1
|
Byun SH, Kwon M, Lee SM, Noh H, Yoon K. PACT increases mammalian embryonic neural stem cell properties by facilitating activation of the notch signaling pathway. Biochem Biophys Res Commun 2019; 513:392-397. [DOI: 10.1016/j.bbrc.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
|
2
|
Huang K, Qi G, Sun Z, Liu X, Xu X, Wang H, Wu Z, Wan Y, Hu C. Ctenopharyngodon idella IRF2 and ATF4 down-regulate the transcriptional level of PRKRA. FISH & SHELLFISH IMMUNOLOGY 2017; 64:155-164. [PMID: 28263879 DOI: 10.1016/j.fsi.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/17/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a protective protein which regulates the adaptation of cells to ER stress and virus-stimulated signaling pathways by activating PKR. In the present study, a grass carp (Ctenopharyngodon idella) PRKRA full-length cDNA (named CiPRKRA, KT891991) was cloned and identified. The full-length cDNA is comprised of a 5' UTR (36 bp), a 3' UTR (350 bp) and the longest ORF (882 bp) encoding a polypeptide of 293 amino acids. The deduced amino acid sequence of CiPRKRA contains three typical dsRNA binding motifs (dsRBM). Phylogenetic tree analysis revealed a closer evolutionary relationship of CiPRKRA with other fish PRKRA, especially with Danio rerio PRKRA. qRT-PCR showed that CiPRKRA was significantly up-regulated after stimulation with tunicamycin (Tm) and Poly I:C in C. idella kidney (CIK) cells. To further study its transcriptional regulation, the partial promoter sequence of CiPRKRA (1463 bp) containing one ISRE and one CARE was cloned by Tail-PCR. Subsequently, grass carp IRF2 (CiIRF2) and ATF4 (CiATF4) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind Resin. In vitro, both CiIRF2 and CiATF4 bound to CiPRKRA promoter with high affinity by gel mobility shift assays, revealing that IRF2 and ATF4 might be potential transcriptional regulatory factors for CiPRKRA. Dual-luciferase reporter assays were applied to further investigate the transcriptional regulation of CiPRKRA in vivo. Recombinant plasmid of pGL3-PRKRAPro was constructed and transiently co-transfected into CIK cells with pcDNA3.1-CiIRF2 and pcDNA3.1-CiATF4, respectively. The results showed that both CiIRF2 and CiATF4 significantly decreased the luciferase activity of pGL3-PRKRAPro, suggesting that they play a negative role in CiPRKRA transcription.
Collapse
Affiliation(s)
- Keyi Huang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Guoqin Qi
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiancheng Liu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yiqi Wan
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Ultraconserved region-containing Transformer 2β4 controls senescence of colon cancer cells. Oncogenesis 2016; 5:e213. [PMID: 27043659 PMCID: PMC4848834 DOI: 10.1038/oncsis.2016.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/23/2023] Open
Abstract
Ultraconserved regions (UCRs) are >200 bp genomic segments with perfect human-to-rodent sequence identity. Transcribed UCRs constitute a new category of noncoding RNAs whose functions remain poorly understood. The human transformer 2β (TRA2B) gene contains a 419-bp UCR spanning the 276-bp exon 2 and its neighboring introns. TRA2B exon 2 has premature stop codons, whereas an exon 2-containing splice variant (TRA2β4) was expressed preferentially in the nuclei of human colon cancer cells. TRA2β4 knockdown p53-independently stimulated CDKN1A transcription and increased p21, resulting in the appearance of senescent cells. Biotin pull-down and RNA immunoprecipitation assays revealed that TRA2β4 interacted with Sp1 through a Sp1-binding sequence (485-GGGG-488) in a stem-loop structure of exon 2. Mutation of this sequence (485-AAGG-488) disrupted the stem-loop structure, blocked the interaction with Sp1 and increased CDKN1A transcription. Overexpression of TRA2β4 significantly decreased CDKN1A mRNA levels and accelerated cell growth, but the introduction of the mutation in the Sp1-binding sequence completely canceled these effects. Taken together, TRA2β4 may sequester Sp1 from occupying promoters of target genes including CDKN1A, promoting cell growth by interrupting the senescence-related gene expression program. This novel function of TRA2β4 may uncover an oncogenic function of transcribed UCRs.
Collapse
|
4
|
Qi Y, Zhang M, Li H, Frank JA, Dai L, Liu H, Chen G. MicroRNA-29b regulates ethanol-induced neuronal apoptosis in the developing cerebellum through SP1/RAX/PKR cascade. J Biol Chem 2014; 289:10201-10. [PMID: 24554719 DOI: 10.1074/jbc.m113.535195] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Neuronal loss is a prominent etiological factor for fetal alcohol spectrum disorders. The cerebellum is one of the areas in the developing central nervous system that is most sensitive to ethanol, especially during the temporal window of ethanol vulnerability. MicroRNAs are small, non-coding RNAs capable of regulating diverse cellular functions including apoptosis. Ethanol exposure has been shown to interfere with the expression of microRNAs. However, the role of microRNAs in ethanol neurotoxicity is still not clear. In the present study, we identified a particular microRNA, miR-29b, as a novel target of ethanol in the developing cerebellar granule neurons. We discovered that ethanol exposure suppressed miR-29b and induced neuronal apoptosis. Overexpression of miR-29b rendered neurons protection against ethanol-induced apoptosis. Furthermore, our data indicated that miR-29b mediated ethanol neurotoxicity through the SP1/RAX/PKR cascade. More importantly, the expression of miR-29b is developmentally regulated, which may account for, at least partially, the temporal window of ethanol sensitivity in the developing cerebellum.
Collapse
Affiliation(s)
- Yuanlin Qi
- From the Department of Molecular and Biomedical Pharmacology and
| | | | | | | | | | | | | |
Collapse
|
5
|
Paquet C, Mouton-Liger F, Meurs EF, Mazot P, Bouras C, Pradier L, Gray F, Hugon J. The PKR activator PACT is induced by Aβ: involvement in Alzheimer's disease. Brain Pathol 2011; 22:219-29. [PMID: 21790829 DOI: 10.1111/j.1750-3639.2011.00520.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques made of Aβ peptide, neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. The pro-apoptotic kinase PKR can be activated by Aβ and can phosphorylate tau protein via GSK3β kinase activation. The activated form of PKR (pPKR) accumulates in affected neurons and could participate in neuronal degeneration in AD. The mechanism of abnormal PKR activation in AD is not elucidated but could be linked to the PKR activator PACT. PACT stainings, and levels were assessed in the brains of AD patients and in APP/PS1 knock-in transgenic mice and in cell cultures exposed to stresses. We showed that PACT and pPKR colocalizations are enhanced in AD brains. Their levels are increased and correlated in AD and APP/PS1 knock-in mice brains. In human neuroblastoma cells exposed to Aβ, tunicamycin or H2O2, PACT and pPKR concentrations are increased. PACT then PKR inhibitions indicate that PACT is upstream of PKR activation. Our findings demonstrate that PACT levels are enhanced in AD brains and could partly be caused by the action of Aβ. In addition, PACT participates in PKR activation. The PACT-PKR pathway represents a potential link between Aβ accumulation, PKR activation and tau phosphorylation.
Collapse
Affiliation(s)
- Claire Paquet
- Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Silva VAO, Polesskaya A, Sousa TA, Corrêa VMA, André ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011; 17:2228-40. [PMID: 21897745 PMCID: PMC3164688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2010] [Accepted: 08/15/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. METHODS Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. RESULTS We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. CONCLUSIONS Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.
Collapse
Affiliation(s)
- Viviane A. O. Silva
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anna Polesskaya
- University Paris-Sud CNRS, FRE 2944, University Paris-Sud, Villejuif, France
| | - Thaís A. Sousa
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vani M. A. Corrêa
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nayara Delgado André
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana I. Reis
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isis C. Kettelhut
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Annick Harel-Bellan
- University Paris-Sud CNRS, FRE 2944, University Paris-Sud, Villejuif, France
| | - Fernando L. De Lucca
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Lin L, Pan B, Jiang H, Zhuang H, Zhao Y, Guo D, Yu D. Mutational analysis of PACT gene in Chinese patients with microtia. Am J Med Genet A 2011; 155A:906-10. [DOI: 10.1002/ajmg.a.32821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2008] [Accepted: 02/08/2009] [Indexed: 11/07/2022]
|
8
|
[Monogenetic dystonia: revisiting the dopaminergic hypothesis]. Rev Neurol (Paris) 2010; 166:389-99. [PMID: 19836812 DOI: 10.1016/j.neurol.2009.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2009] [Revised: 06/10/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
Abstract
Dystonias are clinically and genetically heterogeneous neurological disorders that affect movement, and are the focus of much investigative work. The recent identification of mutations in the gene THAP1 in DYT6 dystonia reopens the very interesting question of the in fine involvement of dopamine in the different types of dystonia. In this review, we will go through the recent literature in order to evaluate the many contributions to this theory as well as to highlight the difficulties in identifying a global regulatory pathway for the different forms of this disease that we are just starting to decipher.
Collapse
|
9
|
Kumar D, Hosse J, von Toerne C, Noessner E, Nelson PJ. JNK MAPK Pathway Regulates Constitutive Transcription of CCL5 by Human NK Cells through SP1. THE JOURNAL OF IMMUNOLOGY 2009; 182:1011-20. [DOI: 10.4049/jimmunol.182.2.1011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
|
10
|
NF-kappaB-mediated activation of the chemokine CCL22 by the product of the human cytomegalovirus gene UL144 escapes regulation by viral IE86. J Virol 2008; 82:4250-6. [PMID: 18287226 DOI: 10.1128/jvi.02156-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The product of the human cytomegalovirus (HCMV) gene UL144, expressed at early times postinfection, is located in the UL/b' region of the viral genome and is related to members of the tumor necrosis factor receptor superfamily, but it does not bind tumor necrosis factor superfamily ligands. However, UL144 does activate NF-kappaB, resulting in NF-kappaB-mediated activation of the cellular chemokine CCL22. Consistent with this finding, isolates of HCMV lacking the UL/b' region show no such activation of CCL22. Recently, it has been suggested that activation of NF-kappaB is repressed by the product of the viral gene IE86: IE86 appears to block NF-kappaB binding to DNA but not nuclear translocation of NF-kappaB. Intriguingly, IE86 is detectable throughout an infection with the virus, so how UL144 is able to activate NF-kappaB in the presence of continued IE86 expression is unclear. Here we show that although IE86 does repress the UL144-mediated activation of a synthetic NF-kappaB promoter, it is unable to block UL144-mediated activation of the CCL22 promoter, and this lack of responsiveness to IE86 appears to be regulated by binding of the CREB transcription factor.
Collapse
|
11
|
Homma Y, Cao S, Shi X, Ma X. The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res 2007; 28:469-76. [PMID: 17892401 DOI: 10.1089/jir.2007.0006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response of macrophages to infectious agents is a highly dynamic and orchestrated process involving the release of a variety of inflammatory mediators, including interleukin-12 (IL-12), as a consequence of the recognition of the pathogens. Regulation of IL-12 gene expression by the anti-inflammatory cytokine IL-10 represents a major homeostatic process underlying host-pathogen and host-self interactions. Our group first reported that the Th2-specific transcription factor c-Maf is expressed also in macrophages treated with lipopolysaccharide (LPS) and IL-10. When overexpressed, c-Maf can potently suppress IL-12 production. However, c-Maf does not appear to be a physiologic regulator of IL-12p40 gene transcription because p40 production is not dysregulated in c-Maf-deficient macrophages. In this study, we investigated the role of c-Maf in regulation of the transcription of the p35 gene, which encodes the chain that is rate limiting in the synthesis of the heterodimeric IL-12. We report that c-Maf is a physiologic modulator of IL-12p35 gene expression and IL-12p70 production. We identify a novel NF-kappaB element within the proximal p35 promoter and show that c-Maf inhibits p35 transcription by antagonizing the effects of NF-kappaB, especially c-Rel, on p35 activation. It does so not by directly interacting with the target DNA but by interfering with the nuclear localization of NF-kappaB c-Rel. This study contributes to our understanding of the molecular basis of the homeostatic regulation of IL-12 production by c-Maf, which plays a dual role both in the function of antigen-presenting cells (APCs) and in T helper cell differentiation.
Collapse
Affiliation(s)
- Yoichiro Homma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
12
|
Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2'-5'oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18:351-61. [PMID: 17681872 DOI: 10.1016/j.cytogfr.2007.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2',5'-oligoadenylate synthetase (2',5'-OAS), which converts ATP to 2',5'-linked oligoadenylates with the unusual 2'-5' instead of 3'-5' phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2',5'-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69-71 and 100 kDa forms of the 2',5'-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2'-5'OAS forms 2',5'-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.
Collapse
Affiliation(s)
- Ara G Hovanessian
- UPR 2228 CNRS, UFR Biomédicale - Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|