key factors in AT remodeling triggered by exercise and diet.
Collapse
Affiliation(s)
- Ge Song
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junying Chen
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Guangdong
Ersha Sports Training Center, Guangzhou 510105, China
| | - Yimin Deng
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Fuzhou
Medical College of Nanchang University, Fuzhou 344000, China
| | - Lingyu Sun
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Yan
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Laboratory
of Sports Stress and Adaptation of General Administration of Sport, Beijing100084, China
- Laboratory
of Physical Fitness and Exercise, Ministry
of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
27
|
Naón D, Hernández-Alvarez MI, Shinjo S, Wieczor M, Ivanova S, Martins de Brito O, Quintana A, Hidalgo J, Palacín M, Aparicio P, Castellanos J, Lores L, Sebastián D, Fernández-Veledo S, Vendrell J, Joven J, Orozco M, Zorzano A, Scorrano L. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 2023; 380:eadh9351. [PMID: 37347868 DOI: 10.1126/science.adh9351] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.
Collapse
Affiliation(s)
- Déborah Naón
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- IBUB, Universitat de Barcelona, Barcelona, Spain
| | - Satoko Shinjo
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Milosz Wieczor
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Saska Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Albert Quintana
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Juan Hidalgo
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Aparicio
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Juan Castellanos
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Luis Lores
- Pneumology Department, Hospital General Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Jorge Joven
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
- Unitat de Recerca Biomèdica, Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Reus, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Luca Scorrano
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
28
|
Sun Y, Bae YE, Zhu J, Zhang Z, Zhong H, Yu J, Wu C, Wu L. A splicing transcriptome-wide association study identifies novel altered splicing for Alzheimer's disease susceptibility. Neurobiol Dis 2023:106209. [PMID: 37354922 DOI: 10.1016/j.nbd.2023.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in aging individuals. Alternative splicing is reported to be relevant to AD development while their roles in etiology of AD remain largely elusive. We performed a comprehensive splicing transcriptome-wide association study (spTWAS) using intronic excision expression genetic prediction models of 12 brain tissues developed through three modelling strategies, to identify candidate susceptibility splicing introns for AD risk. A total of 111,326 (46,828 proxy) cases and 677,663 controls of European ancestry were studied. We identified 343 associations of 233 splicing introns (143 genes) with AD risk after Bonferroni correction (0.05/136,884 = 3.65 × 10-7). Fine-mapping analyses supported 155 likely causal associations corresponding to 83 splicing introns of 55 genes. Eighteen causal splicing introns of 15 novel genes (EIF2D, WDR33, SAP130, BYSL, EPHB6, MRPL43, VEGFB, PPP1R13B, TLN2, CLUHP3, LRRC37A4P, CRHR1, LINC02210, ZNF45-AS1, and XPNPEP3) were identified for the first time to be related to AD susceptibility. Our study identified novel genes and splicing introns associated with AD risk, which can improve our understanding of the etiology of AD.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian 364012, PR China; Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Jie Yu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian 364012, PR China
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
29
|
Lu S, Ye J, Li H, He F, Qi Y, Wang T, Wang W, Zheng L. The Splicing Factor OsSCL26 Regulates Phosphorus Homeostasis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2326. [PMID: 37375951 DOI: 10.3390/plants12122326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth. However, its deficiency poses a significant challenge for crop production. To overcome the low P availability, plants have developed various strategies to regulate their P uptake and usage. In this study, we identified a splicing factor, OsSCL26, belonging to the Serine/arginine-rich (SR) proteins, that plays a crucial role in regulating P homeostasis in rice. OsSCL26 is expressed in the roots, leaves, and base nodes, with higher expression levels observed in the leaf blades during the vegetative growth stage. The OsSCL26 protein is localized in the nucleus. Mutation of OsSCL26 resulted in the accumulation of P in the shoot compared to the wild-type, and the dwarf phenotype of the osscl26 mutant was alleviated under low P conditions. Further analysis revealed that the accumulated P concentrations in the osscl26 mutant were higher in the old leaves and lower in the new leaves. Furthermore, the P-related genes, including the PHT and SPX family genes, were upregulated in the osscl26 mutant, and the exclusion/inclusion ratio of the two genes, OsSPX-MFS2 and OsNLA2, was increased compared to wild-type rice. These findings suggest that the splicing factor OsSCL26 plays a pivotal role in maintaining P homeostasis in rice by influencing the absorption and distribution of P through the regulation of the transcription and splicing of the P transport genes.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyu He
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Qi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Mehlferber MM, Kuyumcu-Martinez M, Miller CL, Sheynkman GM. Transcription factors and splice factors - interconnected regulators of stem cell differentiation. CURRENT STEM CELL REPORTS 2023; 9:31-41. [PMID: 38939410 PMCID: PMC11210451 DOI: 10.1007/s40778-023-00227-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 06/29/2024]
Abstract
Purpose of review The underlying molecular mechanisms that direct stem cell differentiation into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product of the combinatorial effect of individual factors operating within a coordinated regulatory network. Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in defining stem cell fate during differentiation and the critical role of protein isoforms in this process. Recent findings We review recent experimental and computational approaches that characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome and proteome they mediate during differentiation. Such approaches include long-read RNA sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-based CRISPR, which could make possible high-throughput isoform screening. Collectively, these developments enable systems-level profiling of factors contributing to cell state. Summary Overall, gene and splice regulatory networks are important in defining cell state. The emerging high-throughput systems-level approaches will characterize the gene regulatory network components necessary in driving stem cell differentiation.
Collapse
Affiliation(s)
- Madison M Mehlferber
- Department of Biochemistry and Molecular Genetics, University Virginia, Charlottesville, VA 22903
| | - Muge Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Fontaine Medical Office Building 1, 415 Ray C. Hunt Dr, Charlottesville, VA 22903
| | - Clint L Miller
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, and Department of Biomedical Engineering, University of Virginia, Multistory Building, West Complex, 1335 Lee St, Charlottesville, VA 22908, PO Box 800717, Charlottesville, Virginia 22908
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, Center for Public Health Genomics, UVA Comprehensive Cancer Center, Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903
| |
Collapse
|
31
|
Zhao T, Cheng F, Zhan D, Li J, Zheng C, Lu Y, Qin W, Liu Z. The Glomerulus Multiomics Analysis Provides Deeper Insights into Diabetic Nephropathy. J Proteome Res 2023. [PMID: 37191251 DOI: 10.1021/acs.jproteome.2c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although diabetic nephropathy (DN) is the leading cause of the end-stage renal disease, the exact regulation mechanisms remain unknown. In this study, we integrated the transcriptomics and proteomics profiles of glomeruli isolated from 50 biopsy-proven DN patients and 25 controls to investigate the latest findings about DN pathogenesis. First, 1152 genes exhibited differential expression at the mRNA or protein level, and 364 showed significant association. These strong correlated genes were divided into four different functional modules. Moreover, a regulatory network of the transcription factors (TFs)-target genes (TGs) was constructed, with 30 TFs upregulated at the protein levels and 265 downstream TGs differentially expressed at the mRNA levels. These TFs are the integration centers of several signal transduction pathways and have tremendous therapeutic potential for regulating the aberrant production of TGs and the pathological process of DN. Furthermore, 29 new DN-specific splice-junction peptides were discovered with high confidence; these peptides may play novel functions in the pathological course of DN. So, our in-depth integrative transcriptomics-proteomics analysis provided deeper insights into the pathogenesis of DN and opened the potential avenue for finding new therapeutic interventions. MS raw files were deposited into the proteomeXchange with the dataset identifier PXD040617.
Collapse
Affiliation(s)
- Tingting Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Fang Cheng
- Department of Bioinformatics, Beijing Pineal Diagnostics Co., Ltd., Beijing 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| |
Collapse
|
32
|
Timofeyenko K, Kanavalau D, Alexiou P, Kalyna M, Růžička K. Catsnap: a user-friendly algorithm for determining the conservation of protein variants reveals extensive parallelisms in the evolution of alternative splicing. THE NEW PHYTOLOGIST 2023; 238:1722-1732. [PMID: 36751910 PMCID: PMC10952736 DOI: 10.1111/nph.18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary conservation of complex eukaryotic transcriptomes significantly illuminates the physiological relevance of alternative splicing (AS). Examining the evolutionary depth of a given AS event with ordinary homology searches is generally challenging and time-consuming. Here, we present Catsnap, an algorithmic pipeline for assessing the conservation of putative protein isoforms generated by AS. It employs a machine learning approach following a database search with the provided pair of protein sequences. We used the Catsnap algorithm for analyzing the conservation of emerging experimentally characterized alternative proteins from plants and animals. Indeed, most of them are conserved among other species. Catsnap can detect the conserved functional protein isoforms regardless of the AS type by which they are generated. Notably, we found that while the primary amino acid sequence is maintained, the type of AS determining the inclusion or exclusion of protein regions varies throughout plant phylogenetic lineages in these proteins. We also document that this phenomenon is less seen among animals. In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where protein isoforms recurrently arise to carry physiologically relevant functions. The user web interface is available at https://catsnap.cesnet.cz/.
Collapse
Affiliation(s)
- Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
- Functional Genomics and Proteomics of Plants and National Centre for Biomolecular ResearchMasaryk University625 00BrnoCzech Republic
| | | | - Panagiotis Alexiou
- Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
| |
Collapse
|
33
|
Ezoe A, Iuchi S, Sakurai T, Aso Y, Tokunaga H, Vu AT, Utsumi Y, Takahashi S, Tanaka M, Ishida J, Ishitani M, Seki M. Fully sequencing the cassava full-length cDNA library reveals unannotated transcript structures and alternative splicing events in regions with a high density of single nucleotide variations, insertions-deletions, and heterozygous sequences. PLANT MOLECULAR BIOLOGY 2023; 112:33-45. [PMID: 37014509 DOI: 10.1007/s11103-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023]
Abstract
The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tetsuya Sakurai
- Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yukie Aso
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hiroki Tokunaga
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa, 907-0002, Japan
| | - Anh Thu Vu
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Manabu Ishitani
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira Apartado Aéreo 6713, Cali, Colombia
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
34
|
Hao K, Yang M, Cui Y, Jiao Z, Gao X, Du Z, Wang Z, An M, Xia Z, Wu Y. Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize. Int J Mol Sci 2023; 24:ijms24098012. [PMID: 37175719 PMCID: PMC10178231 DOI: 10.3390/ijms24098012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Collapse
Affiliation(s)
- Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaoren Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yakun Cui
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhichao Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
35
|
Laskar P, Hazra A, Pal A, Kundu A. Deciphering the role of alternative splicing as modulators of defense response in the MYMIV- Vigna mungo pathosystem. PHYSIOLOGIA PLANTARUM 2023; 175:e13922. [PMID: 37114622 DOI: 10.1111/ppl.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a crucial regulatory mechanism that impacts transcriptome and proteome complexity under stressful situations. Although its role in abiotic stresses is somewhat understood, our understanding of the mechanistic regulation of pre-mRNA splicing in plant-pathogen interaction is meagre. To comprehend this unexplored immune reprogramming mechanism, transcriptome profiles of Mungbean Yellow Mosaic India Virus (MYMIV)-resistant and susceptible Vigna mungo genotypes were analysed for AS genes that may underlie the resistance mechanism. Results revealed a repertoire of AS-isoforms accumulated during pathogenic infestation, with intron retention being the most common AS mechanism. Identification of 688 differential alternatively spliced (DAS) genes in the resistant host elucidates its robust antiviral response, whereas 322 DAS genes were identified in the susceptible host. Enrichment analyses confirmed DAS transcripts pertaining to stress, signalling, and immune system pathways have undergone maximal perturbations. Additionally, a strong regulation of the splicing factors has been observed both at transcriptional and post-transcriptional levels. qPCR validation of candidate DAS transcripts with induced expression upon MYMIV-infection demonstrated a competent immune response in the resistant background. The AS-impacted genes resulted either in partial/complete loss of functional domains or altered sensitivity to miRNA-mediated gene silencing. A complex regulatory module, miR7517-ATAF2, has been identified in an aberrantly spliced ATAF2 isoform that exposes an intronic miR7517 binding site, thereby suppressing the negative regulator to enhance defense reaction. The present study establishes AS as a non-canonical immune reprogramming mechanism that operates in parallel, thereby offering an alternative strategy for developing yellow mosaic-resistant V. mungo cultivars. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata
- Present Address: Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| |
Collapse
|
36
|
Angira D, Chaudhary S, Abiramasundari A, Thiruvenkatam V. To Explore the Binding Affinity of Human γ-Secretase Activating Protein (GSAP) Isoform 4 with APP-C99 Peptides. ACS OMEGA 2023; 8:13435-13443. [PMID: 37065030 PMCID: PMC10099435 DOI: 10.1021/acsomega.3c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
γ-Secretase activating protein (GSAP) is known to play an important role in the β-amyloid pathway. It acts as a modulator and accentuates the truncation of the amyloid precursor protein C-99 fragment through the γ-secretase complex. GSAP has four isoforms, out of which canonical isoform 1, a 16 kDa C-terminal portion, has been extensively studied, whereas the function of other three isoforms remains unknown. Here, we explore the GSAP isoform 4 (GSAP_I4) expression and purification from inclusion bodies followed by the refolding of the protein. The secondary structure of GSAP_I4 is predicted using circular dichroism. The protein is further characterized by western blotting and mass spectroscopy analysis. Additionally, biochemical assays and in silico molecular docking and molecular simulation are performed to investigate the binding of GSAP_I4 and APP-C99 peptide fragments. The results reflect that although GSAP_I1 and GSAP_I4 share high sequence similarity, the isoform 4 does not show any affinity toward APP-C99 peptide fragments. This hints toward the fact that GSAP_I4 might have a different role in the living system that is yet unexplored.
Collapse
Affiliation(s)
- Deekshi Angira
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sonali Chaudhary
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Arumugam Abiramasundari
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Vijay Thiruvenkatam
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
37
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
38
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
39
|
Manuel JM, Guilloy N, Khatir I, Roucou X, Laurent B. Re-evaluating the impact of alternative RNA splicing on proteomic diversity. Front Genet 2023; 14:1089053. [PMID: 36845399 PMCID: PMC9947481 DOI: 10.3389/fgene.2023.1089053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alternative splicing (AS) constitutes a mechanism by which protein-coding genes and long non-coding RNA (lncRNA) genes produce more than a single mature transcript. From plants to humans, AS is a powerful process that increases transcriptome complexity. Importantly, splice variants produced from AS can potentially encode for distinct protein isoforms which can lose or gain specific domains and, hence, differ in their functional properties. Advances in proteomics have shown that the proteome is indeed diverse due to the presence of numerous protein isoforms. For the past decades, with the help of advanced high-throughput technologies, numerous alternatively spliced transcripts have been identified. However, the low detection rate of protein isoforms in proteomic studies raised debatable questions on whether AS contributes to proteomic diversity and on how many AS events are really functional. We propose here to assess and discuss the impact of AS on proteomic complexity in the light of the technological progress, updated genome annotation, and current scientific knowledge.
Collapse
Affiliation(s)
- Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Inès Khatir
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada,Quebec Network for Research on Protein Function Structure and Engineering, PROTEO, Québec, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Benoit Laurent,
| |
Collapse
|
40
|
Transcriptome diversity assessment of Gossypium arboreum (FDH228) leaves under control, drought and whitefly infestation using PacBio long reads. Gene 2023; 852:147065. [PMID: 36435508 DOI: 10.1016/j.gene.2022.147065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) are common mechanisms in eukaryotes to increase the complexity of transcriptomes and subsequently proteomes. Analysis of long reads transcriptomics data can result in the discovery of novel transcripts, splice sites, AS or APA events. Gossypium arboreum is an important cultivated cotton species and a putative contributor of the A sub-genome to the modern tetraploid cotton; and inherently tolerant to several biotic and abiotic stresses. Specifically, its variety 'FDH228' is considered to be an important resistance source. In this study, we sequenced the G. arboreum (var. FDH228) transcriptome using PacBio IsoSeq and illumina short read sequencing under three different conditions i.e. untreated/healthy, treated with biotic stress through whitefly infestation, and treated with abiotic stress via water deprivation, for the discovery and surveying of canonical and non-canonical AS, APA and transcript fusion events. We were able to obtain 15,419 unique transcripts from all samples representing 11,343 genes, out of which 10,832 were annotated and 520 were novel with respect to the published reference genome. These transcripts were grouped into different structural categories including 60 Antisense, 11,959 having a full-splice match, 999 with incomplete-splice match, 30 fusion transcripts, 177 genic, 479 intergenic, 771 novels in the catalog, and 944 Novel but not found in the catalog. Subsequently, randomly selected candidate transcripts were experimentally validated using qRT-PCR. Our comprehensive identification of canonical and non-canonical splicing events, and novel and fusion transcripts aids in the understanding of the resistance mechanisms for this specific germplasm.
Collapse
|
41
|
Dong CL, Feng Z, Lu MX, Du YZ. Chilo suppressalis heat shock proteins are regulated by heat shock factor 1 during heat stress. INSECT MOLECULAR BIOLOGY 2023; 32:69-78. [PMID: 36279182 DOI: 10.1111/imb.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Heat shock factor 1 (HSF1) functions to maintain cellular and organismal homeostasis by regulating the expression of target genes, including those encoding heat shock proteins (HSPs). In the present study, the gene encoding HSF1 was cloned from the rice pest Chilo suppressalis, and designated Cshsf1. The deduced protein product, CsHSF1, contained conserved domains typical of the HSF1 family, including a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal transactivation domain. Real-time quantitative PCR showed that Cshsf1 was highly expressed in hemocytes. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsf1 was most highly expressed in male adults. RNAi-mediated silencing of Cshsf1 expression reduced C. suppressalis survival at high temperatures. To investigate the regulatory interactions between Cshsf1 and Cshsps, the promoters and expression patterns of 18 identified Cshsps in C. suppressalis were analysed; four types of heat shock elements (HSEs) were identified in promoter regions including canonical, tail-tail, head-head, and step/gap. The expression of Cshsp19.0, Cshsp21.7B, Cshsp60, Cshsp70 and Cshsp90 was positively regulated by Cshsf1; however, Cshsp22.8, Cshsp702, Cshsp705 and Cshsp706 gene expression was not altered. This study provides a foundation for future studies of HSF1 in insects during thermal stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Zhu Feng
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Hussain SS, Abbas M, Abbas S, Wei M, El-Sappah AH, Sun Y, Li Y, Ragauskas AJ, Li Q. Alternative splicing: transcriptional regulatory network in agroforestry. FRONTIERS IN PLANT SCIENCE 2023; 14:1158965. [PMID: 37123829 PMCID: PMC10132464 DOI: 10.3389/fpls.2023.1158965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Alternative splicing (AS) in plants plays a key role in regulating the expression of numerous transcripts from a single gene in a regulatory pathway. Variable concentrations of growth regulatory hormones and external stimuli trigger alternative splicing to switch among different growth stages and adapt to environmental stresses. In the AS phenomenon, a spliceosome causes differential transcriptional modifications in messenger RNA (mRNAs), resulting in partial or complete retention of one or more introns as compared to fully spliced mRNA. Differentially expressed proteins translated from intron-retaining messenger RNA (mRNAir) perform vital functions in the feedback mechanism. At the post-transcriptional level, AS causes the remodeling of transcription factors (TFs) by the addition or deletion of binding domains to activate and/or repress transcription. In this study, we have summarized the specific role of AS in the regulation of gene expression through repression and activation of the transcriptional regulatory network under external stimuli and switch among developmental stages.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sammar Abbas
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Mingke Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Arthur J. Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee-Knoxville, Knoxville, TN, United States
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| |
Collapse
|
43
|
Rogalska ME, Vafiadaki E, Erpapazoglou Z, Haghighi K, Green L, Mantzoros CS, Hajjar RJ, Tranter M, Karakikes I, Kranias EG, Stillitano F, Kafasla P, Sanoudou D. Isoform changes of action potential regulators in the ventricles of arrhythmogenic phospholamban-R14del humanized mouse hearts. Metabolism 2023; 138:155344. [PMID: 36375644 DOI: 10.1016/j.metabol.2022.155344] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is characterized by life-threatening ventricular arrhythmias and sudden cardiac death and affects hundreds of thousands of patients worldwide. The deletion of Arginine 14 (p.R14del) in the phospholamban (PLN) gene has been implicated in the pathogenesis of ACM. PLN is a key regulator of sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Despite global gene and protein expression studies, the molecular mechanisms of PLN-R14del ACM pathogenesis remain unclear. Using a humanized PLN-R14del mouse model and human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs), we investigated the transcriptome-wide mRNA splicing changes associated with the R14del mutation. We identified >200 significant alternative splicing (AS) events and distinct AS profiles were observed in the right (RV) and left (LV) ventricles in PLN-R14del compared to WT mouse hearts. Enrichment analysis of the AS events showed that the most affected biological process was associated with "cardiac cell action potential", specifically in the RV. We found that splicing of 2 key genes, Trpm4 and Camk2d, which encode proteins regulating calcium homeostasis in the heart, were altered in PLN-R14del mouse hearts and human iPSC-CMs. Bioinformatical analysis pointed to the tissue-specific splicing factors Srrm4 and Nova1 as likely upstream regulators of the observed splicing changes in the PLN-R14del cardiomyocytes. Our findings suggest that aberrant splicing may affect Ca2+-homeostasis in the heart, contributing to the increased risk of arrythmogenesis in PLN-R14del ACM.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Zoi Erpapazoglou
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa Green
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02215, USA
| | | | - Michael Tranter
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francesca Stillitano
- Division Heart and Lung, Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, the Netherlands
| | - Panagiota Kafasla
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
44
|
Boudreault S, Martineau CA, Faucher-Giguère L, Abou-Elela S, Lemay G, Bisaillon M. Reovirus μ2 Protein Impairs Translation to Reduce U5 snRNP Protein Levels. Int J Mol Sci 2022; 24:ijms24010727. [PMID: 36614170 PMCID: PMC9821451 DOI: 10.3390/ijms24010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection. In the present study, we investigated the mechanism by which μ2 exerts this effect on the U5 components. Our results revealed that μ2 has no impact on steady-state mRNA levels, RNA export, and protein stability of these U5 snRNP proteins. However, polysome profiling and metabolic labeling of newly synthesized proteins revealed that μ2 exerts an inhibitory effect on global translation. Moreover, we showed that μ2 mutants unable to accumulate in the nucleus retain most of the ability to reduce PRPF8 protein levels, indicating that the effect of μ2 on U5 snRNP components mainly occurs in the cytoplasm. Finally, co-expression experiments demonstrated that μ2 suppresses the expression of U5 snRNP proteins in a dose-dependent manner, and that the expression of specific U5 snRNP core components have different sensitivities to μ2's presence. Altogether, these results suggest a novel mechanism by which the μ2 protein reduces the levels of U5 core components through translation inhibition, allowing this viral protein to alter cellular AS during infection.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Carole-Anne Martineau
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laurence Faucher-Giguère
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou-Elela
- Département de Microbiologie et Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Martin Bisaillon
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 75904)
| |
Collapse
|
45
|
Das AS, Sherry EC, Vaughan RM, Henderson ML, Zieba J, Uhl KL, Koehn O, Bupp CP, Rajasekaran S, Li X, Chhetri SB, Nissim S, Williams CL, Prokop JW. The complex, dynamic SpliceOme of the small GTPase transcripts altered by technique, sex, genetics, tissue specificity, and RNA base editing. Front Cell Dev Biol 2022; 10:1033695. [PMID: 36467401 PMCID: PMC9714508 DOI: 10.3389/fcell.2022.1033695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 04/04/2024] Open
Abstract
The small GTPase family is well-studied in cancer and cellular physiology. With 162 annotated human genes, the family has a broad expression throughout cells of the body. Members of the family have multiple exons that require splicing. Yet, the role of splicing within the family has been underexplored. We have studied the splicing dynamics of small GTPases throughout 41,671 samples by integrating Nanopore and Illumina sequencing techniques. Within this work, we have made several discoveries. 1). Using the GTEx long read data of 92 samples, each small GTPase gene averages two transcripts, with 83 genes (51%) expressing two or more isoforms. 2). Cross-tissue analysis of GTEx from 17,382 samples shows 41 genes (25%) expressing two or more protein-coding isoforms. These include protein-changing transcripts in genes such as RHOA, RAB37, RAB40C, RAB4B, RAB5C, RHOC, RAB1A, RAN, RHEB, RAC1, and KRAS. 3). The isolation and library technique of the RNAseq influences the abundance of non-sense-mediated decay and retained intron transcripts of small GTPases, which are observed more often in genes than appreciated. 4). Analysis of 16,243 samples of "Blood PAXgene" identified seven genes (3.7%; RHOA, RAB40C, RAB4B, RAB37, RAB5B, RAB5C, RHOC) with two or more transcripts expressed as the major isoform (75% of the total gene), suggesting a role of genetics in altering splicing. 5). Rare (ARL6, RAB23, ARL13B, HRAS, NRAS) and common variants (GEM, RHOC, MRAS, RAB5B, RERG, ARL16) can influence splicing and have an impact on phenotypes and diseases. 6). Multiple genes (RAB9A, RAP2C, ARL4A, RAB3A, RAB26, RAB3C, RASL10A, RAB40B, and HRAS) have sex differences in transcript expression. 7). Several exons are included or excluded for small GTPase genes (RASEF, KRAS, RAC1, RHEB, ARL4A, RHOA, RAB30, RHOBTB1, ARL16, RAP1A) in one or more forms of cancer. 8). Ten transcripts are altered in hypoxia (SAR1B, IFT27, ARL14, RAB11A, RAB10, RAB38, RAN, RIT1, RAB9A) with RHOA identified to have a transient 3'UTR RNA base editing at a conserved site found in all of its transcripts. Overall, we show a remarkable and dynamic role of splicing within the small GTPase family that requires future explorations.
Collapse
Affiliation(s)
- Akansha S. Das
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Biology, Washington and Jefferson College, Washington, PA, United States
| | - Emily C. Sherry
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, United States
| | - Robert M. Vaughan
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Marian L. Henderson
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- The Department of Biology, Calvin University, Grand Rapids, MI, United States
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Olivia Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Medical Genetics, Spectrum Health and Helen DeVos Children’s Hospital, Grand Rapids, MI, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Pediatric Critical Care Medicine, Helen DeVos Children’s Hospital Spectrum Health, Grand Rapids, MI, United States
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Surya B. Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, United States
| | - Sahar Nissim
- Genetics and Gastroenterology Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Carol L. Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
46
|
Dias FH, Williams L, Mumey B, Tomescu AI. Efficient Minimum Flow Decomposition via Integer Linear Programming. J Comput Biol 2022; 29:1252-1267. [PMID: 36260412 PMCID: PMC9700332 DOI: 10.1089/cmb.2022.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Minimum flow decomposition (MFD) is an NP-hard problem asking to decompose a network flow into a minimum set of paths (together with associated weights). Variants of it are powerful models in multiassembly problems in Bioinformatics, such as RNA assembly. Owing to its hardness, practical multiassembly tools either use heuristics or solve simpler, polynomial time-solvable versions of the problem, which may yield solutions that are not minimal or do not perfectly decompose the flow. Here, we provide the first fast and exact solver for MFD on acyclic flow networks, based on Integer Linear Programming (ILP). Key to our approach is an encoding of all the exponentially many solution paths using only a quadratic number of variables. We also extend our ILP formulation to many practical variants, such as incorporating longer or paired-end reads, or minimizing flow errors. On both simulated and real-flow splicing graphs, our approach solves any instance in <13 seconds. We hope that our formulations can lie at the core of future practical RNA assembly tools. Our implementations are freely available on Github.
Collapse
Affiliation(s)
- Fernando H.C. Dias
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Lucia Williams
- School of Computing, Montana State University, Bozeman, Montana, USA
| | - Brendan Mumey
- School of Computing, Montana State University, Bozeman, Montana, USA
| | | |
Collapse
|
47
|
Zhang Y, Lou F, Chen J, Han Z, Yang T, Gao T, Song N. Single-molecule Real-time (SMRT) Sequencing Facilitates Transcriptome Research and Genome Annotation of the Fish Sillago sinica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1002-1013. [PMID: 36083383 DOI: 10.1007/s10126-022-10163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a newly described Sillaginidae species, Chinese sillago (Sillago sinica) needs a better understanding of gene annotation information. In this study, we reported the first full-length transcriptome data of S. sinica using the PacBio isoform sequencing Iso-seq and a description of transcriptome structure analysis. A total of 454,979 high-quality full-length transcripts were obtained by single-molecule real-time (SMRT) sequencing, which was corrected by Illumina sequencing data. After that, 66,948 non-redundant full-length transcripts were generated after mapping to the reference genome of S. sinica, including 49 fusion isoforms and 9,250 novel isoforms. 63,459 isoforms were successfully annotated by one of the Nr, Nt, SwissProt, Pfam, KOG, GO, and KEGG databases. Additionally, 30,987 alternative polyadenylation (APA) sites, 451,867 alternative splicing (AS) events, 21,928 long non-coding RNAs (lncRNAs) and 12,911 transcription factors (TFs) were identified. The full-length transcripts of S. sinica would provide a precious resource for characterizing the transcriptome of S. sinica and for the further study of gene function and regulatory mechanism of this species.
Collapse
Affiliation(s)
- Yuan Zhang
- Fishery College, Ocean University of China, Qingdao, 266003, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Na Song
- Fishery College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
48
|
Zhu L, Choudhary K, Gonzalez-Teran B, Ang YS, Thomas R, Stone NR, Liu L, Zhou P, Zhu C, Ruan H, Huang Y, Jin S, Pelonero A, Koback F, Padmanabhan A, Sadagopan N, Hsu A, Costa MW, Gifford CA, van Bemmel J, Hüttenhain R, Vedantham V, Conklin BR, Black BL, Bruneau BG, Steinmetz L, Krogan NJ, Pollard KS, Srivastava D. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation 2022; 146:770-787. [PMID: 35938400 PMCID: PMC9452483 DOI: 10.1161/circulationaha.121.057620] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.
Collapse
Affiliation(s)
- Lili Zhu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Yen-Sin Ang
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Nicole R. Stone
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Lei Liu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ping Zhou
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Palo Alto, CA, USA
| | - Hongmei Ruan
- Department of Medicine, University of California, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Shibo Jin
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Frances Koback
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Austin Hsu
- Gladstone Institutes, San Francisco, CA, USA
| | - Mauro W. Costa
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Casey A. Gifford
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Joke van Bemmel
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
| | - Vasanth Vedantham
- Department of Medicine, University of California, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Bruce R. Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Lars Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Zhou D, Tran Y, Abou Elela S, Scott MS. SAPFIR: A webserver for the identification of alternative protein features. BMC Bioinformatics 2022; 23:250. [PMID: 35751026 PMCID: PMC9229502 DOI: 10.1186/s12859-022-04804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Alternative splicing can increase the diversity of gene functions by generating multiple isoforms with different sequences and functions. However, the extent to which splicing events have functional consequences remains unclear and predicting the impact of splicing events on protein activity is limited to gene-specific analysis. Results To accelerate the identification of functionally relevant alternative splicing events we created SAPFIR, a predictor of protein features associated with alternative splicing events. This webserver tool uses InterProScan to predict protein features such as functional domains, motifs and sites in the human and mouse genomes and link them to alternative splicing events. Alternative protein features are displayed as functions of the transcripts and splice sites. SAPFIR could be used to analyze proteins generated from a single gene or a group of genes and can directly identify alternative protein features in large sequence data sets. The accuracy and utility of SAPFIR was validated by its ability to rediscover previously validated alternative protein domains. In addition, our de novo analysis of public datasets using SAPFIR indicated that only a small portion of alternative protein domains was conserved between human and mouse, and that in human, genes involved in nervous system process, regulation of DNA-templated transcription and aging are more likely to produce isoforms missing functional domains due to alternative splicing. Conclusion Overall SAPFIR represents a new tool for the rapid identification of functional alternative splicing events and enables the identification of cellular functions affected by a defined splicing program. SAPFIR is freely available at https://bioinfo-scottgroup.med.usherbrooke.ca/sapfir/, a website implemented in Python, with all major browsers supported. The source code is available at https://github.com/DelongZHOU/SAPFIR. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04804-w.
Collapse
Affiliation(s)
- Delong Zhou
- Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Yvan Tran
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|