1
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
2
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
In silico mutational analysis to identify the role and pathogenicity of BCL-w missense variants. J Genet Eng Biotechnol 2022; 20:120. [PMID: 35951173 PMCID: PMC9372248 DOI: 10.1186/s43141-022-00389-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
Background Intrinsic pathway of apoptosis is generally mediated by BCL-2 (B cell lymphoma 2) family of proteins; they either induce or inhibit the apoptosis. Overexpression of BCL-2 in cancer cell may lead to delay in apoptosis. BCL-w is the pro-survival member of the BCL-2 family. BCL2L2 gene is present on chromosome number 14 in humans, and it encodes BCL-w protein; BCL-w protein is 193 amino acids residues in length. Interactions among the BCL-2 proteins are very specific. The fate of cell is determined by the ratio of pro-apoptotic proteins to pro-survival proteins. BCL-w promotes cell survival. Studies suggested that overexpression of BCL-w protein is associated with many cancers including DLBCL, BL, colorectal cancers, gastric cancers, and many more. The cause of overexpression is translocations or gene amplification which will subsequently result in cancerous activity. Process For in-silico analysis, BCL2L2 gene was retrieved from UniProt (UniProt ID: Q92843). 54 missense variants have been collected in BCL-w proteins from COSMIC database. Different tools were used to detect the deleteriousness of the variants. Result In silico mutational study reveals how the non-synonymous mutations directly affect the protein’s native structure and its function. Variant mutational analysis with PolyPhen-2 revealed that out of 55 variants, 28 of the missense mutations was probably damaging with a score ranging from 0.9 to 1, while 24 variants were benign with a score ranging from 0 to 0.4. Conclusions This in silico work aims to determine how missense mutations in BCL-w protein affect the activity of the protein, the stability of the protein, and to determine the pathogenicity of the variants. Prediction of pathogenicity of variants will reveal if the missense mutation has a damaging effect on the native structure of protein or not. Prediction of protein stability will reveal whether the mutation has a stabilizing or destabilizing effect on the protein.
Collapse
|
4
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
5
|
Deferoxamine Inhibits Acute Lymphoblastic Leukemia Progression through Repression of ROS/HIF-1α, Wnt/β-Catenin, and p38MAPK/ERK Pathways. JOURNAL OF ONCOLOGY 2022; 2022:8281267. [PMID: 35237325 PMCID: PMC8885176 DOI: 10.1155/2022/8281267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer, with a feature of easy to induce multidrug resistance and relapse. Abundant studies have proved that iron overload strengthens the growth and metastasis of tumor cells. Herein, we found that deferoxamine (DFO) effectively decreased the concentration of intracellular iron in ALL cells. DFO inhibited proliferation, induced apoptosis, and obstructed cell cycle of ALL cells, whereas DFO and dextriferron (Dex) used in combination significantly decreased the sensitivity of ALL cells to DFO. Reactive oxygen species (ROS) level was reduced in ALL cells treated with DFO, and the combination of DFO and Dex reversed the effects of DFO. In vivo, DFO inhibited mouse tumor growth. Besides, cyclinD1, β-catenin, c-Myc, hypoxia inducible factor 1 (HIF-1), p-p38MAPK, and p-ERK1/2 protein levels were significantly downregulated, and the levels of prolyl hydroxylase-2 (PHD-2) were upregulated after treated with DFO, whereas Dex treatment reversed those in vivo and in vitro. In conclusion, DFO inhibited the proliferation and ALL xenograft tumor growth, obstructed the cell cycle, and induced apoptosis of ALL cells, probably via inactivating the ROS/HIF-1α, Wnt/β-catenin, and p38MAPK/ERK signaling.
Collapse
|
6
|
Kheshti AMS, Hajizadeh F, Barshidi A, Rashidi B, Ebrahimi F, Bahmanpour S, Karpisheh V, Noukabadi FK, Kiani FK, Hassannia H, Atyabi F, Kiaie SH, Kashanchi F, Navashenaq JG, Mohammadi H, Bagherifar R, Jafari R, Zolbanin NM, Jadidi-Niaragh F. Combination Cancer Immunotherapy with Dendritic Cell Vaccine and Nanoparticles Loaded with Interleukin-15 and Anti-beta-catenin siRNA Significantly Inhibits Cancer Growth and Induces Anti-Tumor Immune Response. Pharm Res 2022; 39:353-367. [PMID: 35166995 DOI: 10.1007/s11095-022-03169-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The invention and application of new immunotherapeutic methods can compensate for the inefficiency of conventional cancer treatment approaches, partly due to the inhibitory microenvironment of the tumor. In this study, we tried to inhibit the growth of cancer cells and induce anti-tumor immune responses by silencing the expression of the β-catenin in the tumor microenvironment and transmitting interleukin (IL)-15 cytokine to provide optimal conditions for the dendritic cell (DC) vaccine. METHODS For this purpose, we used folic acid (FA)-conjugated SPION-carboxymethyl dextran (CMD) chitosan (C) nanoparticles (NPs) to deliver anti-β-catenin siRNA and IL-15 to cancer cells. RESULTS The results showed that the codelivery of β-catenin siRNA and IL-15 significantly reduced the growth of cancer cells and increased the immune response. The treatment also considerably stimulated the performance of the DC vaccine in triggering anti-tumor immunity, which inhibited tumor development and increased survival in mice in two different cancer models. CONCLUSIONS These findings suggest that the use of new nanocarriers such as SPION-C-CMD-FA could be an effective way to use as a novel combination therapy consisting of β-catenin siRNA, IL-15, and DC vaccine to treat cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Drug Carriers
- Drug Compounding
- Female
- Gene Expression Regulation, Neoplastic
- Interleukin-15/administration & dosage
- Interleukin-15/chemistry
- Lymphocytes, Tumor-Infiltrating/immunology
- Magnetic Iron Oxide Nanoparticles
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNAi Therapeutics
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Tumor Burden/drug effects
- Tumor Microenvironment
- beta Catenin/genetics
- Mice
Collapse
Affiliation(s)
| | - Farnaz Hajizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Simin Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rafieh Bagherifar
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Reza Jafari
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naime Majidi Zolbanin
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Chen WJ, Sung WW, Yu CY, Luan YZ, Chang YC, Chen SL, Lee TH. PNU-74654 Suppresses TNFR1/IKB Alpha/p65 Signaling and Induces Cell Death in Testicular Cancer. Curr Issues Mol Biol 2022; 44:222-232. [PMID: 35723395 PMCID: PMC8928937 DOI: 10.3390/cimb44010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 11/16/2022] Open
Abstract
Testicular cancer (TC) is a rare malignancy worldwide and is the most common malignancy in males aged 15–44 years. The Wnt/β-catenin signaling pathway mediates numerous essential cellular functions and has potentially important effects on tumorigenesis and cancer progression. The search for drugs to inhibit this pathway has identified a small molecule, PNU-74654, as an inhibitor of the β-catenin/TCF4 interaction. We evaluated the therapeutic role of PNU-74654 in two TC cell lines, NCCIT and NTERA2, by measuring cell viability, cell cycle transition and cell death. Potential pathways were evaluated by protein arrays and Western blots. PNU-74654 decreased cell viability and induced apoptosis of TC cells, with significant increases in the sub G1, Hoechst-stained, Annexin V-PI-positive rates. PNU-74654 treatment of both TC cell lines inhibited the TNFR1/IKB alpha/p65 pathway and the execution phase of apoptosis. Our findings demonstrate that PNU-74654 can induce apoptosis in TC cells through mechanisms involving the execution phase of apoptosis and inhibition of TNFR1/IKB alpha/p65 signaling. Therefore, small molecules such as PNU-74654 may identify potential new treatment strategies for TC.
Collapse
Affiliation(s)
- Wen-Jung Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
| | - Sung-Lang Chen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.Y.); (Y.-Z.L.); (Y.-C.C.)
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-L.C.); (T.-H.L.)
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (W.-J.C.); (W.-W.S.)
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-L.C.); (T.-H.L.)
| |
Collapse
|
8
|
Tan X, Zhang L, Li T, Zhan J, Qiao K, Wu H, Sun S, Huang M, Zhang F, Zhang M, Li C, Li R, Pan H. Lgr4 Regulates Oviductal Epithelial Secretion Through the WNT Signaling Pathway. Front Cell Dev Biol 2021; 9:666303. [PMID: 34631693 PMCID: PMC8497904 DOI: 10.3389/fcell.2021.666303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays a crucial role in oviduct/fallopian development. However, the specific physiological processes regulated by the WNT pathway in the fallopian/oviduct function remain obscure. Benefiting from the Lgr4 knockout mouse model, we report the regulation of oviduct epithelial secretion by LGR4. Specifically, the loss of Lgr4 altered the mouse oviduct size and weight, severely reduced the number of oviductal epithelial cells, and ultimately impaired the epithelial secretion. These alterations were mediated by a failure of CTNNB1 protein accumulation in the oviductal epithelial cytoplasm, by the modulation of WNT pathways, and subsequently by a profound change of the gene expression profile of epithelial cells. In addition, selective activation of the WNT pathway triggered the expression of steroidogenic genes, like Cyp11a1 and 3β-Hsd1, through the activation of the transcriptional factor NR5A2 in an oviduct primary cell culture system. As demonstrated, the LGR4 protein modulates a WNT-NR5A2 signaling cascade facilitating epithelial secretory cell maturation and steroidogenesis to safeguard oviduct development and function in mice.
Collapse
Affiliation(s)
- Xue Tan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingling Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Tianqi Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Kun Qiao
- Center for Reproductive Medicine, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haili Wu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai, China
| | - Shenfei Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Meina Huang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangxi Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Meixing Zhang
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsheng Li
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Abstract
Wnt/β-catenin signaling is crucial both in normal embryonic development and throughout the life of an organism. Moreover, aberrant Wnt signaling has been associated with various diseases, especially cancer and fibrosis. Recent research suggests that direct targeting of the β-catenin/BCL9 protein-protein interaction (PPI) is a promising strategy to block the Wnt pathway. Progress in understanding the cocrystalline complex and mechanism of action of the β-catenin/BCL9 interaction facilitates the discovery process of its inhibitors, but only a few inhibitors have been reported. In this review, the discovery and development of β-catenin/BCL9 PPI inhibitors in the areas of drug design, structure-activity relationships and biological and biochemical properties are summarized. In addition, perspectives for the future development of β-catenin/BCL9 PPI inhibitors are explored.
Collapse
|
10
|
|
11
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
12
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
13
|
Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 Family in B Cell Lymphoma. Front Oncol 2019; 8:636. [PMID: 30671383 PMCID: PMC6331425 DOI: 10.3389/fonc.2018.00636] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although lymphoma is a very heterogeneous group of biologically complex malignancies, tumor cells across all B cell lymphoma subtypes share a set of underlying traits that promote the development and sustain malignant B cells. One of these traits, the ability to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2 family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma. Significant efforts have been made over the last 30 years to advance knowledge of the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family members. In this review, we will highlight the complexities of the Bcl-2 family, including our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w in lymphomas, and describe recent advances in the field that include the development of inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas and their performance in clinical trials.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sean Clark-Garvey
- Internal Medicine Residency Program, Department of Internal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med (Maywood) 2017; 242:1185-1197. [PMID: 28474989 DOI: 10.1177/1535370217708198] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.
Collapse
Affiliation(s)
- Maocai Yan
- 1 School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Guanqun Li
- 2 Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | - Jing An
- 3 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KLB, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1658-71. [PMID: 25827952 DOI: 10.1016/j.bbamcr.2015.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Ludwig N, Kim YJ, Mueller SC, Backes C, Werner TV, Galata V, Sartorius E, Bohle RM, Keller A, Meese E. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro Oncol 2015; 17:1250-60. [PMID: 25681310 DOI: 10.1093/neuonc/nov014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Micro (mi)RNAs are key regulators of gene expression and offer themselves as biomarkers for cancer development and progression. Meningioma is one of the most frequent primary intracranial tumors. As of yet, there are limited data on the role of miRNAs in meningioma of different histological subtypes and the affected signaling pathways. METHODS In this study, we compared expression of 1205 miRNAs in different meningioma grades and histological subtypes using microarrays and independently validated deregulation of selected miRNAs with quantitative real-time PCR. Clinical utility of a subset of miRNAs as biomarkers for World Health Organization (WHO) grade II meningioma based on quantitative real-time data was tested. Potential targets of deregulated miRNAs were discovered with an in silico analysis. RESULTS We identified 13 miRNAs deregulated between different subtypes of benign meningiomas, and 52 miRNAs deregulated in anaplastic meningioma compared with benign meningiomas. Known and putative target genes of deregulated miRNAs include genes involved in epithelial-to-mesenchymal transition for benign meningiomas, and Wnt, transforming growth factor-β, and vascular endothelial growth factor signaling for higher-grade meningiomas. Furthermore, a 4-miRNA signature (miR-222, -34a*, -136, and -497) shows promise as a biomarker differentiating WHO grade II from grade I meningiomas with an area under the curve of 0.75. CONCLUSIONS Our data provide novel insights into the contribution of miRNAs to the phenotypic spectrum in benign meningiomas. By deregulating translation of genes belonging to signaling pathways known to be important for meningioma genesis and progression, miRNAs provide a second in line amplification of growth promoting cellular signals. MiRNAs as biomarkers for diagnosis of aggressive meningiomas might prove useful and should be explored further in a prospective manner.
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Yoo-Jin Kim
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Sabine C Mueller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Christina Backes
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Tamara V Werner
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Valentina Galata
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Elke Sartorius
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Rainer M Bohle
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Andreas Keller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Eckart Meese
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| |
Collapse
|
17
|
Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genomics 2014; 15:74. [PMID: 24467841 PMCID: PMC3909937 DOI: 10.1186/1471-2164-15-74] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022] Open
Abstract
Background Deregulation of Wnt/β-catenin signaling is a hallmark of the majority of sporadic forms of colorectal cancer and results in increased stability of the protein β-catenin. β-catenin is then shuttled into the nucleus where it activates the transcription of its target genes, including the proto-oncogenes MYC and CCND1 as well as the genes encoding the basic helix-loop-helix (bHLH) proteins ASCL2 and ITF-2B. To identify genes commonly regulated by β-catenin in colorectal cancer cell lines, we analyzed β-catenin target gene expression in two non-isogenic cell lines, DLD1 and SW480, using DNA microarrays and compared these genes to β-catenin target genes published in the PubMed database and DNA microarray data presented in the Gene Expression Omnibus (GEO) database. Results Treatment of DLD1 and SW480 cells with β-catenin siRNA resulted in differential expression of 1501 and 2389 genes, respectively. 335 of these genes were regulated in the same direction in both cell lines. Comparison of these data with published β-catenin target genes for the colon carcinoma cell line LS174T revealed 193 genes that are regulated similarly in all three cell lines. The overlapping gene set includes confirmed β-catenin target genes like AXIN2, MYC, and ASCL2. We also identified 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are regulated similarly in DLD1 and SW480 cells and one pathway – the steroid biosynthesis pathway – was regulated in all three cell lines. Conclusions Based on the large number of potential β-catenin target genes found to be similarly regulated in DLD1, SW480 and LS174T cells as well as the large overlap with confirmed β-catenin target genes, we conclude that DLD1 and SW480 colon carcinoma cell lines are suitable model systems to study Wnt/β-catenin signaling and associated colorectal carcinogenesis. Furthermore, the confirmed and the newly identified potential β-catenin target genes are useful starting points for further studies.
Collapse
|
18
|
Xiong Y, Liu Y, Song Z, Hao F, Yang X. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell. J Dermatol 2013; 41:84-91. [PMID: 24354472 DOI: 10.1111/1346-8138.12313] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.
Collapse
Affiliation(s)
- Ya Xiong
- Department of Dermatology, Southwest Hospital, Chongqing, China
| | | | | | | | | |
Collapse
|
19
|
Expression Profiling of Proliferation and Apoptotic Markers along the Adenoma-Carcinoma Sequence in Familial Adenomatous Polyposis Patients. Gastroenterol Res Pract 2013; 2013:107534. [PMID: 23476634 PMCID: PMC3586510 DOI: 10.1155/2013/107534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 11/17/2022] Open
Abstract
Introduction. Familial adenomatous polyposis (FAP) patients have a germline mutation in the adenomatous polyposis coli (APC) gene. The APC protein interacts with beta-catenin, resulting in the activation of the Wnt signalling pathway. This results in alterations in cell proliferation and apoptosis. We investigated the expression of beta-catenin and related proliferation and apoptotic factors in FAP patients, exploring the expression along the adenoma-carcinoma sequence. Methods. The expression of beta-catenin, p53, bcl-2, cyclin-D1, caspase-3, CD10, and Ki-67 proteins was studied by immunohistochemistry in samples of colonic nonneoplastic mucosa (n = 71), adenomas (n = 152), and adenocarcinomas (n = 19) from each of the16 FAP patients. Results. The expression of beta-catenin, caspase-3, cyclin-D1, and Ki-67 was increased in both adenomas and carcinomas in FAP patients, compared with normal mucosa. p53 and CD10 expression was only slightly increased in adenomas, but more frequently expressed in carcinomas. Bcl-2 expression was increased in adenomas, but decreased in carcinomas. Conclusion. This is the first study investigating collectively the expression of these molecules together in nonneoplastic mucosa, adenomas, and carcinomas from FAP patients. We find that beta-catenin and related proliferative and apoptotic factors (cyclin-D1, bcl-2, caspase-3, and Ki-67) are expressed early in the sequence, in adenomas. However, p53 and CD10 are often expressed later in the sequence, in carcinomas.
Collapse
|
20
|
Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, Garbe C, Schittek B. β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS One 2011; 6:e23429. [PMID: 21858114 PMCID: PMC3157382 DOI: 10.1371/journal.pone.0023429] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/17/2011] [Indexed: 12/19/2022] Open
Abstract
Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Moritz Menzel
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Daniel Ewerth
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
21
|
Bo J, Yang G, Huo K, Jiang H, Zhang L, Liu D, Huang Y. microRNA-203 suppresses bladder cancer development by repressing bcl-w expression. FEBS J 2011; 278:786-92. [PMID: 21205209 DOI: 10.1111/j.1742-4658.2010.07997.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is increasingly clear that microRNAs (miRNAs) play an important role in many diseases, including tumorigenesis. However, the mechanisms by which miRNAs regulate bladder cancer development remain poorly understood. Here, we evaluated the expression of microRNA-203 (miR-203) in bladder cancer tissues using real-time PCR, and defined the target genes and biologically functional effect using luciferase reporter assay, flow cytometry and western blot analysis. We first verified that the expression of miR-203 was decreased in bladder cancer tissues. Moreover, ectopic expression of miR-203 promoted the apoptosis of human bladder cancer cell lines and inhibited cell proliferation, whereas its depletion increased cell growth. We further verified that miR-203 directly targeted 3'-untranslated region of the bcl-w gene, and decreased its expression in vitro and in vivo. Western blot analysis also showed that the expression level of miR-203 was negatively correlated with bcl-w level in tumor tissues. These data suggest an important role for miR-203 in the molecular etiology of bladder cancer and implicate the potential application of miR-203 in bladder cancer therapy.
Collapse
Affiliation(s)
- Juanjie Bo
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kruyt FA, Schuringa JJ. Apoptosis and cancer stem cells: Implications for apoptosis targeted therapy. Biochem Pharmacol 2010; 80:423-30. [PMID: 20394737 DOI: 10.1016/j.bcp.2010.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 12/14/2022]
|
23
|
de Araújo WM, Vidal FCB, de Souza WF, de Freitas Junior JCM, de Souza W, Morgado-Diaz JA. PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. J Cancer Res Clin Oncol 2010; 136:1773-82. [DOI: 10.1007/s00432-010-0836-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
|
24
|
Apoptosis and colorectal cancer: implications for therapy. Trends Mol Med 2009; 15:225-33. [PMID: 19362056 DOI: 10.1016/j.molmed.2009.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is characterized by the partial suppression of apoptosis, which in turn gives tumours a selective advantage for survival and can cause current chemotherapy approaches to be ineffective. Recent progress in understanding the mechanisms of apoptosis in colorectal carcinogenesis has provided potential new targets for therapy. Here, we review recent studies of the regulation of apoptosis and its role in CRC initiation and progression, and we discuss the relationship between chemoresistance and the suppression of apoptosis. Recent progress in targeting apoptotic pathways and their regulators provide strategies for the exploration of novel therapies for CRC.
Collapse
|