1
|
Jiménez-Ruiz CA, de la Herrán R, Robles F, Navajas-Pérez R, Cross I, Rebordinos L, Ruiz-Rejón C. miR-430 microRNA Family in Fishes: Molecular Characterization and Evolution. Animals (Basel) 2023; 13:2399. [PMID: 37570208 PMCID: PMC10417697 DOI: 10.3390/ani13152399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The miR-430 microRNA family has been described in multiple fish species as one of the first microRNAs expressed by the zygote. It has been suggested that this family is implicated in maternal mRNA elimination, but may also play a role in steroidogenesis, sexual differentiation, and flatfish metamorphosis. The miR-430 sequences have been found in multiple-copy tandem clusters but evidence of their conservation outside of teleost fishes is scarce. In the present study, we have characterized the tandem repeats organization of these microRNAs in different fish species, both model and of interest in aquaculture. A phylogenetic analysis of this family has allowed us to identify that the miR-430 duplication, which took place before the Chondrostei and Neopterygii groups' divergence, has resulted in three variants ("a", "b", and "c"). According to our data, variant "b" is the most closely related to the ancestral sequence. Furthermore, we have detected isolated instances of the miR-430 repeat subunit in some species, which suggests that this microRNA family may be affected by DNA rearrangements. This study provides new data about the abundance, variability, and organization of the miR-430 family in fishes.
Collapse
Affiliation(s)
- Claudio A. Jiménez-Ruiz
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Ismael Cross
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510 Cádiz, Spain
| | - Carmelo Ruiz-Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Song W, Gan W, Xie Z, Chen J, Wang L. Small RNA sequencing reveals sex-related miRNAs in Collichthys lucidus. Front Genet 2022; 13:955645. [PMID: 36092867 PMCID: PMC9458855 DOI: 10.3389/fgene.2022.955645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Collichthys lucidus (C. lucidus) is an economically important fish species, exhibiting sexual dimorphism in its growth rate. However, there is a lack of research on its underlying sex-related mechanisms. Therefore, small RNA sequencing was performed to better comprehend these sex-related molecular mechanisms. In total, 171 differentially expressed miRNAs (DE-miRNAs) were identified between the ovaries and testes. Functional enrichment analysis revealed that the target genes of DE-miRNAs were considerably enriched in the p53 signaling, PI3K–Akt signaling, and TGF-beta signaling pathways. In addition, sex-related miRNAs were identified, and the expression of miR-430c-3p and miR-430f-3p was specifically observed in the gonads compared with other organs and their expression was markedly upregulated in the testes relative to the ovaries. Bmp15 was a target of miR-430c-3p and was greatly expressed in the ovaries compared with the testes. Importantly, miR-430c-3p and bmp15 co-expressed in the ovaries and testes. This research provides the first detailed miRNA profiles for C. lucidus concerning sex, likely laying the basis for further studies on sex differentiation in C. lucidus.
Collapse
Affiliation(s)
- Wei Song
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wu Gan
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhengli Xie
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Fuding Seagull Fishing Food Co. Ltd., Ningde, China
| | - Lumin Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lumin Wang,
| |
Collapse
|
3
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
4
|
Integrated Analysis of miR-430 on Steroidogenesis-Related Gene Expression of Larval Rice Field Eel Monopterus albus. Int J Mol Sci 2021; 22:ijms22136994. [PMID: 34209701 PMCID: PMC8269179 DOI: 10.3390/ijms22136994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
The present study aims to reveal the mechanism by which miR-430s regulate steroidogenesis in larval rice field eel Monopterus albus. To this end, M. albus embryos were respectively microinjected with miRNA-overexpressing mimics (agomir430a, agomir430b, and agomir430c) or miRNA-knockdown inhibitors (antagomir430a, antagomir430b, and antagomir430c). Transcriptome profiling of the larvae indicated that a total of more than 149 differentially expressed genes (DEGs) were identified among the eight treatments. Specifically, DEGs related to steroidogenesis, the GnRH signaling pathway, the erbB signaling pathway, the Wnt signaling pathway, and other pathways were characterized in the transcriptome. We found that steroidogenesis-related genes (hydroxysteroid 17-beta dehydrogenase 3 (17β-hsdb3), hydroxysteroid 17-beta dehydrogenase 7 (17β-hsdb7), hydroxysteroid 17-beta dehydrogenase 12 (17β-hsdb12), and cytochrome P450 family 19 subfamily a (cyp19a1b)) were significantly downregulated in miR-430 knockdown groups. The differential expressions of miR-430 in three gonads indicated different roles of three miR-430 (a, b, and c) isoforms in regulating steroidogenesis and sex differentiation. Mutation of the miR-430 sites reversed the downregulation of cytochrome P450 family 17 (cyp17), cyp19a1b, and forkhead box L2 (foxl2) reporter activities by miR-430, indicating that miR-430 directly interacted with cyp17, cyp19a1b, and foxl2 genes to inhibit their expressions. Combining these findings, we concluded that miR-430 regulated the steroidogenesis and the biosynthesis of steroid hormones by targeting cyp19a1b in larval M. albus. Our results provide a novel insight into steroidogenesis at the early stage of fish at the molecular level.
Collapse
|
5
|
Ma Z, Yang J, Zhang Q, Xu C, Wei J, Sun L, Wang D, Tao W. miR-133b targets tagln2 and functions in tilapia oogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110637. [PMID: 34147671 DOI: 10.1016/j.cbpb.2021.110637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) are important components of non-coding RNAs that participate in diverse life activities by regulating gene expression at the post transcriptional level through base complementary pairing with 3'UTRs of target mRNAs. miR-133b is a member of the miR-133 family, which play important roles in muscle differentiation and tumorigenesis. Recently, miR-133b was reported to affect estrogen synthesis by targeting foxl2 in mouse, while its role in fish reproduction remains to be elucidated. In the present study, we isolated the complete sequence of miR-133b, which was highly expressed in tilapia ovary at 30 and 90 dah (days after hatching) and subsequently decreased at 120 to 150 dah by qPCR. Interestingly, only a few oogonia were remained in the antagomir-133b treated tilapia ovary, while phase I and II oocytes were observed in the ovaries of the control group. Unexpectedly, the expression of foxl2 and cyp19a1a, as well as estradiol levels in serum were increased in the treated group. Furthermore, tagln2, an important factor for oogenesis, was predicted as the target gene of miR-133b, which was confirmed by dual luciferase reporter vector experiments. miR-133b and tagln2 were co-expressed in tilapia ovaries. Taken together, miR-133b may be involved in the early oogenesis of tilapia by regulating tagln2 expression. This study enriches the understanding of miR-133b function during oogenesis and lays a foundation for further study of the regulatory network during oogenesis.
Collapse
Affiliation(s)
- Zhisheng Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Zhang S, Liu J, He J, Yi N. MicroRNA‑193a‑5p exerts a tumor suppressive role in epithelial ovarian cancer by modulating RBBP6. Mol Med Rep 2021; 24:582. [PMID: 34132380 PMCID: PMC8223108 DOI: 10.3892/mmr.2021.12221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC), a gynecological tumor, is associated with high mortality. MicroRNAs (miRs) serve a crucial role in EOC; however, the mechanisms underlying the effect of miRNA-193a-5p in EOC are not completely understood. Therefore, the present study aimed to investigate the expression levels of miR-193a-5p in serum samples of patients with EOC and to determine the role of miR-193a-5p in EOC. Reverse transcription-quantitative PCR was used to analyze the expression levels of miR-193a-5p in serum samples of patients with EOC and EOC cell lines. The effects of miR-193a-5p and RB binding protein 6, ubiquitin ligase (RBBP6) on the biological functions of EOC were determined by conducting a series of in vitro cell function experiments. The results indicated that the expression levels of miR-193a-5p were significantly decreased in serum samples obtained from patients with EOC and EOC cell lines compared with healthy individuals and normal cells, respectively. Further investigations indicated that RBBP6 was a target gene of miR-193a-5p. The expression levels of RBBP6 were significantly increased in patients with EOC compared with healthy individuals. In addition, in vitro analysis suggested that miR-193a-5p mimic significantly decreased SKOV3 cell proliferation, migration and invasion, and promoted SKOV3 cell apoptosis compared with the control and mimic-negative control groups. In addition, RBBP6 overexpression reversed miR-193a-5p mimic-mediated effects. In conclusion, the results of the present study suggested that downregulated expression levels of miR-193a-5p may serve an inhibitory role in EOC by inhibiting cell proliferation and metastasis, and promoting apoptosis.
Collapse
Affiliation(s)
- Shuangli Zhang
- Department of Gynecology, Beijing Ditan Hospital Capital Medical University, Beijing 100200, P.R. China
| | - Jun Liu
- Department of Gynecology, Beijing Ditan Hospital Capital Medical University, Beijing 100200, P.R. China
| | - Jie He
- Department of Gynecology, Beijing Liangxiang Hospital Capital Medical University, Beijing 100200, P.R. China
| | - Nuo Yi
- Department of Gynecology, Beijing Ditan Hospital Capital Medical University, Beijing 100200, P.R. China
| |
Collapse
|
7
|
Tang X, Fu J, Tan X, Shi Y, Ye J, Guan W, Shi Y, Xu M. The miR-155 regulates cytokines expression by SOSC1 signal pathways of fish in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2020; 106:28-35. [PMID: 32707297 DOI: 10.1016/j.fsi.2020.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
MiR-155 is reported as immune regulated miRNA in mammalian corresponding to immunity, antibacterial and antiviral effects regulation. However, the roles and mechanisms of the miRNA have remained largely undefined. We herein comprehensively investigated the functions of miR-155 in vitro and in vivo by miR-155 mimics, agomir and antagomir in Cyprinus carpio and Ictalurus punctatus, with the target genes in the SOSC1 pathway certified in I. punctatus via luciferase reporter assays. Results showed that the miR-155 regulated the expressions of cytokines, including TNF-α, IFN-γ, IL-1β, IL-6 and IL-10. Further research confirmed SOSC1 as one of the targets of the miRNA, and the JAK1/STAT3/SOSC1 signal pathway involved in the miR-155 effects on the expression of immune cytokines as well. Additionally, the changes of TLR2 in fish may also be related to miR-155 along with its target SOCS1, and the TLR2/MyD88 pathway may partly participate in the effects of the miR-155 on the cytokines. The research here confirmed that the miR-155 can regulate cytokines expression by SOSC1 signal pathways of fish in vitro and in vivo, which would provide resources for understanding and studying about immune regulation in fish.
Collapse
Affiliation(s)
- Xuelian Tang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinghua Fu
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xukai Tan
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunfeng Shi
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiawei Ye
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanting Guan
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yifu Shi
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minjun Xu
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wang X, Song X, Bhandari RK. Distinct expression patterns of seven crucial microRNAs during early embryonic development in medaka (Oryzias latipes). Gene Expr Patterns 2020; 37:119133. [PMID: 32800847 DOI: 10.1016/j.gep.2020.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (i.e. miRNAs) are small non-coding RNAs that play essential modulation roles in embryonic development in vertebrates. Paternal and maternal miRNAs contribute to the development of post-fertilization embryo and zygotic genome activation. The pattern of expression and their roles in embryonic development of medaka are not clearly understood. The present study, therefore, examined a temporal expression of seven miRNAs, ola-let-7a, ola-miR-202-3p, ola-miR-126-3p, ola-miR-122, ola-miR-92a, ola-miR-125a-3p and ola-miR-430a in sperm, oocytes, and embryos during early developmental stages. Three unique expression patterns of miRNAs were observed. ola-let7a, ola-miR-202-3p and ola-miR-126-3p showed both paternal and maternal expression, and ola-miR-122, ola-miR-92a, ola-miR-125a-3p showed maternal expression only. The expression of six out of seven miRNAs significantly decreased after maternal-zygotic transition (MZT), whereas ola-miR-430a expression initiated only after MZT. The temporal dynamic expression of these miRNAs suggests their potential roles in early embryogenesis and genome-zygotic activation in medaka.
Collapse
Affiliation(s)
- Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
9
|
Gentsch GE, Owens NDL, Smith JC. The Spatiotemporal Control of Zygotic Genome Activation. iScience 2019; 16:485-498. [PMID: 31229896 PMCID: PMC6593175 DOI: 10.1016/j.isci.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, Paris 75015, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
10
|
Zhang B, Zhao N, Jia L, Peng K, Che J, Li K, He X, Sun J, Bao B. Seminal Plasma Exosomes: Promising Biomarkers for Identification of Male and Pseudo-Males in Cynoglossus semilaevis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:310-319. [PMID: 30863906 DOI: 10.1007/s10126-019-09881-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
In mammals, small RNAs enclosed in exosomes have been identified as appropriate signatures for disease diagnosis. However, there is limited information on exosomes derived from seminal plasma, and few studies have reported analyzed the composition of exosomes and enclosed small RNAs in fish. The half-smooth tongue sole (Cynoglossus semilaevis) is an economically important fish for aquaculture, and it exhibits sexual dimorphism: the female gender show higher growth rates and larger body sizes than males. Standard karyotype analysis and artificial gynogenesis tests have revealed that this species uses heterogametic sex determination (ZW/ZZ), and so-called sex-reversed pseudo-males exist. In this study, we successfully identified exosomes in the seminal plasma of C. semilaevis; to the best of our knowledge, this is the first report of exosomes in fish seminal plasma. Analysis of the nucleotide composition showed that miRNAs were dominant in the exosomes, and the miRNAs were sequenced and compared to identify signature miRNAs as sexual biomarkers. Moreover, target genes of the signature miRNAs were predicted by sequence matching and annotation. Finally, four miRNAs (dre-miR-141-3P, dre-miR-10d-5p, ssa-miR-27b-3p, and ssa-miR-23a-3p) with significant differential expression in the males and pseudo-males were selected from the signature candidate miRNAs as markers for sex identification, and their expression profiles were verified using real-time quantitative PCR. Our findings could provide an effective detection method for sex differentiation in fish.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Na Zhao
- Tianjin Sheng Fa Biotechnology Co, Ltd, Tianjin, China
| | - Lei Jia
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Kang Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoxu He
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Jinsheng Sun
- Tianjin Bohai Sea Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University, Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Oh HJ, Kim J, Park H, Chung S, Hwang DW, Lee DS. Graphene-oxide quenching-based molecular beacon imaging of exosome-mediated transfer of neurogenic miR-193a on microfluidic platform. Biosens Bioelectron 2019; 126:647-656. [DOI: 10.1016/j.bios.2018.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 01/10/2023]
|
12
|
Tani-Matsuhana S, Kusakabe R, Inoue K. Developmental mechanisms of migratory muscle precursors in medaka pectoral fin formation. Dev Genes Evol 2018; 228:189-196. [PMID: 30008036 DOI: 10.1007/s00427-018-0616-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 01/27/2023]
Abstract
Limb muscles are formed from migratory muscle precursor cells (MMPs) that delaminate from the ventral region of dermomyotomes and migrate into the limb bud. MMPs remain undifferentiated during migration, commencing differentiation into skeletal muscle after arrival in the limb. However, it is still unclear whether the developmental mechanisms of MMPs are conserved in teleost fishes. Here, we investigate the development of pectoral fin muscles in the teleost medaka Oryzias latipes. Expression of the MMP marker lbx1 is first observed in several somites prior to the appearance of fin buds. lbx1-positive cells subsequently move anteriorly and localize in the prospective fin bud region to differentiate into skeletal muscle cells. To address the developmental mechanisms underlying fin muscle formation, we knocked down tbx5, a gene that is required for fin bud formation. tbx5 morphants showed loss of fin buds, whereas lbx1 expression initiated normally in anterior somites. Unlike in normal embryos, expression of lbx1 was not maintained in migrating fin MMPs or within the fin buds. We suggest that fin MMPs appear to undergo two phases in their development, with an initial specification of MMPs occurring independent of fin buds and a second fin bud-dependent phase of MMP migration and proliferation. Our results showed that medaka fin muscle is composed of MMPs. It is suggested that the developmental mechanism of fin muscle formation is conserved in teleost fishes including medaka. Through this study, we also propose new insights into the developmental mechanisms of MMPs in fin bud formation.
Collapse
Affiliation(s)
- Saori Tani-Matsuhana
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Chuo-Ku, Kobe, 650-0047, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
13
|
Robles V, Herráez P, Labbé C, Cabrita E, Pšenička M, Valcarce DG, Riesco MF. Molecular basis of spermatogenesis and sperm quality. Gen Comp Endocrinol 2017; 245:5-9. [PMID: 27131389 DOI: 10.1016/j.ygcen.2016.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 01/15/2023]
Abstract
Spermatozoan quality can be evaluated in different ways, here we focus on the analysis of DNA, RNA and epigenetic status of germ cells. These characterizations also can be the bases for explaining sperm quality at other levels, so we will see how some of these molecules could affect other sperm quality markers. Moreover, we consider the possibility of using some of these molecules as predictors of sperm quality in terms of the ability to produce healthy offspring. The relevant effect of different types of RNA molecules in germ line specification and spermatogenesis and the importance of germ cell DNA integrity and a proper epigenetic pattern will be also discussed. Although most studies at this level have been performed in mammals, some information is available for fish; these recent discoveries in fish models are included. We provide a general overview on how these molecules could have a deep influence in the final sperm quality.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Promontorio de San Martín s/n, Santander, Spain; INDEGSAL, University of León, León, Spain.
| | - Paz Herráez
- INDEGSAL, University of León, León, Spain; Department of Molecular Biology, University of León, León, Spain
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Elsa Cabrita
- CCMAR-Centre of Marine Sciences, University of Algarve, Portugal
| | - Martin Pšenička
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - David G Valcarce
- INDEGSAL, University of León, León, Spain; Department of Molecular Biology, University of León, León, Spain
| | - Marta F Riesco
- CCMAR-Centre of Marine Sciences, University of Algarve, Portugal
| |
Collapse
|
14
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Hong N, Li M, Yuan Y, Wang T, Yi M, Xu H, Zeng H, Song J, Hong Y. Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish. Stem Cell Reports 2016; 6:411-21. [PMID: 26852942 PMCID: PMC4788760 DOI: 10.1016/j.stemcr.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/28/2022] Open
Abstract
Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model. The medaka RNA-binding protein Dnd specifies primordial germ cells Cells from medaka cleavage embryos can be singly cultured for lineage tracing The dnd RNA forms particles as a new mechanism for asymmetric segregation These findings offer new insights into PGC specification and manipulation
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A(∗)STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Mingyou Li
- Ministry of Education Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yongming Yuan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Tiansu Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Meisheng Yi
- Laboratory of Molecular Reproductive Biology, School of Marine Sciences, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, China
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A(∗)STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Jianxing Song
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Yunhan Hong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
16
|
MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans. Stem Cells Int 2015; 2016:3984937. [PMID: 26664407 PMCID: PMC4655303 DOI: 10.1155/2016/3984937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.
Collapse
|
17
|
Gao Y, Guo W, Hu Q, Zou M, Tang R, Chi W, Li D. Characterization and differential expression patterns of conserved microRNAs and mRNAs in three genders of the rice field eel (Monopterus albus). Sex Dev 2014; 8:387-98. [PMID: 25427634 DOI: 10.1159/000369181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their sequences in the 3' untranslated region. The expression of miRNAs and their biogenetic pathway are involved in sexual differentiation and in the regulation of the development of germ cells and gonadal somatic cells. The rice field eel (Monopterus albus) undergoes a natural sexual transformation from female to male via an intersex stage during its life cycle. To investigate the molecular mechanisms of this sexual transformation, miRNAs present in the different sexual stages of the rice field eel were identified by high-throughput sequencing technology. A significantly differential expression among the 3 genders (p < 0.001) was observed for 48 unique miRNAs and 3 miRNAs*. Only 9 unique miRNAs showed a more than 8-fold change in their expression among the 3 genders, including mal-miR-430a and mal-miR-430c which were higher in females than in males. However, mal-miR-430b was only detected in males. Several potential miRNA target genes (cyp19a, cyp19b, nr5a1b, foxl2 amh, and vasa) were also investigated. Real-time RT-PCR demonstrated highly specific expression patterns of these genes in the 3 genders of the rice field eel. Many of these genes are targets of mal-miR-430b according to the TargetScan and miRTarBase. These results suggest that the miR-430 family may be involved in the sexual transformation of the rice field eel.
Collapse
Affiliation(s)
- Yu Gao
- College of Fisheries, Huazhong Agricultural University, and Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 2014; 30:581-613. [PMID: 25150012 DOI: 10.1146/annurev-cellbio-100913-013027] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryogenesis depends on a highly coordinated cascade of genetically encoded events. In animals, maternal factors contributed by the egg cytoplasm initially control development, whereas the zygotic nuclear genome is quiescent. Subsequently, the genome is activated, embryonic gene products are mobilized, and maternal factors are cleared. This transfer of developmental control is called the maternal-to-zygotic transition (MZT). In this review, we discuss recent advances toward understanding the scope, timing, and mechanisms that underlie zygotic genome activation at the MZT in animals. We describe high-throughput techniques to measure the embryonic transcriptome and explore how regulation of the cell cycle, chromatin, and transcription factors together elicits specific patterns of embryonic gene expression. Finally, we illustrate the interplay between zygotic transcription and maternal clearance and show how these two activities combine to reprogram two terminally differentiated gametes into a totipotent embryo.
Collapse
Affiliation(s)
- Miler T Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520; ,
| | | | | |
Collapse
|
19
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
20
|
Kato Y, Kusakabe R, Inoue K, Tochinai S. MiR-124 is Involved in Post-Transcriptional Regulation of Polypyrimidine Tract Binding Protein 1 (PTBP1) During Neural Development in the Medaka, Oryzias latipes. Zoolog Sci 2013; 30:891-900. [DOI: 10.2108/zsj.30.891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yumiko Kato
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Rie Kusakabe
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Shin Tochinai
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
21
|
Tani S, Kuraku S, Sakamoto H, Inoue K, Kusakabe R. Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates. Evol Dev 2013; 15:293-304. [DOI: 10.1111/ede.12039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saori Tani
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit; RIKEN Center for Developmental Biology; 2-2-3 Minatojima-Minami; Chuo-Ku, Kobe; 650-0047; Japan
| | - Hiroshi Sakamoto
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Kunio Inoue
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Rie Kusakabe
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| |
Collapse
|
22
|
Liu L, Zhao X, Zhu X, Zhong Z, Xu R, Wang Z, Cao J, Hou Y. Decreased expression of miR-430 promotes the development of bladder cancer via the upregulation of CXCR7. Mol Med Rep 2013; 8:140-6. [PMID: 23677384 DOI: 10.3892/mmr.2013.1477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/25/2013] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be involved in the development of numerous types of malignant tumor. However, the role of miRNA-430 (miR-430) in bladder cancer remains unclear. In the present study, we observed that the expression of miR-430 was significantly downregulated in bladder cancer. Furthermore, the overexpression of miR-430 in human bladder cancer 5637 cells significantly inhibited cell proliferation, migration and colony formation efficiency. These findings were contrary to those obtained following the overexpression of CXCR7, which was found to be a direct target of miR-430 in this study. Further analysis showed that cell proliferation- and migration-related genes, including ERK, matrix metalloproteinase-2 (MMP-2) and MMP-9, were significantly downregulated in miR-430 overexpressed 5637 cells, while they were markedly upregulated in CXCR7 overexpressed 5637 cells. In conclusion, our study reveals important roles of miR-430 and CXCR7 in bladder cancer, and suggests that the downregulation of miR-430 enhances the development of bladder cancer, partly via the upregulation of CXCR7.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Identification and characterization of microRNAs in channel catfish (Ictalurus punctatus) by using Solexa sequencing technology. PLoS One 2013; 8:e54174. [PMID: 23342099 PMCID: PMC3546936 DOI: 10.1371/journal.pone.0054174] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
Channel catfish (Ictalurus spp.) is an economically important species in freshwater aquaculture around the world and occupies a prominent position in the aquaculture industry of the United States. MicroRNAs (miRNAs) play important roles in the regulation of almost every biological process in eukaryotes; however, there is little information available concerning miRNAs in channel catfish. In this study, a small-RNA cDNA library was constructed from 10 tissues of channel catfish, and Solexa sequencing technology was used to perform high-throughput sequencing of the library. A total of 14,919,026 raw reads, representing 161,288 unique sequences, were obtained from the small-cDNA library. After comparing the small RNA sequences with the RFam database, 4,542,396 reads that represent 25,538 unique sequences were mapped to the genome sequence of zebrafish to perform distribution analysis and to screen for candidate miRNA genes. Subsequent bioinformatic analysis identified 237 conserved miRNAs and 45 novel miRNAs in the channel catfish. Stem-loop RT-PCR was applied to validate and profile the expression of the novel miRNAs in 10 tissues. Some novel miRNAs, such as ipu-miR-129b, ipu-miR-7562 and ipu-miR-7553, were expressed in all tissues examined. However, some novel miRNAs appear to be tissue specific. Ipu-miR-7575 is predominantly expressed in stomach. Ipu-miR-7147 and ipu-miR-203c are highly expressed in heart, but are relatively weakly expressed in other tissues. Based on sequence complementarity between miRNAs and mRNA targets, potential target sequences for the 45 novel miRNAs were identified by searching for antisense hits in the reference RNA sequences of the channel catfish. These potential target sequences are involved in immune regulation, transcriptional regulation, metabolism and many other biological functions. The discovery of miRNAs in the channel catfish genome by this study contributes to a better understanding of the role miRNAs play in regulating diverse biological processes in fish and vertebrates.
Collapse
|
24
|
Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus. Mol Biol Rep 2012; 39:10395-405. [PMID: 23053943 DOI: 10.1007/s11033-012-1918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/07/2023]
Abstract
Catfish (Ictalurus spp.) is an important aquaculture species around the world, accounting for over 60 % of the domestic aquaculture output in the United States. However, little information is available about I. punctatus miRNAs which play an important role in the regulation of almost every biological process. In the present studies, we applied a bioinformatic strategy to identify 16 miRNAs which represent 12 miRNA families in I. punctatus by searching both expressed sequence tags and genome survey sequences databases. The A + U contents of the candidate pre-miRNA sequence range from 51 to 63 %, and the pre-miRNA sequences vary from 55 to 63 bp in length. To verify the predicted miRNAs, real-time PCR was used to profile the expression of 16 miRNAs with different tissues of I. punctatus. All the miRNA candidates were detectable in five tissues except for ipu-miR-9-3p. Based on sequence complementarity between miRNAs and their mRNA targets, potential targets for I. punctatus miRNAs were predicted. Due to the limited information for the I. punctatus transcripts, only one sequence targeted by ipu-miR-135 was identified to be an I. punctatus EB1 mRNA. Bioinformatic analyses indicated that the 3' untranslated region (3'-UTR) of EB1 mRNA contains an ipu-miR-135 target site, which are perfectly complementary to the seed region (positions 2-8) of the mature ipu-miR-135. I. punctatus miRNAs characterized in this study may provide useful information for the miRNAs research in I. punctatus and other aquaculture species.
Collapse
|
25
|
Anderson JL, Rodríguez Marí A, Braasch I, Amores A, Hohenlohe P, Batzel P, Postlethwait JH. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS One 2012; 7:e40701. [PMID: 22792396 PMCID: PMC3392230 DOI: 10.1371/journal.pone.0040701] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022] Open
Abstract
Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2) offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Paul Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
26
|
Bizuayehu TT, Lanes CFC, Furmanek T, Karlsen BO, Fernandes JMO, Johansen SD, Babiak I. Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 2012; 13:11. [PMID: 22233483 PMCID: PMC3398304 DOI: 10.1186/1471-2164-13-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a major role in animal ontogenesis. Size variants of miRNAs, isomiRs, are observed along with the main miRNA types, but their origin and possible biological role are uncovered yet. Developmental profiles of miRNAs have been reported in few fish species only and, to our knowledge, differential expressions of isomiRs have not yet been shown during fish development. Atlantic halibut, Hippoglossus hippoglossus L., undergoes dramatic metamorphosis during early development from symmetrical pelagic larval stage to unsymmetrical flatfish. No data exist on role of miRNAs in halibut metamorphosis. RESULTS miRNA profiling using SOLiD deep sequencing technology revealed a total of 199 conserved, one novel antisense, and one miRNA* mature form. Digital expression profiles of selected miRNAs were validated using reverse transcription quantitative PCR. We found developmental transition-specific miRNA expression. Expression of some miRNA* exceeded the guide strand miRNA. We revealed that nucleotide truncations and/or additions at the 3' end of mature miRNAs resulted in size variants showing differential expression patterns during the development in a number of miRNA families. We confirmed the presence of isomiRs by cloning and Sanger sequencing. Also, we found inverse relationship between expression levels of sense/antisense miRNAs during halibut development. CONCLUSION Developmental transitions during early development of Atlantic halibut are associated with expression of certain miRNA types. IsomiRs are abundant and often show differential expression during the development.
Collapse
Affiliation(s)
- Teshome T Bizuayehu
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Carlos FC Lanes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Tomasz Furmanek
- University of Bergen, Department of Biomedicine, Postbox 7804, N-5020 Bergen, Norway
| | - Bård O Karlsen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Jorge MO Fernandes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
- University of Tromsø, Department of Medical Biology, Faculty of Health Sciences, 9037 Tromsø, Norway
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| |
Collapse
|
27
|
Hwang DW, Lee DS. Optical imaging for stem cell differentiation to neuronal lineage. Nucl Med Mol Imaging 2012; 46:1-9. [PMID: 24900026 DOI: 10.1007/s13139-011-0122-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/14/2023] Open
Abstract
In regenerative medicine, the prospect of stem cell therapy holds great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell- or tissue-specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating into a neuronal lineage. The detection limit of weak promoters or reporter genes can be greatly enhanced by adopting a yeast GAL4 amplification system or an engineering-enhanced luciferase reporter gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.
Collapse
Affiliation(s)
- Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; WCU, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Xia JH, He XP, Bai ZY, Yue GH. Identification and characterization of 63 MicroRNAs in the Asian seabass Lates calcarifer. PLoS One 2011; 6:e17537. [PMID: 21412421 PMCID: PMC3055879 DOI: 10.1371/journal.pone.0017537] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/08/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in the regulation of many fundamental biological processes. So far miRNAs have been only identified in a few fish species, although there are over 30,000 fish species living under different environmental conditions on the earth. Here, we described an approach to identify conserved miRNAs and characterized their expression patterns in different tissues for the first time in a food fish species Asian seabass (Lates calcarifer). METHODOLOGY/PRINCIPAL FINDINGS By combining a bioinformatics analysis with an approach of homolog-based PCR amplification and sequencing, 63 novel miRNAs belonging to 29 conserved miRNA families were identified. Of which, 59 miRNAs were conserved across 10-86 species (E value ≤ 10⁻⁴) and 4 miRNAs were conserved only in fish species. qRT-PCR analysis showed that miR-29, miR-103, miR-125 and several let-7 family members were strongly and ubiquitously expressed in all tissues tested. Interestingly, miR-1, miR-21, miR-183, miR-184 and miR-192 showed highly conserved tissue-specific expression patterns. Exposure of the Asian seabass to lipopolysaccharide (LPS) resulted in up-regulation of over 50% of the identified miRNAs in spleen suggesting the importance of the miRNAs in acute inflammatory immune responses. CONCLUSIONS/SIGNIFICANCE The approach used in this study is highly effective for identification of conserved miRNAs. The identification of 63 miRNAs and determination of the spatial expression patterns of these miRNAs are valuable resources for further studies on post-transcriptional gene regulation in Asian seabass and other fish species. Further identification of the target genes of these miRNAs would shed new light on their regulatory roles of microRNAs in fish.
Collapse
Affiliation(s)
- Jun Hong Xia
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Xiao Ping He
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Zhi Yi Bai
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
29
|
Abstract
microRNAs (miRNAs) are small ( approximately 22 nt) noncoding RNAs that have been shown to regulate gene expression post-transcriptionally. They function by pairing with the 3' UTR of target mRNAs and repressing translation or by targeting the mRNA for degradation. miRNAs are involved in diverse aspects of development, maintenance, and disease, and are largely evolutionarily conserved in metazoans. Searching the genomes of organisms from viruses to worms to humans has revealed potentially thousands of miRNA genes. Understanding the patterns of genomic organization between species cannot only help to refine tools to identify new miRNAs, but also provide insight into miRNA biogenesis and function.
Collapse
Affiliation(s)
- Abigail F Olena
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|