1
|
Sauer N, Matkowski I, Bodalska G, Murawski M, Dzięgiel P, Calik J. Prognostic Role of Prolactin-Induced Protein (PIP) in Breast Cancer. Cells 2023; 12:2252. [PMID: 37759471 PMCID: PMC10527336 DOI: 10.3390/cells12182252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Prolactin-inducible protein (PIP), also referred to as gross cystic disease fluid protein 15 (GCDFP-15), has been a trending topic in recent years due to its potential role as a specific marker in breast cancer. PIP binds to aquaporin-5 (AQP5), CD4, actin, fibrinogen, β-tubulin, serum albumin, hydroxyapatite, zinc α2-glycoprotein, and the Fc fragment of IgGs, and the expression of PIP has been demonstrated to be modulated by various cytokines, including IL4/13, IL1, and IL6. PIP gene expression has been extensively studied due to its captivating nature. It is influenced by various factors, with androgens, progesterone, glucocorticosteroids, prolactin, and growth hormone enhancing its expression while estrogens suppress it. The regulatory mechanisms involve important proteins such as STAT5A, STAT5B, Runx2, and androgen receptor, which collaborate to enhance PIP gene transcription and protein production. The expression level of PIP in breast cancer is dependent on the tumor stage and subtype. Higher expression is observed in early-stage tumors of the luminal A subtype, while lower expression is associated with luminal B, basal-like, and triple-negative subtypes, which have a poorer prognosis. PIP expression is also correlated with apocrine differentiation, hormone receptor positivity, and longer metastasis-free survival. PIP plays a role in supporting the immune system's antitumor response during the early stages of breast cancer development. However, as cancer progresses, the protective role of PIP may become less effective or diminished. In this work, we summarized the clinical significance of the PIP molecule in breast cancer and its potential role as a new candidate for cell-based therapies.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Old Town Clinic, 50-127 Wroclaw, Poland
| | - Igor Matkowski
- Jan Mikulicz-Radecki University Teaching Hospital, Borowska 213, 50-556 Wroclaw, Poland;
| | - Grażyna Bodalska
- Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marek Murawski
- 1st Department and Clinic of Gynecology and Obstetrics, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368 Wroclaw, Poland;
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Jacek Calik
- Old Town Clinic, 50-127 Wroclaw, Poland
- Department of Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Li M, Wu M, Qin Y, Liu H, Tu C, Shen B, Xu X, Chen H. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ 2020; 8:e9971. [PMID: 33194371 PMCID: PMC7646293 DOI: 10.7717/peerj.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma. Methods Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and analyses, we determined the biological processes associated with these DEPs. Key protein glucose-6-phosphate dehydrogenase (G6PD) was verified by enzyme linked immunosorbent assay (ELISA). Results We found 46 DEPs in serum samples of children with asthma vs. children without asthma. Among these DEPs, 12 proteins were significantly (>1.5 fold change) upregulated and 34 proteins were downregulated. The results of GO analyses showed that the DEPs were mainly involved in binding, the immune system, or responding to stimuli or were part of a cellular anatomical entity. In the KEGG signaling pathway analysis, most of the downregulated DEPs were associated with cardiomyopathy, phagosomes, viral infections, and regulation of the actin cytoskeleton. The results of a COG analysis showed that the DEPs were primarily involved in signal transduction mechanisms and posttranslational modifications. These DEPs were associated with and may play important roles in the immune response, the inflammatory response, extracellular matrix degradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment. Conclusion After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Liu
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Hegarty DM, David LL, Aicher SA. Lacrimal Gland Denervation Alters Tear Protein Composition and Impairs Ipsilateral Eye Closures and Corneal Nociception. Invest Ophthalmol Vis Sci 2019; 59:5217-5224. [PMID: 30372750 PMCID: PMC6203219 DOI: 10.1167/iovs.18-25267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose To evaluate spontaneous and evoked ocular sensory responses in rats after denervation of the lacrimal gland, as well as protein changes in tears that may mediate functional changes. Methods Sprague-Dawley rats served as subjects. The left lacrimal gland was partially denervated with saporin toxin conjugated to p75. Unilateral and bilateral eye closures (winks and blinks) and grooming behaviors were measured weekly. Nociceptive responses were evoked by ocular application of menthol; tear production was assessed using the phenol thread test. Relative changes in tear protein abundances were measured using a Tandem Mass Tagging approach. Results Denervation of the lacrimal gland reduced eye closure behavior, particularly in the ipsilateral eye, and eye wipe responses to noxious menthol were also reduced. Tear volume did not change, but tear protein composition was altered. Proteins implicated in the structural integrity of epithelial cells and in protective functions were reduced by lacrimal denervation, including keratins, serotransferrin, and beta-defensin. Other proteins that may modulate TRPM8 channels and alter sensory neuronal function were reduced, including arachidonate 15-lipoxygenase B. A low-abundance protein that responds to oxidative stress and injury, proteasome subunit beta type 10, was upregulated in denervated rats. Conclusions Denervation of the lacrimal gland causes long-lasting hypoalgesia, impairs the blink response, and alters tear proteins. Tear proteins were altered without changing tear volume. We speculate that impaired TRPM8 function in corneal sensory nerves may contribute to ocular hypoalgesia, supporting growing evidence that this transduction molecule is important for both nociceptive and spontaneous blinking behaviors.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
5
|
Pieragostino D, Bucci S, Agnifili L, Fasanella V, D'Aguanno S, Mastropasqua A, Ciancaglini M, Mastropasqua L, Ilio CD, Sacchetta P, Urbani A, Boccio PD. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma. ACTA ACUST UNITED AC 2012; 8:1017-28. [DOI: 10.1039/c1mb05357d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Trueba AF, Mizrachi D, Auchus RJ, Vogel PD, Ritz T. Effects of psychosocial stress on the pattern of salivary protein release. Physiol Behav 2011; 105:841-9. [PMID: 22056539 DOI: 10.1016/j.physbeh.2011.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Previous research suggests that acute stress can increase the release of immune-relevant proteins in saliva. However, no attempts have been made to examine a wider range of salivary proteins in response to stress. In this study, we identified and quantified changes in the pattern of salivary protein release in a 45 min time period following the Trier Social Stress Test (TSST) in 12 asthmatic and 13 healthy participants. Proteins were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The relative protein amounts were quantified using the Image J software (NIH), and identified and characterized using mass spectroscopy. Negative affect was increased immediately after stress in both groups. The results showed that alpha amylase, cystatin S and light chain IgA were increased after the TSST and significant increases in glutathione S-transferase and prolactin inducible protein were also observed. Asthma patients showed responses similar to healthy controls, but had a tendency toward overall lower alpha amylase levels. Our findings suggest that a variety of proteins relevant to mucosal immunity are elevated following acute psychosocial stress, including glutathione S-transferase and prolactin inducible protein, which had not been characterized in this context before.
Collapse
Affiliation(s)
- Ana F Trueba
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Dallas, TX 75206, USA.
| | | | | | | | | |
Collapse
|
7
|
Hassan MI, Naiyer A, Ahmad F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol 2009; 136:333-50. [PMID: 20033706 DOI: 10.1007/s00432-009-0751-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/09/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND The human fragile histidine triad (FHIT) gene is a putative tumor suppressor gene, which is located at chromosome region 3p14.2. It was suggested that the loss of heterozygosity (LOH), homozygous deletions, and abnormal expression of the FHIT gene were involved in several types of human malignancies. MATERIALS AND METHODS To determine the role of FHIT in various cancers, we have performed structural and functional analysis of FHIT in detail. RESULTS AND DISCUSSION The protein FHIT catalyzes the Mg(2+) dependent hydrolysis of P1-5 cent-O-adenosine-P3-5 cent-O-adenosine triphosphate, Ap3A, to AMP, and ADP. The reaction is thought to follow a two-step mechanism. Histidine triad proteins, named for a motif related to the sequence H-cent-H-cent-H-cent-cent- (cent, a hydrophobic amino acid), belong to superfamily of nucleotide hydrolases and transferases. This enzyme acts on the R-phosphate of ribonucleotides, and contain a approximately 30-kDa domain that is typically a homodimer of approximately 15 kDa polypeptides with catalytic site. CONCLUSION Here we have gathered information is known about biological activities of FHIT, the structural and biochemical bases for their functions. Our approach may provide a comparative framework for further investigation of FHIT.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | | |
Collapse
|