1
|
Hu J, Tian J, Deng X, Liu X, Zhou F, Yu J, Chi R, Xiao C. Heterotrophic nitrification processes driven by glucose and sodium acetate: New insights into microbial communities, functional genes and nitrogen metabolism from metagenomics and metabolomics. BIORESOURCE TECHNOLOGY 2024; 408:131226. [PMID: 39111401 DOI: 10.1016/j.biortech.2024.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Heterotrophic nitrification (HN) bacteria use organic carbon sources to remove ammonia nitrogen (NH4+-N); however, the mechanisms of carbon and nitrogen metabolism are unknown. To understand this mechanism, HN functional microbial communities named MG and MA were enriched with glucose and sodium acetate, respectively. The NH4+-N removal efficiencies were 98.87 % and 98.91 %, with 88.06 % and 69.77 % nitrogen assimilation for MG and MA at 22 h and 10 h, respectively. Fungi (52.86 %) were more competitive in MG, and bacteria (99.99 %) were dominant in MA. Metagenomic and metabolomic analyses indicated that HN might be a signaling molecule (NO) in the production and detoxification processes when MG metabolizes glucose (amo, hao, and nosZ were not detected). MA metabolizes sodium acetate to produce less energy and promotes nitrogen oxidation reduction; however, genes (hao, hox, and NOS2) were not detected. These results suggest that NO and energy requirements induce microbial HN.
Collapse
Affiliation(s)
- Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaoyang Tian
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Three Gorges Laboratory, Yichang 443007, PR China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Three Gorges Laboratory, Yichang 443007, PR China.
| |
Collapse
|
2
|
Braza RED, Cotten KL, Davis KM. Protocol for detecting Yersinia pseudotuberculosis nitric oxide exposure during in vitro growth. STAR Protoc 2022; 3:101760. [PMID: 36219561 PMCID: PMC9563189 DOI: 10.1016/j.xpro.2022.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Yersinia pseudotuberculosis (Yptb) is a bacterial pathogen that causes foodborne illness. Defense against the host antimicrobial gas, nitric oxide (NO), by the bacterial NO-detoxifying gene, hmp, promotes Yptb replication in mouse models of infection. Here, we detail the use of fluorescent signals as readouts for NO exposure within individual cells and subsequent detection of heterogeneity within a population, using single-cell imaging and analysis. This protocol quantifies NO exposure in culture, without capturing the full complexity of the host environment. For complete details on the use and execution of this protocol, please refer to Patel et al. (2021).
Collapse
Affiliation(s)
- Rezia Era D. Braza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Corresponding author
| | - Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Corresponding author
| |
Collapse
|
3
|
Rohac R, Crack JC, de Rosny E, Gigarel O, Le Brun NE, Fontecilla-Camps JC, Volbeda A. Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors. Commun Biol 2022; 5:769. [PMID: 35908109 PMCID: PMC9338935 DOI: 10.1038/s42003-022-03745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors of the Rrf2 family use an iron-sulfur cluster to regulate DNA binding through effectors such as nitric oxide (NO), cellular redox status and iron levels. [4Fe-4S]-NsrR from Streptomyces coelicolor (ScNsrR) modulates expression of three different genes via reaction and complex formation with variable amounts of NO, which results in detoxification of this gas. Here, we report the crystal structure of ScNsrR complexed with an hmpA1 gene operator fragment and compare it with those previously reported for [2Fe-2S]-RsrR/rsrR and apo-IscR/hyA complexes. Important structural differences reside in the variation of the DNA minor and major groove widths. In addition, different DNA curvatures and different interactions with the protein sensors are observed. We also report studies of NsrR binding to four hmpA1 variants, which indicate that flexibility in the central region is not a key binding determinant. Our study explores the promotor binding specificities of three closely related transcriptional regulators. The crystal structure of the iron-sulfur protein NsrR from Streptomyces coelicolor bound to a gene operator fragment is reported and compared with other structures, giving insight into the structural determinants of DNA recognition by the NO sensor.
Collapse
Affiliation(s)
- Roman Rohac
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Océane Gigarel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan C Fontecilla-Camps
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France
| | - Anne Volbeda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38000, Grenoble, France.
| |
Collapse
|
4
|
Chen J, Byun H, She Q, Liu Z, Ruggeberg KG, Pu Q, Jung IJ, Zhu D, Brockett MR, Hsiao A, Zhu J. S-Nitrosylation of the virulence regulator AphB promotes Vibrio cholerae pathogenesis. PLoS Pathog 2022; 18:e1010581. [PMID: 35714156 PMCID: PMC9246220 DOI: 10.1371/journal.ppat.1010581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. To colonize mammalian hosts, this pathogen must defend against host-derived toxic compounds, such as nitric oxide (NO) and NO-derived reactive nitrogen species (RNS). RNS can covalently add an NO group to a reactive cysteine thiol on target proteins, a process called protein S-nitrosylation, which may affect bacterial stress responses. To better understand how V. cholerae regulates nitrosative stress responses, we profiled V. cholerae protein S-nitrosylation during RNS exposure. We identified an S-nitrosylation of cysteine 235 of AphB, a LysR-family transcription regulator that activates the expression of tcpP, which activates downstream virulence genes. Previous studies show that AphB C235 is sensitive to O2 and reactive oxygen species (ROS). Under microaerobic conditions, AphB formed dimer and directly repressed transcription of hmpA, encoding a flavohemoglobin that is important for NO resistance of V. cholerae. We found that tight regulation of hmpA by AphB under low nitrosative stress was important for V. cholerae optimal growth. In the presence of NO, S-nitrosylation of AphB abolished AphB activity, therefore relieved hmpA expression. Indeed, non-modifiable aphBC235S mutants were sensitive to RNS in vitro and drastically reduced colonization of the RNS-rich mouse small intestine. Finally, AphB S-nitrosylation also decreased virulence gene expression via debilitation of tcpP activation, and this regulation was also important for V. cholerae RNS resistance in vitro and in the gut. These results suggest that the modulation of the activity of virulence gene activator AphB via NO-dependent protein S-nitrosylation is critical for V. cholerae RNS resistance and colonization.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hyuntae Byun
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qianxuan She
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhi Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl-Gustav Ruggeberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qinqin Pu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - I-Ji Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dehao Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary R. Brockett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, United States of America
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Frare R, Pascuan C, Galindo-Sotomonte L, McCormick W, Soto G, Ayub N. Exploring the Role of the NO-Detoxifying Enzyme HmpA in the Evolution of Domesticated Alfalfa Rhizobia. MICROBIAL ECOLOGY 2022; 83:501-505. [PMID: 33966095 DOI: 10.1007/s00248-021-01761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We have previously shown the extensive loss of genes during the domestication of alfalfa rhizobia and the high nitrous oxide emission associated with the extreme genomic instability of commercial inoculants. In the present note, we describe the molecular mechanism involved in the evolution of alfalfa rhizobia. Genomic analysis showed that most of the gene losses in inoculants are due to large genomic deletions rather than to small deletions or point mutations, a fact consistent with recurrent DNA double-strand breaks (DSBs) at numerous locations throughout the microbial genome. Genetic analysis showed that the loss of the NO-detoxifying enzyme HmpA in inoculants results in growth inhibition and high DSB levels under nitrosative stress, and large genomic deletions in planta but not in the soil. Therefore, besides its known function in the effective establishment of the symbiosis, HmpA can play a critical role in the preservation of the genomic integrity of alfalfa rhizobia under host-derived nitrosative stress.
Collapse
Affiliation(s)
- Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Luisa Galindo-Sotomonte
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Wayne McCormick
- Ottawa Research and Development Centre (AAFC), Ottawa, ON, Canada
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina.
- Instituto de Genética (INTA), De Los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Babosan A, Skurnik D, Muggeo A, Pier G, Baharoglu Z, Jové T, Ploy MC, Griveau S, Bedioui F, Vergnolle S, Moussalih S, de Champs C, Mazel D, Guillard T. A qnr-plasmid allows aminoglycosides to induce SOS in Escherichia coli. eLife 2022; 11:69511. [PMID: 35037621 PMCID: PMC8789287 DOI: 10.7554/elife.69511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that the induction of the SOS response is due to nitric oxide (NO) accumulation in the presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.
Collapse
Affiliation(s)
- Anamaria Babosan
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - David Skurnik
- Institut Necker-Enfants Malades, Inserm U1151-Equipe 11, Université Paris Descartes, Paris, France
| | - Anaëlle Muggeo
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Gerald Pier
- Department of Medicine, Brigham and Women's Hospital, Boston, United States
| | - Zeynep Baharoglu
- Unité Plasticité du Génome Bactérien, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Thomas Jové
- CHU Limoges, RESINFIT, UMR 1092, Université de Limoges, Inserm, Limoges, France
| | - Marie-Cécile Ploy
- CHU Limoges, RESINFIT, UMR 1092, Université de Limoges, Inserm, Limoges, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences, PSL Research University, CNRS, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences, PSL Research University, CNRS, Paris, France
| | | | - Sophie Moussalih
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Christophe de Champs
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Thomas Guillard
- Inserm UMR-S 1250 P3Cell, SFR CAP-Santé, Université de Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
7
|
O'Callaghan AA, Dempsey E, Iyer N, Stiegeler S, Mercurio K, Corr SC. Intestinal Metabolites Influence Macrophage Phagocytosis and Clearance of Bacterial Infection. Front Cell Infect Microbiol 2021; 11:622491. [PMID: 34350128 PMCID: PMC8327167 DOI: 10.3389/fcimb.2021.622491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
The metabolite-rich environment that is the intestinal lumen contains metabolic by-products deriving from microbial fermentation and host cell metabolism, with resident macrophages being constantly exposed to this metabolic flux. Succinate, lactate and itaconate are three metabolites secreted by primed macrophages due to a fragmented tri-carboxylic acid (TCA) cycle. Additionally, succinate and lactate are known by-products of microbial fermentation. How these metabolites impact biological functioning of resident macrophages particularly in response to bacterial infection remains poorly understood. We have investigated the potential influence of these metabolites on macrophage phagocytosis and clearance of Escherichia coli (E. coli) infection. Treatment of murine bone-marrow-derived macrophages (BMDMs) with succinate reduced numbers of intracellular E. coli early during infection, while lactate-treated BMDMs displayed no difference throughout the course of infection. Treatment of BMDMs with itaconate lead to higher levels of intracellular E. coli early in the infection with bacterial burden subsequently reduced at later time-points compared to untreated macrophages, indicative of enhanced engulfment and killing capabilities of macrophages in response to itaconate. Expression of engulfment mediators MARCKS, RhoB, and CDC42 were reduced or unchanged following succinate or lactate treatment and increased in itaconate-treated macrophages following E. coli infection. Nitric oxide (NO) levels varied while pro- and anti-inflammatory cytokines differed in secretory levels in all metabolite-treated macrophages post-infection with E. coli or in response to lipopolysaccharide (LPS) stimulation. Finally, the basal phenotypic profile of metabolite-treated macrophages was altered according to marker gene expression, describing how fluid macrophage phenotype can be in response to the microenvironment. Collectively, our data suggests that microbe- and host-derived metabolites can drive distinct macrophage functional phenotypes in response to infection, whereby succinate and itaconate regulate phagocytosis and bactericidal mechanisms, limiting the intracellular bacterial niche and impeding the pathogenesis of infection.
Collapse
Affiliation(s)
- Amy A O'Callaghan
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Elaine Dempsey
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Namrata Iyer
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Stiegeler
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Kevin Mercurio
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Porrini C, Ramarao N, Tran SL. Dr. NO and Mr. Toxic - the versatile role of nitric oxide. Biol Chem 2021; 401:547-572. [PMID: 31811798 DOI: 10.1515/hsz-2019-0368] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is present in various organisms from humans, to plants, fungus and bacteria. NO is a fundamental signaling molecule implicated in major cellular functions. The role of NO ranges from an essential molecule to a potent mediator of cellular damages. The ability of NO to react with a broad range of biomolecules allows on one hand its regulation and a gradient concentration and on the other hand to exert physiological as well as pathological functions. In humans, NO is implicated in cardiovascular homeostasis, neurotransmission and immunity. However, NO can also contribute to cardiovascular diseases (CVDs) or septic shock. For certain denitrifying bacteria, NO is part of their metabolism as a required intermediate of the nitrogen cycle. However, for other bacteria, NO is toxic and harmful. To survive, those bacteria have developed processes to resist this toxic effect and persist inside their host. NO also contributes to maintain the host/microbiota homeostasis. But little is known about the impact of NO produced during prolonged inflammation on microbiota integrity, and some pathogenic bacteria take advantage of the NO response to colonize the gut over the microbiota. Taken together, depending on the environmental context (prolonged production, gradient concentration, presence of partners for interaction, presence of oxygen, etc.), NO will exert its beneficial or detrimental function. In this review, we highlight the dual role of NO for humans, pathogenic bacteria and microbiota, and the mechanisms used by each organism to produce, use or resist NO.
Collapse
Affiliation(s)
- Constance Porrini
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nalini Ramarao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Seav-Ly Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
9
|
Dunn S, Carrilero L, Brockhurst M, McNally A. Limited and Strain-Specific Transcriptional and Growth Responses to Acquisition of a Multidrug Resistance Plasmid in Genetically Diverse Escherichia coli Lineages. mSystems 2021; 6:e00083-21. [PMID: 33906912 PMCID: PMC8092126 DOI: 10.1128/msystems.00083-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli strains are a major global threat to human health, wherein multidrug resistance is primarily spread by MDR plasmid acquisition. MDR plasmids are not widely distributed across the entire E. coli species, but instead are concentrated in a small number of clones. Here, we test if diverse E. coli strains vary in their ability to acquire and maintain MDR plasmids and if this relates to their transcriptional response following plasmid acquisition. We used strains from across the diversity of E. coli strains, including the common MDR lineage sequence type 131 (ST131) and the IncF plasmid pLL35, carrying multiple antibiotic resistance genes. Strains varied in their ability to acquire pLL35 by conjugation, but all were able to stably maintain the plasmid. The effects of pLL35 acquisition on cefotaxime resistance and growth also varied among strains, with growth responses ranging from a small decrease to a small increase in growth of the plasmid carrier relative to the parental strain. Transcriptional responses to pLL35 acquisition were limited in scale and highly strain specific. We observed transcriptional responses at the operon or regulon level-possibly due to stress responses or interactions with resident mobile genetic elements (MGEs). Subtle transcriptional responses consistent across all strains were observed affecting functions, such as anaerobic metabolism, previously shown to be under negative frequency-dependent selection in MDR E. coli Overall, there was no correlation between the magnitudes of the transcriptional and growth responses across strains. Together, these data suggest that fitness costs arising from transcriptional disruption are unlikely to act as a barrier to dissemination of this MDR plasmid in E. coli IMPORTANCE Plasmids play a key role in bacterial evolution by transferring adaptive functions between lineages that often enable invasion of new niches, including driving the spread of antibiotic resistance genes. Fitness costs of plasmid acquisition arising from the disruption of cellular processes could limit the spread of multidrug resistance plasmids. However, the impacts of plasmid acquisition are typically measured in lab-adapted strains rather than natural isolates, which act as reservoirs for the maintenance and transmission of plasmids to clinically relevant strains. Using a clinical multidrug resistance plasmid and a diverse collection of E. coli strains isolated from clinical infections and natural environments, we show that plasmid acquisition had only limited and highly strain-specific effects on bacterial growth and transcription under laboratory conditions. These findings suggest that fitness costs arising from transcriptional disruption are unlikely to act as a barrier to transmission of this plasmid in natural populations of E. coli.
Collapse
Affiliation(s)
- Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Laura Carrilero
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
In vitro passage alters virulence, immune activation and proteomic profiles of Burkholderia pseudomallei. Sci Rep 2020; 10:8320. [PMID: 32433516 PMCID: PMC7239947 DOI: 10.1038/s41598-020-64914-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/27/2020] [Indexed: 11/12/2022] Open
Abstract
Serial passage is a problem among many bacterial species, especially those where strains have been stored (banked) for several decades. Prior to banking with an organization such as ATCC, many bacterial strains were passaged for many years, so the characteristics of each strain may be extremely different. This is in addition to any differences in the original host environment. For Burkholderia pseudomallei, the number of serial passages should be carefully defined for each experiment because it undergoes adaptation during the course of serial passages. In the present study, we found that passaged B. pseudomallei fresh clinical isolates and reference strain in Luria-Bertani broth exhibited increased plaque formation, invasion, intracellular replication, Galleria mellonella killing abilities, and cytokine production of host cells. These bacteria also modulated proteomic profiles during in vitro passage. We presume that the modulation of protein expression during in vitro passage caused changes in virulence and immunogenicity phenotypes. Therefore, we emphasize the need for caution regarding the use of data from passaged B. pseudomallei. These findings of phenotypic adaptation during in vitro serial passage can help researchers working on B. pseudomallei and on other species to better understand disparate findings among strains that have been reported for many years.
Collapse
|
11
|
Transcriptome analysis of Burkholderia pseudomallei SCV reveals an association with virulence, stress resistance and intracellular persistence. Genomics 2019; 112:501-512. [PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 01/16/2023]
Abstract
Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
Collapse
|
12
|
Dong X, Liu Y, Zhang G, Wang D, Zhou X, Shao J, Shen Q, Zhang R. Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem Biophys Res Commun 2018; 503:784-790. [PMID: 29913149 DOI: 10.1016/j.bbrc.2018.06.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Nitric oxide (NO) is an important gas signal that regulates many biological processes, and due to the high nitrogen recycling activity in the rhizosphere, NO is an important signaling molecule in this region. Thus, an understanding of the effect of NO on the rhizomicrobiome, especially on plant beneficial rhizobacteria, is important for the use of these bacteria in agriculture. In this study, the effect of exogenous NO on the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 was investigated. The results showed that low concentrations of NO increased the ability of the strain SQR9 to form biofilms, while high concentrations of NO inhibited the growth of this bacterium. The SQR9 gene yflM encodes nitric oxide synthase (NOS), which is used to synthesize NO, while the gene ykvO encodes a sepiapterin reductase that is used to synthesize tetrahydrobiopterin, the coenzyme of NOS. Isothermal titration calorimetry and high-performance liquid chromatography analyses demonstrated an interaction between YkvO and NADPH. SQR9 has two hmp genes, although only one was observed to be responsible for NO detoxification through oxidization. This study revealed the effect of NO on plant beneficial rhizobacterium and assessed the ability of this strain to adapt to exogenous NO, which will help to improve the application of this strain in agricultural production.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dandan Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xuan Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
14
|
Abstract
This chapter provides an overview of current knowledge of how anaerobic bacteria protect themselves against nitrosative stress. Nitric oxide (NO) is the primary source of this stress. Aerobically its removal is an oxidative process, whereas reduction is required anaerobically. Mechanisms required to protect aerobic and anaerobic bacteria are therefore different. Several themes recur in the review. First, how gene expression is regulated often provides clues to the physiological function of the gene products. Second, the physiological significance of reports based upon experiments under extreme conditions that bacteria do not encounter in their natural environment requires reassessment. Third, responses to the primary source of stress need to be distinguished from secondary consequences of chemical damage due to failure of repair mechanisms to cope with extreme conditions. NO is generated by many mechanisms, some of which remain undefined. An example is the recent demonstration that the hybrid cluster protein combines with YtfE (or RIC protein, for repair of iron centres damaged by nitrosative stress) in a new pathway to repair key iron-sulphur proteins damaged by nitrosative stress. The functions of many genes expressed in response to nitrosative stress remain either controversial or are completely unknown. The concentration of NO that accumulates in the bacterial cytoplasm is essentially unknown, so dogmatic statements cannot be made that damage to transcription factors (Fur, FNR, SoxRS, MelR, OxyR) occurs naturally as part of a physiologically relevant signalling mechanism. Such doubts can be resolved by simple experiments to meet six proposed criteria.
Collapse
|
15
|
Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectr 2017; 4. [PMID: 27227312 DOI: 10.1128/microbiolspec.vmbf-0007-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Collapse
|
16
|
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding. Nat Commun 2017; 8:15052. [PMID: 28425466 PMCID: PMC5411485 DOI: 10.1038/ncomms15052] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove. NsrR is a bacterial transcriptional regulator that acts as a nitric oxide (NO) sensor. Here, the authors present the crystal structure of NsrR, which reveals an unusual Fe-S cluster coordination and explains how NO exposure leads to the degradation of the cluster.
Collapse
|
17
|
Shepherd M, Achard MES, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep 2016; 6:35285. [PMID: 27767067 PMCID: PMC5073308 DOI: 10.1038/srep35285] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.
Collapse
Affiliation(s)
- Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Maud E S Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adi Idris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cláudia A Ribeiro
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Louise V Holyoake
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Dimitrios Ladakis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
19
|
Crack JC, Svistunenko DA, Munnoch J, Thomson AJ, Hutchings MI, Le Brun NE. Differentiated, Promoter-specific Response of [4Fe-4S] NsrR DNA Binding to Reaction with Nitric Oxide. J Biol Chem 2016; 291:8663-72. [PMID: 26887943 PMCID: PMC4861436 DOI: 10.1074/jbc.m115.693192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
NsrR is an iron-sulfur cluster protein that regulates the nitric oxide (NO) stress response of many bacteria. NsrR from Streptomyces coelicolor regulates its own expression and that of only two other genes, hmpA1 and hmpA2, which encode HmpA enzymes predicted to detoxify NO. NsrR binds promoter DNA with high affinity only when coordinating a [4Fe-4S] cluster. Here we show that reaction of [4Fe-4S] NsrR with NO affects DNA binding differently depending on the gene promoter. Binding to the hmpA2 promoter was abolished at ∼2 NO per cluster, although for the hmpA1 and nsrR promoters, ∼4 and ∼8 NO molecules, respectively, were required to abolish DNA binding. Spectroscopic and kinetic studies of the NO reaction revealed a rapid, multi-phase, non-concerted process involving up to 8–10 NO molecules per cluster, leading to the formation of several iron-nitrosyl species. A distinct intermediate was observed at ∼2 NO per cluster, along with two further intermediates at ∼4 and ∼6 NO. The NsrR nitrosylation reaction was not significantly affected by DNA binding. These results show that NsrR regulates different promoters in response to different concentrations of NO. Spectroscopic evidence indicates that this is achieved by different NO-FeS complexes.
Collapse
Affiliation(s)
- Jason C Crack
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Dimitri A Svistunenko
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - John Munnoch
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ and
| | - Andrew J Thomson
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Matthew I Hutchings
- the School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ and
| | - Nick E Le Brun
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| |
Collapse
|
20
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Crack JC, Munnoch J, Dodd EL, Knowles F, Al Bassam MM, Kamali S, Holland AA, Cramer SP, Hamilton CJ, Johnson MK, Thomson AJ, Hutchings MI, Le Brun NE. NsrR from Streptomyces coelicolor is a nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory function. J Biol Chem 2015; 290:12689-704. [PMID: 25771538 PMCID: PMC4432287 DOI: 10.1074/jbc.m115.643072] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
The Rrf2 family transcription factor NsrR controls expression of genes in a wide range of bacteria in response to nitric oxide (NO). The precise form of the NO-sensing module of NsrR is the subject of controversy because NsrR proteins containing either [2Fe-2S] or [4Fe-4S] clusters have been observed previously. Optical, Mössbauer, resonance Raman spectroscopies and native mass spectrometry demonstrate that Streptomyces coelicolor NsrR (ScNsrR), previously reported to contain a [2Fe-2S] cluster, can be isolated containing a [4Fe-4S] cluster. ChIP-seq experiments indicated that the ScNsrR regulon is small, consisting of only hmpA1, hmpA2, and nsrR itself. The hmpA genes encode NO-detoxifying flavohemoglobins, indicating that ScNsrR has a specialized regulatory function focused on NO detoxification and is not a global regulator like some NsrR orthologues. EMSAs and DNase I footprinting showed that the [4Fe-4S] form of ScNsrR binds specifically and tightly to an 11-bp inverted repeat sequence in the promoter regions of the identified target genes and that DNA binding is abolished following reaction with NO. Resonance Raman data were consistent with cluster coordination by three Cys residues and one oxygen-containing residue, and analysis of ScNsrR variants suggested that highly conserved Glu-85 may be the fourth ligand. Finally, we demonstrate that some low molecular weight thiols, but importantly not physiologically relevant thiols, such as cysteine and an analogue of mycothiol, bind weakly to the [4Fe-4S] cluster, and exposure of this bound form to O2 results in cluster conversion to the [2Fe-2S] form, which does not bind to DNA. These data help to account for the observation of [2Fe-2S] forms of NsrR.
Collapse
Affiliation(s)
- Jason C Crack
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry
| | | | - Erin L Dodd
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry
| | | | | | - Saeed Kamali
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Ashley A Holland
- the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Stephen P Cramer
- the Department of Chemistry, University of California, Davis, California 95616, and
| | - Chris J Hamilton
- the School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Michael K Johnson
- the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Andrew J Thomson
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry
| | | | - Nick E Le Brun
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry,
| |
Collapse
|
22
|
de Paiva JB, Leite JL, da Silva LPM, Rojas TCG, de Pace F, Conceição RA, Sperandio V, da Silveira WD. Influence of the major nitrite transporter NirC on the virulence of a Swollen Head Syndrome avian pathogenic E. coli (APEC) strain. Vet Microbiol 2014; 175:123-31. [PMID: 25487442 DOI: 10.1016/j.vetmic.2014.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
Avian Pathogenic Escherichia coli (APEC) strains are extra-intestinal E. coli that infect poultry and cause diseases. Nitrite is a central branch-point in bacterial nitrogen metabolism and is used as a cytotoxin by macrophages. Unlike nitric oxide (NO), nitrite cannot diffuse across bacterial membrane cells. The NirC protein acts as a specific channel to facilitate the transport of nitrite into Salmonella and E. coli cells for nitrogen metabolism and cytoplasmic detoxification. NirC is also required for the pathogenicity of Salmonella by downregulating the production of NO by the host macrophages. Based on an in vitro microarray that revealed the overexpression of the nirC gene in APEC strain SCI-07, we constructed a nirC-deficient SCI-07 strain (ΔnirC) and evaluated its virulence potential using in vivo and in vitro assays. The final cumulative mortalities caused by mutant and wild-type (WT) were similar; while the ΔnirC caused a gradual increase in the mortality rate during the seven days recorded, the WT caused mortality up to 24h post-infection (hpi). Counts of the ΔnirC cells in the spleen, lung and liver were higher than those of the WT after 48 hpi but similar at 24 hpi. Although similar number of ΔnirC and WT cells was observed in macrophages at 3 hpi, there was higher number of ΔnirC cells at 16 hpi. The cell adhesion ability of the ΔnirC strain was about half the WT level in the presence and absence of alpha-D-mannopyranoside. These results indicate that the nirC gene influences the pathogenicity of SCI-07 strain.
Collapse
Affiliation(s)
- Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil.
| | - Janaína Luisa Leite
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil
| | - Livia Pilatti Mendes da Silva
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil
| | - Thais Cabrera Galvão Rojas
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil
| | - Fernanda de Pace
- Department of Clinical Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Rogério Arcuri Conceição
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas-UNICAMP, PO Box 6109, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Koul V, Adholeya A, Kochar M. Sphere of influence of indole acetic acid and nitric oxide in bacteria. J Basic Microbiol 2014; 55:543-53. [PMID: 24913042 DOI: 10.1002/jobm.201400224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/26/2014] [Indexed: 11/11/2022]
Abstract
Bacterial biosynthesis of the phytohormone, indole-3-acetic acid (IAA) is well established and along with the diffusible gaseous molecule, nitric oxide (NO) is known to positively regulate the developmental processes of plant roots. IAA and NO act as signaling molecules in plant-microbe interactions as they modulate the gene expression in both, plants and microorganisms. Although IAA and NO may not be required for essential bacterial physiological processes, numerous studies point towards a crosstalk between IAA and NO in the rhizosphere. In this review, we describe various IAA and NO-responsive or sensing genes/proteins/regulators. There is also growing evidence for the interaction of IAA and NO with other plant growth regulators and the involvement of NO with the quorum sensing system in biofilm formation and virulence. This interactive network can greatly impact the host plant-microbe interactions in the soil. Coupled with this, the specialized σ(54) -dependent transcription observed in some of the IAA and NO-influenced genes can confer inducibility to these traits in bacteria and may allow the expression of IAA and NO-influenced microbial genes in nutrient limiting or changing environmental conditions for the benefit of plants.
Collapse
Affiliation(s)
- Vatsala Koul
- TERI Deakin Nanobiotechnology Centre, Biotechnology and Bioresources Division, The Energy and Resources Institute, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi, India
| | | | | |
Collapse
|
24
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
25
|
Matsumura H, Hayashi T, Chakraborty S, Lu Y, Moënne-Loccoz P. The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer. J Am Chem Soc 2014; 136:2420-31. [PMID: 24432820 PMCID: PMC4004238 DOI: 10.1021/ja410542z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Denitrifying NO reductases are transmembrane
protein complexes
that are evolutionarily related to heme/copper terminal oxidases.
They utilize a heme/nonheme diiron center to reduce two NO molecules
to N2O. Engineering a nonheme FeB site within
the heme distal pocket of sperm whale myoglobin has offered well-defined
diiron clusters for the investigation of the mechanism of NO reduction
in these unique active sites. In this study, we use FTIR spectroscopy
to monitor the production of N2O in solution and to show
that the presence of a distal FeBII is not sufficient
to produce the expected product. However, the addition of a glutamate
side chain peripheral to the diiron site allows for 50% of a productive
single-turnover reaction. Unproductive reactions are characterized
by resonance Raman spectroscopy as dinitrosyl complexes, where one
NO molecule is bound to the heme iron to form a five-coordinate low-spin
{FeNO}7 species with ν(FeNO)heme and ν(NO)heme at 522 and 1660 cm–1, and a second NO
molecule is bound to the nonheme FeB site with a ν(NO)FeB at 1755 cm–1. Stopped-flow UV–vis
absorption coupled with rapid-freeze-quench resonance Raman spectroscopy
provide a detailed map of the reaction coordinates leading to the
unproductive iron-nitrosyl dimer. Unexpectedly, NO binding to FeB is kinetically favored and occurs prior to the binding of
a second NO to the heme iron, leading to a (six-coordinate low-spin
heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl complex
with characteristic ν(FeNO)heme at 570 ± 2 cm–1 and ν(NO)FeB at 1755 cm–1. Without the addition of a peripheral glutamate, the dinitrosyl
complex is converted to a dead-end product after the dissociation
of the proximal histidine of the heme iron, but the added peripheral
glutamate side chain in FeBMb2 lowers the rate of dissociation
of the promixal histidine which in turn allows the (six-coordinate
low-spin heme-nitrosyl/FeB-nitrosyl) transient dinitrosyl
complex to decay with production of N2O at a rate of 0.7
s–1 at 4 °C. Taken together, our results support
the proposed trans mechanism of NO reduction in NORs.
Collapse
Affiliation(s)
- Hirotoshi Matsumura
- Divison of Environmental & Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | | | | | | | | |
Collapse
|
26
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
27
|
Crack JC, Stapleton MR, Green J, Thomson AJ, Le Brun NE. Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J Biol Chem 2013; 288:11492-502. [PMID: 23471974 DOI: 10.1074/jbc.m112.439901] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Fumarate nitrate reduction (FNR) regulator from Escherichia coli controls expression of >300 genes in response to O2 through reaction with its [4Fe-4S] cluster cofactor. FNR is the master switch for the transition between anaerobic and aerobic respiration. In response to physiological concentrations of nitric oxide (NO), FNR also regulates genes, including the nitrate reductase (nar) operon, a major source of endogenous cellular NO, and hmp, which encodes an NO-detoxifying enzyme. Here we show that the [4Fe-4S] cluster of FNR reacts rapidly in a multiphasic reaction with eight NO molecules. Oxidation of cluster sulfide ions (S(2-)) to sulfane (S(0)) occurs, some of which remains associated with the protein as Cys persulfide. The nitrosylation products are similar to a pair of dinuclear dinitrosyl iron complexes, [Fe(I)2(NO)4(Cys)2](0), known as Roussin's red ester. A similar reactivity with NO was reported for the Wbl family of [4Fe-4S]-containing proteins found only in actinomycetes, such as Streptomyces and Mycobacteria. These results show that NO reacts via a common mechanism with [4Fe-4S] clusters in phylogenetically unrelated regulatory proteins that, although coordinated by four Cys residues, have different cluster environments. The reactivity of E. coli FNR toward NO, in addition to its sensitivity toward O2, is part of a hierarchal network that monitors, and responds to, NO, both endogenously generated and exogenously derived.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK, Verde C. Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1923-31. [PMID: 23434851 DOI: 10.1016/j.bbapap.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 01/25/2023]
Abstract
In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect of NO-donors. Unlike in Mycobacterium tuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seem to reduce the NO scavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Daniela Coppola
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJP, Kurzai O, Hube B. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One 2012; 7:e52850. [PMID: 23285201 PMCID: PMC3528649 DOI: 10.1371/journal.pone.0052850] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all three antifungal activities, carbohydrate starvation, nitrosative stress and oxidative stress, is essential for full wild type resistance to neutrophils.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Christine Dunker
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Hanna Windecker
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Iryna M. Bohovych
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Center for Sepsis Control and Care, Universitätsklinikum Jena, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
30
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
31
|
Sainsbury S, Ren J, Saunders NJ, Stuart DI, Owens RJ. Structure of the regulatory domain of the LysR family regulator NMB2055 (MetR-like protein) from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:730-7. [PMID: 22750853 PMCID: PMC3388910 DOI: 10.1107/s1744309112010603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/10/2012] [Indexed: 06/01/2023]
Abstract
The crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Å resolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken together with the high degree of conservation of these cysteine residues within MetR-related transcription factors, it is suggested that the Cys103 and Cys106 residues play an important role in the function of MetR regulators.
Collapse
Affiliation(s)
- Sarah Sainsbury
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England.
| | | | | | | | | |
Collapse
|
32
|
Shimizu T, Tsutsuki H, Matsumoto A, Nakaya H, Noda M. The nitric oxide reductase of enterohaemorrhagic Escherichia coli plays an important role for the survival within macrophages. Mol Microbiol 2012; 85:492-512. [DOI: 10.1111/j.1365-2958.2012.08122.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Oxidative stress modulates the nitric oxide defense promoted by Escherichia coli flavorubredoxin. J Bacteriol 2012; 194:3611-7. [PMID: 22563051 DOI: 10.1128/jb.00140-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian cells of innate immunity respond to pathogen invasion by activating proteins that generate a burst of oxidative and nitrosative stress. Pathogens defend themselves from the toxic compounds by triggering a variety of detoxifying enzymes. Escherichia coli flavorubredoxin is a nitric oxide reductase that is expressed under nitrosative stress conditions. We report that in contrast to nitrosative stress alone, exposure to both nitrosative and oxidative stresses abolishes the expression of flavorubredoxin. Electron paramagnetic resonance (EPR) experiments showed that under these conditions, the iron center of the flavorubredoxin transcription activator NorR loses the ability to bind nitric oxide. Accordingly, triggering of the NorR ATPase activity, a requisite for flavorubredoxin activation, was impaired by treatment of the protein with the double stress. Studies of macrophages revealed that the contribution of flavorubredoxin to the survival of E. coli depends on the stage of macrophage infection and that the lack of protection observed at the early phase is related to inhibition of NorR activity by the oxidative burst. We propose that the time-dependent activation of flavorubredoxin contributes to the adaptation of E. coli to the different fluxes of hydrogen peroxide and nitric oxide to which the bacterium is subjected during the course of macrophage infection.
Collapse
|
34
|
The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio 2012; 3:e00013-12. [PMID: 22511349 PMCID: PMC3345576 DOI: 10.1128/mbio.00013-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vibrio cholerae, the cause of an often fatal infectious diarrhea, remains a large global public health threat. Little is known about the challenges V. cholerae encounters during colonization of the intestines, which genes are important for overcoming these challenges, and how these genes are regulated. In this study, we examined the V. cholerae response to nitric oxide (NO), an antibacterial molecule derived during infection from various sources, including host inducible NO synthase (iNOS). We demonstrate that the regulatory protein NorR regulates the expression of NO detoxification genes hmpA and nnrS, and that all three are critical for resisting low levels of NO stress under microaerobic conditions in vitro. We also show that prxA, a gene previously thought to be important for NO detoxification, plays no role in NO resistance under microaerobic conditions and is upregulated by H2O2, not NO. Furthermore, in an adult mouse model of prolonged colonization, hmpA and norR were important for the resistance of both iNOS- and non-iNOS-derived stresses. Our data demonstrate that NO detoxification systems play a critical role in the survival of V. cholerae under microaerobic conditions resembling those of an infectious setting and during colonization of the intestines over time periods similar to that of an actual V. cholerae infection. Little is known about what environmental stresses Vibrio cholerae, the etiologic agent of cholera, encounters during infection, and even less is known about how V. cholerae senses and counters these stresses. Most prior studies of V. cholerae infection relied on the 24-h infant mouse model, which does not allow the analysis of survival over time periods comparable to that of an actual V. cholerae infection. In this study, we used a sustained mouse colonization model to identify nitric oxide resistance as a function critical for the survival of V. cholerae in the intestines and further identified the genes responsible for sensing and detoxifying this stress.
Collapse
|
35
|
Bowman LAH, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2012; 59:135-219. [PMID: 22114842 DOI: 10.1016/b978-0-12-387661-4.00006-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.
Collapse
Affiliation(s)
- Lesley A H Bowman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
36
|
Bateman SL, Seed PC. Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli. Mol Microbiol 2012; 83:908-25. [PMID: 22221182 DOI: 10.1111/j.1365-2958.2012.07977.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.
Collapse
Affiliation(s)
- Stacey L Bateman
- Department of Molecular Genetics and Microbiology Center for Microbial Pathogenesis Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Velapatiño B, Limmathurotsakul D, Peacock SJ, Speert DP. Identification of differentially expressed proteins from Burkholderia pseudomallei isolated during primary and relapsing melioidosis. Microbes Infect 2011; 14:335-40. [PMID: 22172334 DOI: 10.1016/j.micinf.2011.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/23/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
Abstract
Burkholderia pseudomallei causes septicemic melioidosis with a high rate of relapse, however microbial determinants of relapse are unknown. Proteins were analyzed from sequential B. pseudomallei isolates from primary and relapsing melioidosis. Analysis by isotope tagging for relative and absolute quantitation revealed that factors required for nitric oxide detoxification (HmpA) and necessary for anaerobic growth (ArcA, ArcC and ArcB) were highly expressed in the relapse isolate. Two-dimensional gel electrophoresis revealed up-regulation of a putative hemolysin-coregulated protein in the primary isolate, and flagellin and HSP20/alpha crystalline in the relapse isolate. These observations provide targets for further analysis of latency and virulence of melioidosis.
Collapse
Affiliation(s)
- Billie Velapatiño
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | |
Collapse
|
38
|
Treece E, Pinkham A, Kim T. Aminoguanidine down-regulates the expression of mreB-like protein in Bacillus subtilis. Curr Microbiol 2011; 64:112-7. [PMID: 22048160 DOI: 10.1007/s00284-011-0039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Nitric oxide synthase (NOS), the enzyme responsible for the production of endogenous nitric oxide from arginine, has been recently discovered in a number of Gram-positive bacteria. While bacterial NOS has been implicated in mediating nitrosative stress, much remains unknown about the functional role of endogenous nitric oxide in bacteria. Using the known NOS inhibitor aminoguanidine, we examined changes in the protein expression profile using two-dimensional gel electrophoresis. Treatment with aminoguanidine induced several changes in protein expression in Bacillus subtilis. In particular, mreB-like protein (Mbl) was fully down-regulated in the aminoguanidine-treated samples. The expression of Mbl was also examined by reverse transcriptase-polymerase chain reaction and Mbl was found to be fully down-regulated at the transcriptional level as well. Given the role that Mbl plays in the maintenance of cytoskeletal structure, it appears that bacterial NOS may participate in specific biosynthetic pathways with ramifications toward the regulation of antibiotic resistance.
Collapse
Affiliation(s)
- Erin Treece
- Department of Chemistry, Rochester Institute of Technology, Rochester, NY, USA
| | | | | |
Collapse
|
39
|
Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R. Nitric oxide in legume-rhizobium symbiosis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:573-81. [PMID: 21893254 DOI: 10.1016/j.plantsci.2011.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with a broad spectrum of regulatory functions in plant growth and development. NO has been found to be involved in various pathogenic or symbiotic plant-microbe interactions. During the last decade, increasing evidence of the occurrence of NO during legume-rhizobium symbioses has been reported, from early steps of plant-bacteria interaction, to the nitrogen-fixing step in mature nodules. This review focuses on recent advances on NO production and function in nitrogen-fixing symbiosis. First, the potential plant and bacterial sources of NO, including NO synthase-like, nitrate reductase or electron transfer chains of both partners, are presented. Then responses of plant and bacterial cells to the presence of NO are presented in the context of the N(2)-fixing symbiosis. Finally, the roles of NO as either a regulatory signal of development, or a toxic compound with inhibitory effects on nitrogen fixation, or an intermediate involved in energy metabolism, during symbiosis establishment and nodule functioning are discussed.
Collapse
Affiliation(s)
- Eliane Meilhoc
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
40
|
The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J Bacteriol 2011; 193:2804-13. [PMID: 21441505 DOI: 10.1128/jb.00139-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.
Collapse
|
41
|
Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – Implications for urinary tract infection. Microb Pathog 2010; 49:59-66. [DOI: 10.1016/j.micpath.2010.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 11/22/2022]
|
42
|
Meilhoc E, Cam Y, Skapski A, Bruand C. The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:748-59. [PMID: 20459314 DOI: 10.1094/mpmi-23-6-0748] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) is crucial in animal- and plant-pathogen interactions, during which it participates in host defense response and resistance. Indications for the presence of NO during the symbiotic interaction between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti have been reported but the role of NO in symbiosis is far from being elucidated. Our objective was to understand the role or roles played by NO in symbiosis. As a first step toward this goal, we analyzed the bacterial response to NO in culture, using a transcriptomic approach. We identified approximately 100 bacterial genes whose expression is upregulated in the presence of NO. Surprisingly, most of these genes are regulated by the two-component system FixLJ, known to control the majority of rhizobial genes expressed in planta in mature nodules, or the NO-dedicated regulator NnrR. Among the genes responding to NO is hmp, encoding a putative flavohemoglobin. We report that an hmp mutant displays a higher sensitivity toward NO in culture and leads to a reduced nitrogen fixation efficiency in planta. Because flavohemoglobins are known to detoxify NO in numerous bacterial species, this result is the first indication of the importance of the bacterial NO response in symbiosis.
Collapse
Affiliation(s)
- Eliane Meilhoc
- Laboratoire des Interactions Plantes Microorganismes, UMR441-2594 INRA-CNRS BP52627, R-31320 Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
43
|
Wang Y, Dufour YS, Carlson HK, Donohue TJ, Marletta MA, Ruby EG. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc Natl Acad Sci U S A 2010; 107:8375-80. [PMID: 20404170 PMCID: PMC2889544 DOI: 10.1073/pnas.1003571107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). Although NO can be both an antimicrobial component of innate immunity and a key signaling molecule in eukaryotes, potential roles in beneficial host-microbe associations have not been described. V. fischeri hnoX encodes a heme NO/oxygen-binding (H-NOX) protein, a member of a family of bacterial NO- and/or O(2)-binding proteins of unknown function. We hypothesized that H-NOX acts as a NO sensor that is involved in regulating symbiosis-related genes early in colonization. Whole-genome expression studies identified 20 genes that were repressed in an NO- and H-NOX-dependent fashion. Ten of these, including hemin-utilization genes, have a promoter with a putative ferric-uptake regulator (Fur) binding site. As predicted, in the presence of NO, wild-type V. fischeri grew more slowly on hemin than a hnoX deletion mutant. Host-colonization studies showed that the hnoX mutant was also 10-fold more efficient in initially colonizing the squid host than the wild type; similarly, in mixed inoculations, it outcompeted the wild-type strain by an average of 16-fold after 24 h. However, the presence of excess hemin or iron reversed this dominance. The advantage of the mutant in colonizing the iron-limited light-organ tissues is caused, at least in part, by its greater ability to acquire host-derived hemin. Our data suggest that V. fischeri normally senses a host-generated NO signal through H-NOX(Vf) and modulates the expression of its iron uptake capacity during the early stages of the light-organ symbiosis.
Collapse
Affiliation(s)
- Yanling Wang
- Departments of Medical Microbiology and Immunology and
| | - Yann S. Dufour
- Bacteriology, University of Wisconsin, Madison, WI 53706; and
| | | | | | - Michael A. Marletta
- Departments of Chemistry and
- Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | |
Collapse
|
44
|
Soares NC, Cabral MP, Gayoso C, Mallo S, Rodriguez-Velo P, Fernández-Moreira E, Bou G. Associating Growth-Phase-Related Changes in the Proteome of Acinetobacter baumannii with Increased Resistance to Oxidative Stress. J Proteome Res 2010; 9:1951-64. [DOI: 10.1021/pr901116r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nelson C. Soares
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Maria P. Cabral
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Carmen Gayoso
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Susana Mallo
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Patricia Rodriguez-Velo
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Esteban Fernández-Moreira
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Germán Bou
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| |
Collapse
|
45
|
Tucker NP, Le Brun NE, Dixon R, Hutchings MI. There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol 2010; 18:149-56. [PMID: 20167493 DOI: 10.1016/j.tim.2009.12.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/24/2009] [Accepted: 12/10/2009] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a toxic, free radical gas with diverse biological roles in eukaryotes and bacteria, being involved in signalling, vasodilation, blood clotting and immunity and as an intermediate in microbial denitrification. Several bacterial transcriptional regulators sense this molecule and regulate the expression of genes involved in both NO detoxification and NO damage repair. However, a recently discovered NO sensing repressor, named NsrR, has gained attention because of its suggested role as a global regulator of the bacterial NO stress response. Recent advances in biochemical and transcriptomic studies of NsrR make it timely to review the current evidence for NsrR as a global regulator and to speculate on the recent controversy over its NO sensing mechanism.
Collapse
Affiliation(s)
- Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Royal College, 204 George Street, University of Strathclyde, Glasgow, Scotland GR1 1XW, UK.
| | | | | | | |
Collapse
|
46
|
Laver JR, Stevanin TM, Messenger SL, Lunn AD, Lee ME, Moir JWB, Poole RK, Read RC. Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis. FASEB J 2009; 24:286-95. [PMID: 19720623 PMCID: PMC2820398 DOI: 10.1096/fj.08-128330] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S-nitrosylation is an important mediator of multiple nitric oxide-dependent biological processes, including eukaryotic cellular events such as macrophage apoptosis and proinflammatory signaling. Many pathogenic bacteria possess NO detoxification mechanisms, such as the nitric oxide reductase (NorB) of Neisseria meningitidis and the flavohemoglobins (Hmp) of Salmonella enterica and Escherichia coli, which serve to protect the microorganism from nitrosative stress within the intracellular environment. In this study, we demonstrate that expression of meningococcal NorB increases the rate at which low-molecular-weight S-nitrosothiol (SNO) decomposes in vitro. To determine whether this effect occurs in cells during infection by bacteria, we induced SNO formation in murine macrophages by activation with lipopolysaccharide and γ-interferon and observed a reduced abundance of SNO during coincubation with N. meningitidis, S. enterica, or E. coli. In each case, this effect was shown to be dependent on bacterial NO detoxification genes, which act to prevent SNO formation through the removal of NO. This may represent a novel mechanism of host cell injury by bacteria.—Laver, J. R., Stevanin, T. M., Messenger, S. L., Dehn Lunn, A., Lee, M. E., Moir, J. W. B., Poole, R. K., Read, R. C. Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jay R Laver
- Department of Infection and Immunity, Medical School, The University of Sheffield, Royal Hallamshire Hospital, Beech Hill Rd., Sheffield, South Yorkshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 2009; 73:680-94. [PMID: 19656291 DOI: 10.1111/j.1365-2958.2009.06799.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Escherichia coli NsrR protein is a nitric oxide-sensitive repressor of transcription. The NsrR-binding site is predicted to comprise two copies of an 11 bp motif arranged as an inverted repeat with 1 bp spacing. By mutagenesis we confirmed that both 11 bp motifs are required for maximal NsrR repression of the ytfE promoter. We used chromatin immunoprecipitation and microarray analysis (ChIP-chip) to show that NsrR binds to 62 sites close to the 5' ends of genes. Analysis of the ChIP-chip data suggested that a single 11 bp motif (with the consensus sequence AANATGCATTT) can function as an NsrR-binding site in vivo. NsrR binds to sites in the promoter regions of the fliAZY, fliLMNOPQR and mqsR-ygiT transcription units, which encode proteins involved in motility and biofilm development. Reporter fusion assays confirmed that NsrR negatively regulates the fliA and fliL promoters. A mutation in the predicted 11 bp NsrR-binding site in the fliA promoter impaired repression by NsrR and prevented detectable binding in vivo. Assays on soft-agar confirmed that NsrR is a negative regulator of motility in E. coli K12 and in a uropathogenic strain; surface attachment assays revealed decreased levels of attached growth in the absence of NsrR.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | | |
Collapse
|
48
|
Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 2008; 190:7762-72. [PMID: 18820017 DOI: 10.1128/jb.01032-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
Collapse
|
49
|
Monk CE, Pearson BM, Mulholland F, Smith HK, Poole RK. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress. J Biol Chem 2008; 283:28413-25. [PMID: 18682395 DOI: 10.1074/jbc.m801016200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogenic bacteria experience nitrosative stress from NO generated in the host and from nitrosating species such as S-nitrosoglutathione. The food-borne pathogen Campylobacter jejuni responds by activating gene expression from a small regulon under the control of the NO-sensitive regulator, NssR. Here, we describe the full extent of the S-nitrosoglutathione response using transcriptomic and proteomic analysis of batch- and chemostat-cultured C. jejuni. In addition to the NssR regulon, which includes two hemoglobins (Cgb and Ctb), we identify more than 90 other up-regulated genes, notably those encoding heat shock proteins and proteins involved in oxidative stress tolerance and iron metabolism/transport. Up-regulation of a subset of these genes, including cgb, is also elicited by NO-releasing compounds. Mutation of the iron-responsive regulator Fur results in insensitivity of growth to NO, suggesting that derepression of iron-regulated genes and augmentation of iron acquisition is a physiological response to nitrosative damage. We describe the effect of oxygen availability on nitrosative stress tolerance; cells cultured at higher rates of oxygen diffusion have elevated levels of hemoglobins, are more resistant to inhibition by NO of both growth and respiration, and consume NO more rapidly. The oxygen response is mediated by NssR. Thus, in addition to NO detoxification catalyzed by the hemoglobins Cgb and possibly Ctb, C. jejuni mounts an extensive stress response. We suggest that inhibition of respiration by NO may increase availability of oxygen for Cgb synthesis and function.
Collapse
Affiliation(s)
- Claire E Monk
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Vinogradov SN, Moens L. Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing. J Biol Chem 2008; 283:8773-7. [DOI: 10.1074/jbc.r700029200] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|