1
|
Gao F, Mei X, Li Y, Guo J, Shen Y. Update on the Roles of Polyamines in Fleshy Fruit Ripening, Senescence, and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:610313. [PMID: 33664757 PMCID: PMC7922164 DOI: 10.3389/fpls.2021.610313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 05/17/2023]
Abstract
Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
| | - Xurong Mei
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Jiaxuan Guo,
| | - Yuanyue Shen
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- Yuanyue Shen, ;
| |
Collapse
|
2
|
Xu J, Yang J, Xu Z, Zhao D, Hu X. Exogenous spermine-induced expression of SlSPMS gene improves salinity-alkalinity stress tolerance by regulating the antioxidant enzyme system and ion homeostasis in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:79-92. [PMID: 33096513 DOI: 10.1016/j.plaphy.2020.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The study tested the function of exogenous spermine (Spm) in resisting salinity-alkalinity stress in tomato seedlings and found that tomato Spm synthase gene (SlSPMS) was involved in this regulation. The tomato seedlings cultivated in normal conditions or salinity-alkalinity conditions were irrigated with 100 ml one strength Hoagland nutrient solution 100 ml mixed solution (5 ml 300 mmol/L NaCl, 45 ml 300 mmol/L Na2SO4, 45 ml 300 mmol/L NaHCO3, and 5 ml 300 mmol/L Na2CO3 (pH = 8.90)) every 2 days, respectively. The 0.5 mM Spm pretreatment improved superoxide dismutase (SOD; EC 1.15.1.1) activity, catalase (CAT; EC 1.11.1.6) activity, ascorbate peroxidase (APX; EC 1.11.1.11) activity, and glutathione reductase (GR; EC 1.6.4.2) activity and decreased endogenous hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content, and relative electrical conductivity (REC) in tomato leaves. Na+ content declined and K+ concentration rose in tomato seedlings when pre-treated with Spm. However the results showed that under salinity-alkalinity stress, silencing of SlSPMS with virus-induced gene silencing had lower antioxidant enzyme activities and higher Na+ content and lower K+ content than normal tomato seedlings, meaning that they had low salinity-alkalinity tolerance. Exogenous Spm could not reconstruct the tolerance to salinity-alkalinity stress in SlSPMS gene-silencing tomato seedlings. Taken together, exogenous Spm could induce the expression level of SlSPMS, which regulated the antioxidant enzyme system and ion homeostasis in tomato seedlings living in salinity-alkalinity environment, thereby improving the ability of tomato seedlings to resist salinity-alkalinity stress.
Collapse
Affiliation(s)
- Jiwen Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jianyu Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Dingkang Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
4
|
Imamura T, Fujita K, Tasaki K, Higuchi A, Takahashi H. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora. Biochem Biophys Res Commun 2015; 463:781-6. [PMID: 26056006 DOI: 10.1016/j.bbrc.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Keisuke Tasaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Atsumi Higuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| |
Collapse
|
5
|
Pathak MR, Teixeira da Silva JA, Wani SH. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM CROPS & FOOD 2014; 5:87-96. [PMID: 24710064 DOI: 10.4161/gmcr.28774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play.
Collapse
Affiliation(s)
- Malabika Roy Pathak
- Desert and Arid Zone Sciences Program; College of Graduate Studies; Arabian Gulf University; Manama, Kingdom of Bahrain
| | | | - Shabir H Wani
- Division of Genetics and Plant Breeding; SKUAST-K; Shalimar, Srinagar, Kashmir, India
| |
Collapse
|
6
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
7
|
Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai MA, Kusano T, Takahashi Y. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:527-33. [PMID: 20137962 DOI: 10.1016/j.plaphy.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/21/2009] [Accepted: 01/14/2010] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana was thought to contain two spermine synthase genes, ACAULIS 5 (ACL5) and SPMS. Recent investigations, however, revealed that the ACL5 gene encodes thermospermine synthase. In this study, we have established a simple method to separate two isomers of tetraamine, spermine and thermospermine, in extracts from plant tissues of less than 500 mg. Polyamines (PAs) extracted from plant tissues were benzoylated, and the derivatives were completely resolved by high-performance liquid chromatography on a C18 reverse-phase column, by eluting with 42% (v/v) acetonitrile in water in an isocratic manner at 30 degrees C and monitoring at 254 nm. The relevance of the method was confirmed by co-chromatography with respective PAs and by the PA analysis of the single- and double-mutants of acl5 and spms, which could not synthesize thermospermine and/or spermine, respectively. Furthermore, with this method, we monitored the thermospermine contents in various tissues of A. thaliana and found that stems and flowers contain two- to three-fold more thermospermine compared to whole seedlings and mature leaves. The presence of thermospermine was confirmed in Oryza sativa and Lycopersicon pesculentum. Finally we addressed whether salinity stress changes the contents of PAs including thermospermine in Arabidopsis.
Collapse
Affiliation(s)
- Yukie Naka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Rodríguez-Kessler M, Delgado-Sánchez P, Rodríguez-Kessler GT, Moriguchi T, Jiménez-Bremont JF. Genomic organization of plant aminopropyl transferases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:574-590. [PMID: 20381365 DOI: 10.1016/j.plaphy.2010.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin.
Collapse
Affiliation(s)
- Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
9
|
Trénor M, Perez-Amador MA, Carbonell J, Blázquez MA. Expression of polyamine biosynthesis genes during parthenocarpic fruit development in Citrus clementina. PLANTA 2010; 231:1401-11. [PMID: 20336313 DOI: 10.1007/s00425-010-1141-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/25/2010] [Indexed: 05/23/2023]
Abstract
Polyamines have been attributed a general role in fruit development in several plants like pea and tomato. To investigate the involvement of these compounds in parthenocarpic fruit development in Citrus clementina, we have isolated three genes encoding aminopropyl transferases in this species: CcSPDS, CcSPM1 and CcACL5. The unambiguous identity of the proteins encoded by these genes was confirmed by phylogenetic analysis and by heterologous expression in yeast mutants deficient in aminopropyl transferase activity. The expression of these genes in C. clementina is not restricted to ovaries and fruits, but it is also detectable all throughout the plant. More importantly, gibberellin-induced parthenocarpic fruit set caused a decrease in CcSPDS expression in ovaries, paralleled by a decrease in spermidine; while the expression of CcSPM1 and CcACL5 was basically unaffected, resulting in the maintenance of spermine concentration during early fruit development. In addition, the variation in putrescine content was paralleled by changes in the expression of one of the two putative CcODC paralogs.
Collapse
Affiliation(s)
- Marta Trénor
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
10
|
Rodríguez-Kessler M, Jiménez-Bremont JF. Zmspds2 maize gene: Coding a spermine synthase? PLANT SIGNALING & BEHAVIOR 2008; 3:551-3. [PMID: 19704464 PMCID: PMC2634492 DOI: 10.4161/psb.3.8.5697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/06/2008] [Indexed: 05/08/2023]
Abstract
During the last decade, growing evidence has arisen referring the importance of the proper regulation of plant polyamine metabolism in the response to stress conditions. Being the activation of signaling pathways, the stabilization of anionic molecules and prevention of their degradation, as well as the free radical scavenger properties of polyamines some possible mechanisms exerted by these amines. Accumulation of polyamines (putrescine, spermidine and spermine) has been associated to plant tolerance to a wide array of environmental stresses. The synthesis of spermidine and spermine is mediated by aminopropyltransferases (spermidine and spermine synthases) which constitute a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor, and putrescine or spermidine as an amino acceptor. We recently reported the effect of salt stress on the expression of aminopropyltransferase genes in maize seedlings. Our data revealed a time and NaCl dependent regulation of the Zmspds2 and Zmspds1 genes, possibly mediated by abscisic acid, since these genes were regulated at the transcriptional level by this plant hormone. In this addendum, we show that the Zmspds2 gene initially classified as spermidine synthase might encode a spermine synthase based on an in silico analysis. This is discussed in terms of protein homologies and specific amino acid substitutions between aminopropyltransferase enzymes.
Collapse
Affiliation(s)
- Margarita Rodríguez-Kessler
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí, San Luis Potosí México
| | | |
Collapse
|
11
|
Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: essential factors for growth and survival. PLANTA 2008; 228:367-81. [PMID: 18594857 DOI: 10.1007/s00425-008-0772-7] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/10/2008] [Indexed: 05/18/2023]
Abstract
Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.
Collapse
Affiliation(s)
- T Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Karahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | | | | | | |
Collapse
|
12
|
Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA. Evolutionary Diversification in Polyamine Biosynthesis. Mol Biol Evol 2008; 25:2119-28. [DOI: 10.1093/molbev/msn161] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. PLANTA 2008; 228:37-49. [PMID: 18320213 DOI: 10.1007/s00425-008-0717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/15/2008] [Indexed: 05/10/2023]
Abstract
The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).
Collapse
Affiliation(s)
- R C Efrose
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
14
|
He L, Ban Y, Miyata SI, Kitashiba H, Moriguchi T. Apple aminopropyl transferase, MdACL5 interacts with putative elongation factor 1-α and S-adenosylmethionine synthase revealed. Biochem Biophys Res Commun 2008; 366:162-7. [DOI: 10.1016/j.bbrc.2007.11.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/20/2007] [Indexed: 11/28/2022]
|
15
|
Knott JM, Römer P, Sumper M. Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Lett 2007; 581:3081-6. [PMID: 17560575 DOI: 10.1016/j.febslet.2007.05.074] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/23/2007] [Accepted: 05/27/2007] [Indexed: 11/16/2022]
Abstract
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.
Collapse
Affiliation(s)
- Jürgen M Knott
- Lehrstuhl Biochemie I, Universität Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
16
|
Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 2007; 17:251-63. [PMID: 17549601 DOI: 10.1007/s11248-007-9098-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 04/11/2007] [Indexed: 11/30/2022]
Abstract
An apple spermidine synthase (SPDS) gene (MdSPDS1) was verified to encode a functional protein by the complementation of the spe3 yeast mutant, which lacks the SPDS gene. To justify our hypothesis that apple SPDS is involved in abiotic stress responses and to obtain transgenic fruit trees tolerant to abiotic stresses as well, MdSPDS1-over-expressing transgenic European pear (Pyrus communis L. 'Ballad') plants were created by Agrobacterium-mediated transformation. A total of 21 transgenic lines showing various spermidine (Spd) titers and MdSPDS1 expression levels were obtained. Selected lines were exposed to salt (150 mM NaCl), osmosis (300 mM mannitol), and heavy metal (500 microM CuSO4) stresses for evaluating their stress tolerances. Transgenic line no. 32, which was revealed to have the highest Spd accumulation and expression level of MdSPDS1, showed the strongest tolerance to these stresses. When growth increments, electrolyte leakage (EL), and values of thiobarbituric acid reactive substances (TBARS) were monitored, line no. 32 showed the lowest growth inhibition and the least increase in EL or TBARS under stress conditions. Spd titers in wild-type and transgenic lines showed diverse changes upon stresses, and these changes were not consistent with the changes in MdSPDS1 expressions. Moreover, there were no differences in the sodium concentration in the shoots between the wild type and line no. 32, whereas the copper concentration was higher in the wild type than in line no. 32. Although the mechanism(s) underlying the involvement of polyamines in stress responses is not known, these results suggest that the over-expression of the SPDS gene substantially increased the tolerance to multiple stresses by altering the polyamine titers in pear. Thus, MdSPDS1-over-expressing transgenic pear plants could be used to improve desert land and/or to repair polluted environments.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Chromatography, High Pressure Liquid
- DNA Primers
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant/physiology
- Genetic Complementation Test
- Malus/drug effects
- Malus/enzymology
- Malus/growth & development
- Metals, Heavy/pharmacology
- Osmosis
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Polyamines/metabolism
- Pyrus/enzymology
- Pyrus/growth & development
- RNA
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharomyces cerevisiae
- Sodium Chloride/pharmacology
- Spermidine Synthase/genetics
- Thiobarbituric Acid Reactive Substances/metabolism
- Transformation, Genetic
Collapse
|
17
|
Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T. Polyamines and their ability to provide environmental stress tolerance to plants. PLANT BIOTECHNOLOGY 2007. [PMID: 0 DOI: 10.5511/plantbiotechnology.24.117] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ji-Hong Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University
| | | | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University
| | - Yusuke Ban
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Takaya Moriguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba
- National Institute of Fruit Tree Science, Tsukuba
| |
Collapse
|