1
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
2
|
Santasusagna S, Zhu S, Jawalagatti V, Carceles-Cordon M, Ertel A, Garcia-Longarte S, Song WM, Fujiwara N, Li P, Mendizabal I, Petrylak DP, Kelly WK, Reddy EP, Wang L, Schiewer MJ, Lujambio A, Karnes J, Knudsen KE, Cordon-Cardo C, Dong H, Huang H, Carracedo A, Hoshida Y, Rodriguez-Bravo V, Domingo-Domenech J. Master Transcription Factor Reprogramming Unleashes Selective Translation Promoting Castration Resistance and Immune Evasion in Lethal Prostate Cancer. Cancer Discov 2023; 13:2584-2609. [PMID: 37676710 PMCID: PMC10714140 DOI: 10.1158/2159-8290.cd-23-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Sandra Santasusagna
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Shijia Zhu
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Vijayakumar Jawalagatti
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | | | - Adam Ertel
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saioa Garcia-Longarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Won-Min Song
- Department of Genetics and Genome Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiyao Li
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Daniel P. Petrylak
- Department of Oncology, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - William Kevin Kelly
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liguo Wang
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Matthew J. Schiewer
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amaia Lujambio
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey Karnes
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Karen E. Knudsen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlos Cordon-Cardo
- Department of Pathology. Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Haidong Dong
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Immunology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Haojie Huang
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
- CIBERONC, Madrid, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Yujin Hoshida
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
3
|
Benítez-Burraco A, Uriagereka J, Nataf S. The genomic landscape of mammal domestication might be orchestrated by selected transcription factors regulating brain and craniofacial development. Dev Genes Evol 2023; 233:123-135. [PMID: 37552321 PMCID: PMC10746608 DOI: 10.1007/s00427-023-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
- Área de Lingüística General, Departamento de Lengua Española, Lingüística y Teoría de la Literatura, Facultad de Filología, Universidad de Sevilla, C/ Palos de la Frontera s/n., 41007-, Sevilla, España.
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, MD, USA
| | - Serge Nataf
- Stem-cell and Brain Research Institute, 18 avenue de Doyen Lépine, F-69500, Bron, France
- University of Lyon 1, 43 Bd du 11 Novembre 1918, F-69100, Villeurbanne, France
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003, Lyon, France
| |
Collapse
|
4
|
Cooley A, Rayford KJ, Arun A, Villalta F, Lima MF, Pratap S, Nde PN. Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts. Immune Netw 2022; 22:e51. [PMID: 36627941 PMCID: PMC9807959 DOI: 10.4110/in.2022.22.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.
Collapse
Affiliation(s)
- Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Kayla J. Rayford
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Ashutosh Arun
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Fernando Villalta
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Cell, Molecular, and Biomedical Sciences, School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Maria F. Lima
- Department of Cell, Molecular, and Biomedical Sciences, School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Pius N. Nde
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
5
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
6
|
Oppezzo A, Rosselli F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021; 11:18. [PMID: 33441180 PMCID: PMC7805242 DOI: 10.1186/s13578-021-00529-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
7
|
Hsiao YJ, Chang WH, Chen HY, Hsu YC, Chiu SC, Chiang CC, Chang GC, Chen YJ, Wang CY, Chen YM, Lin CY, Chen YJ, Yang PC, Chen JJW, Yu SL. MITF functions as a tumor suppressor in non-small cell lung cancer beyond the canonically oncogenic role. Aging (Albany NY) 2020; 13:646-674. [PMID: 33293474 PMCID: PMC7835003 DOI: 10.18632/aging.202171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Microphthalamia-associated transcription factor (MITF) is a critical mediator in melanocyte differentiation and exerts oncogenic functions in melanoma progression. However, the role of MITF in non-small cell lung cancer (NSCLC) is still unknown. We found that MITF is dominantly expressed in the low-invasive CL1-0 lung adenocarcinoma cells and paired adjacent normal lung tissues. MITF expression is significantly associated with better overall survival and disease-free survival in NSCLC and serves as an independent prognostic marker. Silencing MITF promotes tumor cell migration, invasion and colony formation in lung adenocarcinoma cells. In xenograft mouse model, MITF knockdown enhances metastasis and tumorigenesis, but decreases angiogenesis in the Matrigel plug assay. Whole transcriptome profiling of the landscape of MITF regulation in lung adenocarcinoma indicates that MITF is involved in cell development, cell cycle, inflammation and WNT signaling pathways. Chromatin immunoprecipitation assays revealed that MITF targets the promoters of FZD7, PTGR1 and ANXA1. Moreover, silencing FZD7 reduces the invasiveness that is promoted by silencing MITF. Strikingly, MITF has significantly inverse correlations with the expression of its downstream genes in lung adenocarcinoma. In summary, we demonstrate the suppressive role of MITF in lung cancer progression, which is opposite to the canonical oncogenic function of MITF in melanoma.
Collapse
Affiliation(s)
- Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Chin Chiu
- Inservice Master Program in Life Sciences, College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Ching-Cheng Chiang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yu Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yan-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
9
|
Ballesteros-Álvarez J, Dilshat R, Fock V, Möller K, Karl L, Larue L, Ögmundsdóttir MH, Steingrímsson E. MITF and TFEB cross-regulation in melanoma cells. PLoS One 2020; 15:e0238546. [PMID: 32881934 PMCID: PMC7470386 DOI: 10.1371/journal.pone.0238546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other's mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.
Collapse
Affiliation(s)
- Josué Ballesteros-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Katrín Möller
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ludwig Karl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | | | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
10
|
Tang XJ, Ping XY, Luo CQ, Yu XN, Tang YL, Shentu XC. Dystrophia canthorum in Waardenburg syndrome with a novel MITF mutation. Int J Ophthalmol 2020; 13:1054-1059. [PMID: 32685391 DOI: 10.18240/ijo.2020.07.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To reveal a novel MITF gene mutation in Waardenburg syndrome (WS), which is an autosomal dominant inherited neurogenic disorder that consists of various degrees of sensorineural deafness and pigmentary abnormalities in the eyes, hair and skin. METHODS The genetic analysis of the Chinese family was conducted by whole-exome sequencing, then the results were confirmed by Sanger sequencing. RESULTS WS is classified into type I to IV, which are identified by the W index, clinical characteristics and additional features. The MITF gene mostly accounts for WS type II. In this study, a de novo heterozygous mutation in the MITF gene, c.638A>G in exon 7, was identified in the patient diagnosed with WS type I features, as the W index was 2.17 (over 2.10), with dystrophia canthorum, congenital bilateral profound hearing loss, bilateral heterochromia irides, premature greying of the hair, and excessive freckling on the face at birth. She also underwent refractive errors and esotropia, reduced pigmentation of the choroid and visible choroid vessels. The mutation was not found in previous studies or mutation databases. CONCLUSION The novel mutation in the MITF gene, which altered the protein in amino acids 213 from the glutamic acid to glycine, is the genetic pathological cause for WS features in the patient. Those characteristics of this family revealed a novel genetic heterogeneity of MITF in WS, which expanded the database of MITF mutations and offered a possible in correcting the W index value of WS in distinct ethnicities. Moreover, ocular symptoms should be emphasized in all types of WS patients.
Collapse
Affiliation(s)
- Xia-Jing Tang
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xi-Yuan Ping
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Chen-Qi Luo
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xiao-Ning Yu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ye-Lei Tang
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xing-Chao Shentu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
11
|
Udry F, Decembrini S, Gamm DM, Déglon N, Kostic C, Arsenijevic Y. Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Sci Rep 2020; 10:8890. [PMID: 32483256 PMCID: PMC7264209 DOI: 10.1038/s41598-020-65657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.
Collapse
Affiliation(s)
- Florian Udry
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Sarah Decembrini
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - David M Gamm
- McPherson Eye Research Institute, Waisman Center and Department of Ophthalmology and Visual Sciences, and University of Wisconsin-Madison, Madison, USA
| | - Nicole Déglon
- Neuroscience Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Kostic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland.
| |
Collapse
|
12
|
Zhang S, Yu J, Wang H, Liu B, Yue X. p38 MAPK is involved in the immune response to pathogenic Vibrio in the clam Meretrix petechialis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:456-463. [PMID: 31669282 DOI: 10.1016/j.fsi.2019.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/15/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are involved in the response to various extracellular stimuli via regulating gene expression. In the present study, a p38 MAPK gene (MpP38) was identified from the clam Meretrix petechialis. The full-length cDNA of MpP38 measures 1,720 bp, consisting of a 134-bp 5'-UTR, a 1,095-bp ORF and a 491-bp 3'-UTR. Both the mRNA and protein expression levels of MpP38 increased after Vibrio challenge, implying that MpP38 is involved in clam immunity. Based on our previous study, a transcription factor activated by p38 MAPK, i.e. microphthalmia-associated transcription factor (MITF), participated in clam immunity by regulating the expression of phenoloxidase (PO). Coupled with other related reports, the mechanism underlying the involvement of MpP38 in clam immunity is most likely that pathogen stimuli induce the phosphorylation of p38 MAPK and thus activate MITF to regulate the expression of the immune-related gene PO. The results obtained in this study support this mechanism. First, we found that the MpP38 phosphorylation level increased in response to Vibrio challenge. Second, as revealed by a yeast two-hybrid assay, there was a direct interaction between MpP38 and MITF. Meanwhile, inhibiting the phosphorylation of MpP38 decreased the phosphorylation level of MpMITF, implying that MpP38 phosphorylation is required for MpMITF activation. Additionally, our results showed that there was a regulatory relationship between MpP38 phosphorylation level and PO expression level. With increased MpP38 phosphorylation level, the PO expression level was also increased after Vibrio challenge; when MpP38 phosphorylation was inhibited, the PO expression level was significantly decreased. This study describes the immune function of p38 MAPK in the clam for the first time and analyses its potential underlying mechanism, which will help to elucidate the immune mechanism in the clam M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
13
|
Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 2019; 73:100766. [DOI: 10.1016/j.preteyeres.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
|
14
|
Feng C, Bai M, Zhang H, Zeng A, Zhang W. Prioritization and comprehensive analysis of genes associated with melanoma. Oncol Lett 2019; 18:127-136. [PMID: 31289481 PMCID: PMC6540330 DOI: 10.3892/ol.2019.10284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
Melanoma is a malignant tumor derived from melanocytes, which occurs mostly in the skin. A major challenge in cancer research is the biological interpretation of the complexity of cancer somatic mutation profiles. The aim of the present study was to obtain a comprehensive understanding of the formation and development of melanoma and to identify its associated genes. In the present study, a pipeline was proposed for investigating key genes associated with melanoma based on the Online Mendelian Inheritance in Man and Search Tool for the Retrieval of Interacting Genes/Proteins databases through a random walk model. Additionally, functional enrichment analysis was performed for key genes associated with melanoma. This identified a total of 17 biological processes and 30 pathways which may be associated with melanoma. In addition, melanoma-specific network analysis followed by Kaplan-Meier analysis along with log-rank tests identified tyrosinase, hedgehog acyltransferase, BRCA1-associated protein 1 and melanocyte inducing transcription factor as potential therapeutic targets for melanoma. In conclusion, the present study increased the knowledge of melanoma progression and may be helpful for improving its prognosis.
Collapse
Affiliation(s)
- Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ming Bai
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Hailin Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Wenchao Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
15
|
Zhang S, Yue X, Yu J, Wang H, Liu B. MITF Regulates Downstream Genes in Response to Vibrio parahaemolyticus Infection in the Clam Meretrix Petechialis. Front Immunol 2019; 10:1547. [PMID: 31333673 PMCID: PMC6620822 DOI: 10.3389/fimmu.2019.01547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix-leucine zipper protein that plays a key role in cell proliferation, survival and immune defense through the direct transcriptional control of downstream genes. We have found that MITF participates in the immune response to Vibrio parahaemolyticus infection in the clam Meretrix petechialis. In this study, we focused on how MITF functions in immunity. First, PO, CTSK, and BCL-2 were identified as the target genes of MpMITF in the clam by RNAi. EMSAs showed direct binding between the MpMITF protein and the E-box of the MpPO, MpCTSK, and MpBCL-2 promoters. Yeast one-hybrid assays also suggested that MpMITF could activate the expression of these three downstream genes. These results demonstrated that the transcriptional expression of MpPO, MpCTSK, and MpBCL-2 is directly regulated by MpMITF. Second, we analyzed the roles of MpPO, MpCTSK, and MpBCL-2 in clam immunity. The mRNA expression of MpPO, MpCTSK, and MpBCL-2 increased significantly after V. parahaemolyticus challenge, which implied that these genes might take part in the immune defense against V. parahaemolyticus challenge in clams. The purified recombinant proteins, MpPO and MpCTSK, inhibited the growth of V. parahaemolyticus. Additionally, the apoptosis rate of clam haemocytes rose significantly when the activity of MpBCL-2 was suppressed. These results revealed that MpPO, MpCTSK, and MpBCL-2 are involved in the immune defense against V. parahaemolyticus. This study supports the idea that the MpMITF pathway plays a key role in immune defense through the direct regulation of the downstream genes MpPO, MpCTSK, and MpBCL-2 in the clam, M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Genome analysis identifies the mutant genes for common industrial Silverblue and Hedlund white coat colours in American mink. Sci Rep 2019; 9:4581. [PMID: 30872653 PMCID: PMC6418256 DOI: 10.1038/s41598-019-40918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The fur colour of American mink (Neovison vison) involves over 35 traits, but only three of these have been linked to specific genes. Despite being the most popular, coat colours Silverblue and Hedlund white remain uncharacterized genetically. The former is the first genetic mutant of fur colour identified in minks, while the latter is a commercially valuable phenotype that can be dyed easily. Here, we performed the whole genome sequencing for two American mink breeds with Silverblue and Hedlund white coats. We identified mutations in splice donor sites of genes coding melanophilin (MLPH) and microphthalmia-associated transcription factor (MITF) that regulate melanosome transport and neural-crest-derived melanocyte development, respectively. Both mutations cause mRNA splicing impairments that lead to a shift in open reading frames of MLPH and MITF. We conclude that our data should be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.
Collapse
|
17
|
DiStefano MT, Hemphill SE, Cushman BJ, Bowser MJ, Hynes E, Grant AR, Siegert RK, Oza AM, Gonzalez MA, Amr SS, Rehm HL, Abou Tayoun AN. Curating Clinically Relevant Transcripts for the Interpretation of Sequence Variants. J Mol Diagn 2018; 20:789-801. [PMID: 30096381 PMCID: PMC6204605 DOI: 10.1016/j.jmoldx.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/20/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.
Collapse
Affiliation(s)
- Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Mark J Bowser
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Elizabeth Hynes
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Michael A Gonzalez
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medical and Population Genetics, The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Ahmad N Abou Tayoun
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Genetics Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.
| |
Collapse
|
18
|
Zhang S, Wang H, Yu J, Jiang F, Yue X, Liu B. Identification of a gene encoding microphthalmia-associated transcription factor and its association with shell color in the clam Meretrix petechialis. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:75-83. [PMID: 30031885 DOI: 10.1016/j.cbpb.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development through the direct transcriptional control of related genes, e.g., the phenoloxidase gene. In this study, an MITF gene, MpMITF2, was identified in the clam Meretrix petechialis. The full-length cDNA of MpMITF2 was 2026 bp, and the molecular mass of the predicted protein was 42.6 kDa. A basic helix-loop-helix leucine zipper domain was detected in the deduced protein sequence, which can bind the E-box motif within the promoter of the downstream genes. The mRNA of MpMITF2 was more highly expressed in the mantle compared to the other four tissues. Furthermore, there was a significant difference in the mRNA expression of MpMITF2 among three clam strains with different shell colors. The protein level of MpMITF2 was also different among these strains. These results implied that MpMITF2 was associated with shell color formation in the clam M. petechialis. When the mRNA expression of MpMITF2 was knocked down, the new shell showed discontinuous pigment distribution, suggesting that the reduced expression of MpMITF2 influenced pigment synthesis. A gene encoding phenoloxidase (MpPO) was identified as related to the shell color of the clam and was also a putative downstream gene of MITF. Both the mRNA and protein levels of MpPO decreased significantly at 12 h post-MpMITF-suppression, suggesting that MpMITF2 is required for the expression of MpPO. Our results indicate the close relationships among MpMITF2, MpPO and shell color. This study implicates the role of MITF in shell color formation in the clam M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjuan Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266000, China
| |
Collapse
|
19
|
Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations. J Hum Genet 2018. [PMID: 29531335 PMCID: PMC5915419 DOI: 10.1038/s10038-018-0425-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants’ associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study’s data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.
Collapse
|
20
|
A novel variant in MITF in a child from Yunnan-Guizhou Plateau with autosomal dominant inheritance of nonsyndromic hearing loss: A case report. Mol Med Rep 2018; 17:6054-6058. [PMID: 29484430 DOI: 10.3892/mmr.2018.8627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/02/2018] [Indexed: 11/05/2022] Open
Abstract
Deafness and hearing loss may have functional, economic, social and emotional impacts on humans, including the ability of an individual to communicate with others, feelings of isolation and frustration, and health sector costs. The World Health Organization reported that there are 32 million children worldwide with hearing loss. In order to investigate genetic mutations in children of 26 nationalities with hearing loss in Yunnan, Sanger sequencing was employed to screen for mutations in four of the most common pathological genes, including gap junction protein β2 and 3, solute carrier family 26 member 4 and mitochondrial DNA. Whole exome sequencing was used to detect the mutation in the proband of a family in which these four genes were normal. Subsequently, the mutation was identified by Sanger sequencing. The present study reports a novel mutation, c.718C>G; p. (Arg240Gly) in the melanogenesis associated transcription factor gene, in Han people with hearing loss. The results of the present study may provide parents and children an accurate diagnosis, which may allow physicians to how to rehabilitate children's hearing.
Collapse
|
21
|
Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, Nguyen C, Vasseur F, Blanc T, Berissi S, Langa-Vives F, Fischer E, Druilhe A, Arnheiter H, Friedlander G, Pontoglio M, Terzi F. MITF - A controls branching morphogenesis and nephron endowment. PLoS Genet 2017; 13:e1007093. [PMID: 29240767 PMCID: PMC5746285 DOI: 10.1371/journal.pgen.1007093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/28/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment. The number of nephrons, the functional unit of kidney, varies widely among humans. Indeed, it has been shown that kidneys may contain from 0.3 to more than 2 million of nephrons. Nephrons are formed during development via a coordinated morphogenetic program in which the metanephric mesenchyme reciprocally and recursively interacts with the ureteric bud. The fine-tuning of this cross-talk determines the final number of nephrons. Strong evidence indicates that suboptimal nephron endowment is associated with an increased risk of hypertension and chronic kidney disease, a major healthcare burden. Indeed, chronic kidney disease is characterized by the progressive decline of renal function towards end stage renal disease, which occurs once a critical number of nephrons has been lost. Elucidating the molecular mechanisms that control nephron endowment is, therefore, a critical issue for public health. However, little is known about the factors that determine the final number of nephrons in the healthy population. Our data showed that nephron endowment is genetically predetermined and identified Mitfa, a bHLH transcription factor, as one of the first modifiers of nephron formation during kidney development. By generating an allelic series of transgenic mice expressing different levels of MITF-A, we discovered that MITF-A promotes final nephron endowment. In addition, we elucidated the molecular mechanisms by which MITF-A promotes nephron formation and identified RET as one of the critical effectors.
Collapse
Affiliation(s)
- Aurélie Phelep
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Denise Laouari
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Kapil Bharti
- Unit on Ocular and Stem Cells Translational Research National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Martine Burtin
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Salvina Tammaccaro
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Serge Garbay
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Florence Vasseur
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Thomas Blanc
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Sophie Berissi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | | | - Evelyne Fischer
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Anne Druilhe
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Heinz Arnheiter
- Scientist Emeritus, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, United States of America
| | - Gerard Friedlander
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Marco Pontoglio
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Fabiola Terzi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
22
|
Zhang S, Yue X, Jiang F, Wang H, Liu B. Identification of an MITF gene and its polymorphisms associated with the Vibrio resistance trait in the clam Meretrix petechialis. FISH & SHELLFISH IMMUNOLOGY 2017; 68:466-473. [PMID: 28734968 DOI: 10.1016/j.fsi.2017.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 05/15/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) regulates the transcription of its target genes by binding to their promoters. In this study, an MITF gene, MpMITF was identified in the clam Meretrix petechialis. The full-length cDNA of MpMITF is 3564 bp with an ORF of 1365 bp. The deduced amino acid sequence consists of a conserved functional structure of bHLH-LZ, which could bind with E-box. The mRNA and protein expression levels of MpMITF were significantly up-regulated 6 h post-Vibrio injection. The mRNA expression of MpMITF increased on day 2 and peaked on day 10 post-Vibrio immersion. Furthermore, MpMITF expression was significantly up-regulated in most resistant families of clams (P < 0.05) but did not change significantly in most susceptive families of clams after the Vibrio immersion challenge. These results suggest that, in clams, MpMITF participates in the immune response against a Vibrio infection. Genotyping in two clam groups with different resistant levels to Vibrio parahaemolyticus (i.e., 11-R and 11-S), thirteen SNPs and five haplotypes were detected in the DNA sequence of MpMITF, of which five SNPs and two haplotypes were associated with Vibrio resistance. Four SNPs (SNP2, 5, 6 and 13) and one haplotype (Hap1) were further confirmed to be associated with Vibrio resistance in M. petechialis by association analysis in different clam families. This study deepens the understanding of MITF in marine bivalves and provides potential candidate markers for resistance selection in the clam M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengjuan Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China.
| |
Collapse
|
23
|
The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. J Transl Med 2017; 97:649-656. [PMID: 28263292 DOI: 10.1038/labinvest.2017.9] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.
Collapse
|
24
|
Jalilian N, Tabatabaiefar MA, Bahrami T, Karbasi G, Bahramian MH, Salimpoor A, Noori-Daloii MR. A Novel Pathogenic Variant in the MITF Gene Segregating with a Unique Spectrum of Ocular Findings in an Extended Iranian Waardenburg Syndrome Kindred. Mol Syndromol 2017; 8:195-200. [PMID: 28690485 DOI: 10.1159/000476020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 11/19/2022] Open
Abstract
Waardenburg syndrome (WS) is a rare genetic disorder characterized by abnormal pigmentation of the hair, skin, and iris as well as sensorineural hearing loss. WS is subdivided into 4 major types (WS1-4), where WS2 is characterized by the absence of dystopia canthorum. This study was launched to investigate clinical and molecular characteristics of WS in an extended Iranian WS2 family. A comprehensive clinical investigation was performed. Peripheral blood samples were collected and genomic DNA was extracted. Affected members of the family were studied for possible mutations within the SOX10, MITF, and SNAI2 genes. Six WS2 individuals affected from a large Iranian WS2 kindred were enrolled. All affected members carried the novel substitution c.877C>T at exon 9 in the MITF gene, which resulted in p.Arg293* at the protein level. None of the healthy members and also of 50 ethnically matched controls had this variant. In addition, a spectrum of unique ocular findings, including nystagmus, chorioretinal degeneration, optic disc hypoplasia, astigmatism, and myopia, was segregated with the mutant allele in the pedigree. Our data provide insight into the genotypic and phenotypic spectrum of WS2 in an Iranian family and could further expand the spectrum of MITF mutations and have implications for genetic counseling on WS in Iran.
Collapse
Affiliation(s)
- Nazanin Jalilian
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah
| | - Mohammad A Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan
| | - Tayyeb Bahrami
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences (USWR)
| | | | | | | | - Mohammad R Noori-Daloii
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran
| |
Collapse
|
25
|
Sun M, Xie HF, Tang Y, Lin SQ, Li JM, Sun SN, Hu XL, Huang YX, Shi W, Jian D. G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma. J Steroid Biochem Mol Biol 2017; 165:236-246. [PMID: 27378491 DOI: 10.1016/j.jsbmb.2016.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study investigated the role and mechanism of action of G protein-coupled estrogen receptor (GPER) in melanogenesis. METHODS GPER expression was detected in the A375 human melanoma cell line and B16 mouse melanoma cell line. Cell proliferation, melanin content, tyrosinase (TYR) activity, cyclic adenosine monophosphate (cAMP) level, and TYR and microphthalmia-related transcription factor (MITF) expression were measured. GPER activation was altered by agonist and antagonist treatment and its expression was downregulated by gene silencing. Estradiol-induced melanin synthesis and the activation of related signaling pathways were suppressed by inhibiting GPER via antagonist treatment. The relationship between GPER and TYR was evaluated in clinical chloasma samples by immunohistochemistry. RESULTS Upregulation of GPER in A375 cells promoted melanogenesis, favored as indicated by increases in TYR and MITF expression and TYR activity. GPER activated melanin production via the cAMP-protein kinase (PK) A pathway, suggesting that GPER plays an important role in estrogen-induced melanin synthesis. The effect of GPER activation on cAMP-MITF-TYR signaling was also demonstrated in B16 cells. A significant association was observed between GPER and TYR expression in chloasma skin lesions relative to normal skin. CONCLUSION GPER enhances melanin synthesis via cAMP-PKA-MITF-TYR signaling and modulates the effects of estrogen in melanogenesis. GPER is therefore a potential drug target for chloasma treatment.
Collapse
Affiliation(s)
- Min Sun
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Fu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shang-Qing Lin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Mao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shu-Na Sun
- Shangdong University of TCM, Shangdong, China
| | - Xing-Lin Hu
- Department of Dermatology, First People's Hospital of Chenzhou City, Chenzhou, Hunan, China
| | - Ying-Xue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Abstract
Object To identify transcript variants and expression patterns of porcine Mitf. Materials and methods A pairwise BLAST search at NCBI database was performed to deduce the structure of porcine Mitf gene. Subsequently, 5′ RACE and fluorescent quantitative RT-PCR were used to analyze the expression pattern of porcine Mitf in different tissues. Results Four transcript variants of porcine Mitf, MITF-A, MITF-H, MITF-M and MITF-SUS were identified, all sharing high homology with those in humans, except Mitf-SUS. Conclusion The sequence of porcine Mitf appear highly homologous to human MITF. However, only 4 transcript variants of porcine Mitf were identified in these minipigs, less than the 9 transcript variants in human MITF.
Collapse
|
27
|
Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015; 524:361-5. [PMID: 26168401 PMCID: PMC5086585 DOI: 10.1038/nature14587] [Citation(s) in RCA: 595] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
Abstract
Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.
Collapse
|
28
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
29
|
Lu SY, Li M, Lin YL. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res 2014; 328:32-43. [PMID: 25152440 DOI: 10.1016/j.yexcr.2014.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Transcription factors Mitf and NFATc1 share many downstream targets that are critical for osteoclastogenesis. Since RANKL signals induce/activate both NFATc1 and Mitf isoform-E (Mitf-E), a tissue-restricted Mitf isoform in osteoclasts, it is plausible that the two factors work together to promote osteoclastogenesis. Although Mitf was shown to function upstream of NFATc1 previously, this study showed that expression of Mitf had little effects on NFATc1 and NFATc1 was critical for the induction of Mitf-E. In Mitf(mi/mi) mice, the semi-dominant mutation in Mitf gene leads to arrest of osteoclastogenesis in the early stages. However, when stimulated by RANKL, the Mitf(mi/mi) preosteoclasts responded with a significant induction of NFATc1, despite that the cells cannot differentiate into functional osteoclasts. In the absence of RANKL stimulation, very high levels of NFATc1 are required to drive osteoclast development. Our data indicate that Mitf functions downstream of NFATc1 in the RANKL pathway, and it plays an important role in amplifying NFATc1-dependent osteoclastogenic signals, which contributes to the significant synergy between the two factors during osteoclastogenesis. We propose that Mitf-E functions as a tissue-specific modulator for events downstream of NFATc1 activation during osteoclastogenesis.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Mengtao Li
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA; CHS 23-087, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| | - Yi-Ling Lin
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA; Gene Regulation Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys 2014; 563:28-34. [PMID: 25111671 DOI: 10.1016/j.abb.2014.07.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 01/27/2023]
Abstract
MITF and pigmentation play important roles in both normal melanocyte and transformed melanoma cell biology. MITF is regulated by many pathways and it also regulates many targets, some of which are still being discovered and functionally validated. MITF is involved in a wide range of processes in melanocytes, including pigment synthesis and lineage survival. Pigmentation itself plays an important role as the interface between genetic and environmental factors that contribute to melanoma.
Collapse
Affiliation(s)
- Jennifer J Hsiao
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - David E Fisher
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
31
|
Capowski EE, Simonett JM, Clark EM, Wright LS, Howden SE, Wallace KA, Petelinsek AM, Pinilla I, Phillips MJ, Meyer JS, Schneider BL, Thomson JA, Gamm DM. Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation. Hum Mol Genet 2014; 23:6332-44. [PMID: 25008112 DOI: 10.1093/hmg/ddu351] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is a master regulator of pigmented cell survival and differentiation with direct transcriptional links to cell cycle, apoptosis and pigmentation. In mouse, Mitf is expressed early and uniformly in optic vesicle (OV) cells as they evaginate from the developing neural tube, and null Mitf mutations result in microphthalmia and pigmentation defects. However, homozygous mutations in MITF have not been identified in humans; therefore, little is known about its role in human retinogenesis. We used a human embryonic stem cell (hESC) model that recapitulates numerous aspects of retinal development, including OV specification and formation of retinal pigment epithelium (RPE) and neural retina progenitor cells (NRPCs), to investigate the earliest roles of MITF. During hESC differentiation toward a retinal lineage, a subset of MITF isoforms was expressed in a sequence and tissue distribution similar to that observed in mice. In addition, we found that promoters for the MITF-A, -D and -H isoforms were directly targeted by Visual Systems Homeobox 2 (VSX2), a transcription factor involved in patterning the OV toward a NRPC fate. We then manipulated MITF RNA and protein levels at early developmental stages and observed decreased expression of eye field transcription factors, reduced early OV cell proliferation and disrupted RPE maturation. This work provides a foundation for investigating MITF and other highly complex, multi-purposed transcription factors in a dynamic human developmental model system.
Collapse
Affiliation(s)
| | | | | | | | - Sara E Howden
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | | | - Isabel Pinilla
- Department of Ophthalmology, University Hospital Lozano Blesa, Zaragoza 50009, Spain, Aragon Institute of Health Sciences, Zaragoza 50009, Spain
| | | | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Bernard L Schneider
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA, Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53715, USA and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - David M Gamm
- Waisman Center, McPherson Eye Research Institute and Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA,
| |
Collapse
|
32
|
Li M, Zhu F, Hong N, Zhang L, Hong Y. Alternative transcription generates multiple Mitf isoforms with different expression patterns and activities in medaka. Pigment Cell Melanoma Res 2013; 27:48-58. [PMID: 24118994 DOI: 10.1111/pcmr.12183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is best known for distinct functions in multiple cell lineages including melanocytes, mast cells, and osteoclasts. In mammals, mitf produces multiple Mitf isoforms by alternative transcription and splicing. The fish medaka has two mitf genes, mitf1 and mitf2. Here, we report differential expression and activities of medaka Mitf isoforms. Molecular cloning identified four mitf1 variants encoding isoforms Mitf1A, MitfB, MitfH, and MitfM, and only one mitf2RNA encoding Mitf2M, which exhibited differential expression. Mitf1 isoforms and Mitf2M differed dramatically in activating the dazl and tyrosinase promoters DAZ and TYR. Interestingly, Mitf1ΔN, an N-terminus-less Mitf1 mutant form, retained activity to activate TYR but not DAZ. Importantly, Mitf1B was also sufficient for inducing melanocyte differentiation and endogenous tyrosinase RNA expression in medaka embryonic stem cells. Intriguingly, Mitf1 isoforms possessed considerable differences in inducing the expression of multiple cell lineage marker genes. Therefore, alternative mitf transcription is a conserved mechanism from fish to mammals, and medaka Mitf1 isoforms show differences in expression and activity. We conclude that differential expression of isoforms contributes to multiple distinct functions of Mitf in vertebrates.
Collapse
Affiliation(s)
- Mingyou Li
- Department of Biological Sciences, National University of Singapore, Singapore City, Singapore; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | | | | | | | | |
Collapse
|
33
|
Li M, Zhu F, Hong Y. Differential evolution of duplicated medakafish mitf genes. Int J Biol Sci 2013; 9:496-508. [PMID: 23781143 PMCID: PMC3677685 DOI: 10.7150/ijbs.4668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 05/08/2013] [Indexed: 12/22/2022] Open
Abstract
Gene duplication is a major force of evolution. One whole genome duplication (WGD) event in the fish ancestor generated genome-wide duplicates in all modern species. Coloration and patterning on the animal body surface exhibit enormous diversity, representing a mysterious and ideal system for understanding gene evolution. Surface colors and patterns are determined primarily by pigment cells in the skin and eye. Thus, microphthalmia-associated transcription factor (Mitf) as a master regulator of melanocyte development is excellent for studying the evolution of WGD-derived gene duplicates. Here we report the evolution of mitf duplicate, mitf1 and mitf2, in the fish medaka (Oryzias latipes), which encode medaka co-homologs Mitf1 and Mitf2 of the mouse Mitf. Compared to mitf1, mitf2 exhibits an accelerated sequence divergence and loses melanocytic expression in embryos at critical developmental stages. Compared to a Xiphophorus counterpart, the medaka Mitf2 displayed a reduced activity in activating melanogenic gene expression by reporter assays and RT-PCR analyses. We show that the medaka Mitf2 has the ability to induce melanocyte differentiation in medaka embryonic stem cells but at a remarkably reduced efficiency compared to the Xiphophorus counterpart. Our data suggest differential evolution of the medaka mitf duplicate, with mitf1 adopting conservation and mitf2 employing degeneration, which is different from the duplication-degeneration-complementation proposed as the mechanism to preserve many gene duplicates in zebrafish. Our finding reveals species-specific variations for mitf duplicate evolution, in agreement with enormous diversity of body coloration and patterning.
Collapse
Affiliation(s)
- Mingyou Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | |
Collapse
|
34
|
Li M, Yuan Y, Hong Y. Identification of the RNAs for transcription factor Mitf as a component of the Balbiani body. J Genet Genomics 2013; 40:75-81. [PMID: 23439406 DOI: 10.1016/j.jgg.2012.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
Balbiani body (BB) is a large distinctive organelle aggregate uniquely present in developing oocytes of diverse animal species. BB is thought as a stage-specific structure that resembles germ plasm, the cytoplasmic organelle of germ cells. The role and function of BB have remained speculative because of a highly dynamic structure and a lack of genetic and molecular data. BB has been found to contain proteins and RNAs, none of them--except the zebrafish foxH1 RNA, is or encodes a transcription factor. Here we report in the fish medaka (Oryzias latipes) that RNAs encoding microphthalmia-associated transcription factor (Mitf) are prominent components of the BB. By fluorescence in situ hybridization on ovarian section, we revealed that the transcripts of both mitf1 and mitf2 genes concentrated in the BB, in which they co-localized with the dazl RNA, a definitive BB marker highly conserved in vertebrates. Therefore, the mitf product may play dual roles in germ gene transcription and BB formation and/or function in this organism. Our data provide the second evidence that the RNA of a transcription factor can be a prominent component of the BB in a vertebrate.
Collapse
Affiliation(s)
- Mingyou Li
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
35
|
Cimadamore F, Shah M, Amador-Arjona A, Navarro-Peran E, Chen C, Huang CT, Terskikh AV. SOX2 modulates levels of MITF in normal human melanocytes, and melanoma lines in vitro. Pigment Cell Melanoma Res 2012; 25:533-6. [PMID: 22571403 DOI: 10.1111/j.1755-148x.2012.01012.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Laouari D, Burtin M, Phelep A, Bienaime F, Noel LH, Lee DC, Legendre C, Friedlander G, Pontoglio M, Terzi F. A transcriptional network underlies susceptibility to kidney disease progression. EMBO Mol Med 2012; 4:825-39. [PMID: 22711280 PMCID: PMC3494079 DOI: 10.1002/emmm.201101127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/28/2023] Open
Abstract
The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5' UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression.
Collapse
Affiliation(s)
- Denise Laouari
- INSERM U845, Centre de Recherche "Croissance et Signalisation", Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 2012; 13:1081-92. [PMID: 22131883 DOI: 10.1593/neo.11794] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
The human and Old World primate genomes possess conserved endogenous retrovirus sequences that have been implicated in evolution, reproduction, and carcinogenesis. Human endogenous retrovirus (HERV)-K with 5'LTR-gag-pro-pol-env-rec/np9-3'LTR sequences represents the newest retrovirus family that integrated into the human genome 1 to 5 million years ago. Although a high-level expression of HERV-K in melanomas, breast cancers, and teratocarcinomas has been demonstrated, the mechanism of the lineage-specific activation of the long terminal repeat (LTR) remains obscure. We studied chromosomal HERV-K expression in MeWo melanoma cells in comparison with the basal expression in human embryonic kidney 293 (HEK293) cells. Cloned LTR of HERV-K (HML-2.HOM) was also characterized by mutation and transactivation experiments. We detected multiple transcriptional initiator (Inr) sites in the LTR by rapid amplification of complementary DNA ends (5' RACE). HEK293 and MeWo showed different Inr usage. The most potent Inr was associated with a TATA box and three binding motifs of microphthalmia-associated transcription factor (MITF). Both chromosomal HERV-K expression and the cloned LTR function were strongly activated in HEK293 by transfection with MITF-M, a melanocyte/melanoma-specific isoform of MITF. Coexpression of MITF and the HERV-K core antigen was detected in retinal pigmented epithelium by an immunofluorescence analysis. Although malignant melanoma lines MeWo, G361, and SK-MEL-28 showed enhanced HERV-K transcription compared with normal melanocytes, the level of MITF-M messenger RNA persisted from normal to transformed melanocytes. Thus, MITF-M may be a prerequisite for the pigmented cell lineage-specific function of HERV-K LTR, leading to the high-level expression in malignant melanomas.
Collapse
|
38
|
Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes. Eur J Hum Genet 2012; 20:584-7. [PMID: 22258527 DOI: 10.1038/ejhg.2011.234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci.
Collapse
|
39
|
Wang P, Li Y, Hong W, Zhen J, Ren J, Li Z, Xu A. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. MOLECULAR BIOSYSTEMS 2012; 8:2924-31. [DOI: 10.1039/c2mb25228g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480:94-8. [PMID: 22012259 DOI: 10.1038/nature10539] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/02/2011] [Indexed: 12/13/2022]
Abstract
So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.
Collapse
|
41
|
Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci U S A 2011; 108:E924-33. [PMID: 21949374 DOI: 10.1073/pnas.1106351108] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyte-restricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a small-molecule strategy for suppression of the MITF oncogene in vivo.
Collapse
|
42
|
Terragni J, Nayak G, Banerjee S, Medrano JL, Graham JR, Brennan JF, Sepulveda S, Cooper GM. The E-box binding factors Max/Mnt, MITF, and USF1 act coordinately with FoxO to regulate expression of proapoptotic and cell cycle control genes by phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 signaling. J Biol Chem 2011; 286:36215-27. [PMID: 21873430 DOI: 10.1074/jbc.m111.246116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase/Akt signaling plays a critical role in cell proliferation and survival, partly by regulation of FoxO transcription factors. Previous work using global expression profiling indicated that inhibition of PI 3-kinase in proliferating cells led to induction of genes that promote cell cycle arrest and apoptosis. The upstream regulatory regions of these genes had binding sites not only for FoxO, but also for Myc/Max transcription factors. In the present study, we have addressed the role of Myc family members and related E-box-binding proteins in the regulation of these genes. Chromatin immunoprecipitations and RNA interference indicated that transcription was repressed by Max-Mnt-Sin3a-histone deacetylase complexes in proliferating cells. Inhibition of PI 3-kinase led to a loss of Max/Mnt binding and transcriptional induction by MITF and USF1, as well as FoxO. Both MITF and USF1 were activated by glycogen synthase kinase (GSK) 3, with GSK3 phosphorylation sites on USF1 identified as the previously described activating site threonine 153 as well as serine 186. siRNA against MITF as well as against FoxO3a protected cells from apoptosis following PI 3-kinase inhibition. These results define a novel E-box-regulated network that functions coordinately with FoxO to regulate transcription of apoptotic and cell cycle regulatory genes downstream of PI 3-kinase/Akt/GSK3 signaling.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Haq R, Fisher DE. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 2011; 29:3474-82. [PMID: 21670463 DOI: 10.1200/jco.2010.32.6223] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Members of the micropthalmia (MiT) family of transcription factors (MITF, TFE3, TFEB, and TFEC) are physiologic regulators of cell growth, differentiation, and survival in several tissue types. Because their dysregulation can lead to melanoma, renal cell carcinoma, and some sarcomas, understanding why these genes are co-opted in carcinogenesis may be of general utility. Here we describe the structure of the MiT family of proteins, the ways in which they are aberrantly activated, and the molecular mechanisms by which they promote oncogenesis. We discuss how meaningful understanding of these mechanisms can be used to elucidate the oncogenic process. Because the expression of these proteins is essential for initiating and maintaining the oncogenic state in some cancer types, we propose ways that they can be exploited to prevent, diagnose, and rationally treat these malignancies.
Collapse
Affiliation(s)
- Rizwan Haq
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | | |
Collapse
|
44
|
Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma predisposition in pigs. Mamm Genome 2011; 22:602-12. [DOI: 10.1007/s00335-011-9334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/12/2011] [Indexed: 11/25/2022]
|
45
|
Lee SH, Lee JH, Lee JH, Kim DK. Involvement of MITF-A, an alternative isoform of mi transcription factor, on the expression of tryptase gene in human mast cells. Exp Mol Med 2010; 42:366-75. [PMID: 20513998 DOI: 10.3858/emm.2010.42.5.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/03/2010] [Indexed: 11/04/2022] Open
Abstract
Mast cells play a central role in the initiation and development of allergic diseases through release of various mediators. Tryptase has been known to be a key mediator in mast cell-mediated inflammatory reactions. In the present study, we investigated whether the transcription of tryptase gene in human mast cells was induced by microphthalmia (mi)-associated transcription factor (MITF). We observed that the human CD34+ progenitor-derived cultured mast cells and human mast cell line HMC-1 expressed strongly the transcripts of tryptase-beta1 and MITF-A, which is a MITF alterative splicing isoform. The transcriptional activity of tryptase gene was specifically higher in HMC-1 cells compared to the tryptase-negative cells. Using mutant constructs of tryptase promoter, we observed that two E-box (CANNTG) motifs including between -817 to -715 and -421 to -202 are able to involve in the transactivation of tryptase gene by MITF-A. In addition, the binding of these motifs-containing oligonucleotides to MITF proteins was detectable by EMGA using the nuclear extracts of HMC-1 cells and anti-MITF mAb. The overexpression of MITF-A elevated tryptase production by HMC-1 cells, while the introduction of specific siRNA against MITF attenuated the expression and enzymatic activity of tryptase. These data suggest that MITF might play a role in regulating the transcription of tryptase gene in human mast cells.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Immunology and Institute of Medical Sciences, Chonbuk National University Medical School Jeonju 561-756, Korea
| | | | | | | |
Collapse
|
46
|
Lu SY, Wan HC, Li M, Lin YL. Subcellular localization of Mitf in monocytic cells. Histochem Cell Biol 2010; 133:651-8. [PMID: 20437053 PMCID: PMC2869019 DOI: 10.1007/s00418-010-0703-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2010] [Indexed: 10/27/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is present in similar amounts in macrophages and osteoclasts, Mitf-E is almost nondetectable in macrophages, but its expression is significantly up-regulated during osteoclastogenesis. In addition to their different expression profiles, the two isoforms are drastically different in their abilities to support osteoclastogenesis, despite sharing all known functional domains. Unlike Mitf-A, small amounts of Mitf-E are present in nuclear lysates unless chromatin is digested/sheared during the extraction. Based on these data, we propose a model in which Mitf-E is induced during osteoclastogenesis and is closely associated with chromatin to facilitate its interaction with target promoters; therefore, Mitf-E has a stronger osteoclastogenic activity. Mitf-A is a weaker osteoclastogenic factor, but activated Mitf-A alone is not sufficient to fully support osteoclastogenesis. Therefore, this receptor activator for nuclear factor-kappaB ligand (RANKL)-induced Mitf phenomenon seems to play an important role during osteoclastogenesis. Although the current theory indicates that Mitf and its binding partner Tfe3 are completely redundant in osteoclasts, using RNA interference, we demonstrated that Mitf has a distinct role from Tfe3. This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Section of Oral Pathology, Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
48
|
Wang Y, Radfar S, Liu S, Riker AI, Khong HT. Mitf-Mdel, a novel melanocyte/melanoma-specific isoform of microphthalmia-associated transcription factor-M, as a candidate biomarker for melanoma. BMC Med 2010; 8:14. [PMID: 20163701 PMCID: PMC2839965 DOI: 10.1186/1741-7015-8-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma incidence is on the rise and advanced melanoma carries an extremely poor prognosis. Treatment options, including chemotherapy and immunotherapy, are limited and offer low response rates and transient efficacy. Thus, identification of new melanocyte/melanoma antigens that serve as potential novel candidate biomarkers in melanoma is an important area for investigation. METHODS Full length MITF-M and its splice variant cDNA were cloned from human melanoma cell line 624 mel by reverse transcription polymerase chain reaction (RT-PCR). Expression was investigated using regular and quantitative RT-PCR in three normal melanocytes (NHEM), 31 melanoma cell lines, 21 frozen melanoma tissue samples, 18 blood samples (peripheral blood mononuclear cell; PBMC) from healthy donors and 12 non-melanoma cancer cell lines, including three breast, five glioma, one sarcoma, two kidney and one ovarian cancer cell lines. RESULTS A novel splice variant of MITF-M, which we named MITF-Mdel, was identified. The predicted MITF-Mdel protein contains two in frame deletions, 56- and 6- amino acid deletions in exon 2 (from V32 to E87) and exon 6 (from A187 to T192), respectively. MITF-Mdel was widely expressed in melanocytes, melanoma cell lines and tissues, but almost undetectable in non-melanoma cell lines or PBMC from healthy donors. Both isoforms were expressed significantly higher in melanoma tissues than in cell lines. Two of 31 melanoma cell lines expressed only one isoform or the other. CONCLUSION MITF-Mdel, a novel melanocyte/melanoma-specific isoform of MITF-M, may serve as a potential candidate biomarker for diagnostic and follow-up purposes in melanoma.
Collapse
Affiliation(s)
- Yixiang Wang
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | | | | | | |
Collapse
|
49
|
Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31:391-406. [DOI: 10.1002/humu.21211] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Martignoni G, Pea M, Reghellin D, Gobbo S, Zamboni G, Chilosi M, Bonetti F. Molecular pathology of lymphangioleiomyomatosis and other perivascular epithelioid cell tumors. Arch Pathol Lab Med 2010; 134:33-40. [PMID: 20073603 DOI: 10.5858/2008-0542-rar1.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Lymphangioleiomyomatosis (LAM) is a cystic lung disease that can be included in the wide group of proliferative lesions named PEComas (perivascular epithelioid cell tumors). These proliferative tumors are characterized by the coexpression of myogenic and melanogenesis-related markers. In all these lesions, genetic alterations related to the tuberous sclerosis complex (TSC) have been demonstrated. Striking improvements in the understanding of the genetic basis of this autosomal dominant genetic disease are coupled to the understanding of the mechanisms that link the loss of TSC1 (9q34) or TSC2 (16p13.3) genes with the regulation of the Rheb/m-TOR/p70S6K pathway. These data have opened a new era in the comprehension of the pathogenesis of LAM and have also suggested new therapeutic strategies for this potentially lethal disease. OBJECTIVE To present and discuss the pathologic and molecular features of LAM within the spectrum of PEComas, providing a rational approach to their diagnosis. DATA SOURCES The published literature and personal experience. CONCLUSIONS The inclusion of LAM within the PEComa category is supported by a variety of biologic data and can significantly help in providing a comprehensive view of this interesting and clinically relevant group of lesions. The demonstration of molecular alterations of the mTOR pathway in LAM and other PEComas represents a rational basis for innovative therapeutic approaches with inhibitors of mTOR signaling.
Collapse
|