1
|
Zhang L, Yang X, Nie C, Chen C, Zhang W. Combined transcriptomics and cellular analyses reveal the molecular mechanism by which Candida tropicalis ZD-3 adapts to and degrades gossypol. Int J Biol Macromol 2024; 279:135294. [PMID: 39233179 DOI: 10.1016/j.ijbiomac.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microbial degradation techniques are often considered an environmentally friendly and cost-effective strategy for reducing gossypol toxicity. However, the mechanism by which Candida tropicalis degrades gossypol remains unclear. In the current study, we aimed to establish the mechanisms of biodegradation and adaptation mechanisms by C. tropicalis ZD-3. The toxicological evaluation results revealed that ZD-3 adapts to gossypol primarily by activating the antioxidant defense system to alleviate the oxidative stress response induced by gossypol. Transcriptomic analyses further suggested that ZD-3 protects against gossypol toxicity via cell wall remodeling. The intracellular enzyme CTRG_04744 gene was significantly up-regulated under gossypol stress, and then expressed in Pichia pastoris. The purified AKR_Z1 degraded 92 % of gossypol within 48 h. In addition, the aldehyde group of gossypol was effectively eliminated to achieve the desired detoxification. Collectively, these results provide theoretical guidance for the continued development of bio-efficient strategies capable of degrading gossypol.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaolong Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - CunXi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
2
|
He Y, Wang Z, Li T, Peng X, Tang Y, Jia X. Biodegradation of phenol by Candida tropicalis sp.: Kinetics, identification of putative genes and reconstruction of catabolic pathways by genomic and transcriptomic characteristics. CHEMOSPHERE 2022; 308:136443. [PMID: 36116634 DOI: 10.1016/j.chemosphere.2022.136443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Candida tropicalis sp. was isolated with predominant biodegradation capability to phenol compounds, even with high concentration or in acid environment. The biodegradation of phenol was evaluated at the following concentrations 10-1750 mg L-1, the strain exhibited well biodegradation efficiency. The maximum specific growth rate was 0.660 h-1 and the specific biodegradation rates was 0.47 mg (phenol) [(mg (VSS) h]-1. Differentially expressed genes were screened out, and results revealed a complete process of energy and carbon metabolism. The genes' arrangements and phylogenetic information showed the unique genetic characteristics of the strain. Catabolic pathways were reconstructed and some key phenol-degrading genes were obviously upregulated, including pheA, catA, OXCT and fadA. A notable detail that CMBL encoding carboxymethylenebutenolidase was speculated to be involved in a shortened pathway of phenol biodegradation, thereby contributing to the reconstruction of the novel phenol catabolic pathway through the hydrolases of dienelactone. Finally, key enzymes were verified by the analysis of specific activity.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhangna Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Chen L, Li D, Shao Y, Wang H, Liu Y, Zhang Y. Identifying Microbiota Signature and Functional Rules Associated With Bacterial Subtypes in Human Intestine. Front Genet 2019; 10:1146. [PMID: 31803234 PMCID: PMC6872643 DOI: 10.3389/fgene.2019.01146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiomes are integral microflora located in the human intestine with particular symbiosis. Among all microorganisms in the human intestine, bacteria are the most significant subgroup that contains many unique and functional species. The distribution patterns of bacteria in the human intestine not only reflect the different microenvironments in different sections of the intestine but also indicate that bacteria may have unique biological functions corresponding to their proper regions of the intestine. However, describing the functional differences between the bacterial subgroups and their distributions in different individuals is difficult using traditional computational approaches. Here, we first attempted to introduce four effective sets of bacterial features from independent databases. We then presented a novel computational approach to identify potential distinctive features among bacterial subgroups based on a systematic dataset on the gut microbiome from approximately 1,500 human gut bacterial strains. We also established a group of quantitative rules for explaining such distinctions. Results may reveal the microstructural characteristics of the intestinal flora and deepen our understanding on the regulatory role of bacterial subgroups in the human intestine.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Daojie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ye Shao
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Hui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuqing Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Ludewig-Klingner AK, Michael V, Jarek M, Brinkmann H, Petersen J. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates). Genome Biol Evol 2018; 10:1-13. [PMID: 29202176 PMCID: PMC5755239 DOI: 10.1093/gbe/evx250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.
Collapse
Affiliation(s)
- Ann-Kathrin Ludewig-Klingner
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Victoria Michael
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research (HZI), Group of Genome Analytics, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| |
Collapse
|
5
|
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol 2017; 17:241. [PMID: 29202688 PMCID: PMC5715807 DOI: 10.1186/s12862-017-1087-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Results Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Conclusions Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology. Electronic supplementary material The online version of this article (10.1186/s12862-017-1087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Meenakshi Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Abstract
Recently, the group of McBride reported a stunning observation regarding peroxisome biogenesis: newly born peroxisomes are hybrids of mitochondrial and ER-derived pre-peroxisomes. What was stunning? Studies performed with the yeast Saccharomyces cerevisiae had convincingly shown that peroxisomes are ER-derived, without indications for mitochondrial involvement. However, the recent finding using fibroblasts dovetails nicely with a mechanism inferred to be driving the eukaryotic invention of peroxisomes: reduction of mitochondrial reactive oxygen species (ROS) generation associated with fatty acid (FA) oxidation. This not only explains the mitochondrial involvement, but also its apparent absence in yeast. The latest results allow a reconstruction of the evolution of the yeast's highly derived metabolism and its limitations as a model organism in this instance. As I review here, peroxisomes are eukaryotic inventions reflecting mutual host endosymbiont adaptations: this is predicted by symbiogenetic theory, which states that the defining eukaryotic characteristics evolved as a result of mutual adaptations of two merging prokaryotes.
Collapse
Affiliation(s)
- Dave Speijer
- Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Gabaldón T, Pittis AA. Origin and evolution of metabolic sub-cellular compartmentalization in eukaryotes. Biochimie 2015; 119:262-8. [PMID: 25869000 PMCID: PMC4678951 DOI: 10.1016/j.biochi.2015.03.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Abstract
A high level of subcellular compartmentalization is a hallmark of eukaryotic cells. This intricate internal organization was present already in the common ancestor of all extant eukaryotes, and the determination of the origins and early evolution of the different organelles remains largely elusive. Organellar proteomes are determined through regulated pathways that target proteins produced in the cytosol to their final subcellular destinations. This internal sorting of proteins can vary across different physiological conditions, cell types and lineages. Evolutionary retargeting - the alteration of a subcellular localization of a protein in the course of evolution - has been rampant in eukaryotes and involves any possible combination of organelles. This fact adds another layer of difficulty to the reconstruction of the origins and evolution of organelles. In this review we discuss current themes in relation to the origin and evolution of organellar proteomes. Throughout the text, a special focus is set on the evolution of mitochondrial and peroxisomal proteomes, which are two organelles for which extensive proteomic and evolutionary studies have been performed.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alexandros A Pittis
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
8
|
Baluška F, Mancuso S. Microorganism and filamentous fungi drive evolution of plant synapses. Front Cell Infect Microbiol 2013; 3:44. [PMID: 23967407 PMCID: PMC3744040 DOI: 10.3389/fcimb.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022] Open
Abstract
In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell–cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.
Collapse
Affiliation(s)
- František Baluška
- IZMB, Department of Plant Cell Biology, University of Bonn Bonn, Germany.
| | | |
Collapse
|
9
|
Abstract
Autophagy is a process in which a eukaryotic (but not prokaryotic) cell destroys its own components through the lysosomal machinery. This tightly regulated process is essential for normal cell growth, development, and homeostasis, serving to maintain a balance between synthesis and degradation, resulting in the recycling of cellular products. Here we try to expand the concept of autophagy and define it as a general mechanism of regulation encompassing various levels of the biosphere. Interestingly, one of the consequences of such an approach is that we must presume an existence of the autophagic processes in the prokaryotic domain.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
10
|
Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721. [PMID: 22536249 PMCID: PMC3320016 DOI: 10.1155/2012/512721] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/23/2011] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are single-membrane-bounded organelles present in the majority of eukaryotic cells. Despite the existence of great diversity among different species, cell types, and under different environmental conditions, peroxisomes contain enzymes involved in β-oxidation of fatty acids and the generation, as well as detoxification, of hydrogen peroxide. The exigency of all eukaryotic cells to quickly adapt to different environmental factors requires the ability to precisely and efficiently control peroxisome number and functionality. Peroxisome homeostasis is achieved by the counterbalance between organelle biogenesis and degradation. The selective degradation of superfluous or damaged peroxisomes is facilitated by several tightly regulated pathways. The most prominent peroxisome degradation system uses components of the general autophagy core machinery and is therefore referred to as “pexophagy.” In this paper we focus on recent developments in pexophagy and provide an overview of current knowledge and future challenges in the field. We compare different modes of pexophagy and mention shared and distinct features of pexophagy in yeast model systems, mammalian cells, and other organisms.
Collapse
|
11
|
Speijer D. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. Bioessays 2011; 33:88-94. [PMID: 21137096 DOI: 10.1002/bies.201000097] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oxygen radical formation in mitochondria is a highly important, but incompletely understood, attribute of eukaryotic cells. I propose a kinetic model in which the ratio between electrons entering the respiratory chain via FADH₂ or NADH is a major determinant in radical formation. During the breakdown of glucose, this ratio is low; during fatty acid breakdown, this ratio is much higher. The longer the fatty acid, the higher the ratio and the higher the level of radical formation. This means that very long chain fatty acids should be broken down without generation of FADH₂ for mitochondria. This is accomplished in peroxisomes, thus explaining their role and evolution. The model explains many recent observations regarding radical formation by the respiratory chain. It also sheds light on the reasons for the lack of neuronal fatty acid (beta-) oxidation and for beneficial aspects of unsaturated fatty acids. Last but not least, it has very important implications for all models describing eukaryotic origins.
Collapse
Affiliation(s)
- Dave Speijer
- Academic Medical Centre, Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Fox MA, Walsh LA, Nieuwesteeg M, Damjanovski S. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:24. [PMID: 21526995 PMCID: PMC3095563 DOI: 10.1186/1471-213x-11-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/28/2011] [Indexed: 01/04/2023]
Abstract
Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA) tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.
Collapse
Affiliation(s)
- Mark A Fox
- Department of Biology, University of Western Ontario, 3053 Biological and Geological Sciences Building, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | | | | | | |
Collapse
|
13
|
The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 2011; 6:16. [PMID: 21356104 PMCID: PMC3056875 DOI: 10.1186/1745-6150-6-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tree of life is usually rooted between archaea and bacteria. We have previously presented three arguments that support placing the root of the tree of life in bacteria. The data have been dismissed because those who support the canonical rooting between the prokaryotic superkingdoms cannot imagine how the vast divide between the prokaryotic superkingdoms could be crossed. RESULTS We review the evidence that archaea are derived, as well as their biggest differences with bacteria. We argue that using novel data the gap between the superkingdoms is not insurmountable. We consider whether archaea are holophyletic or paraphyletic; essential to understanding their origin. Finally, we review several hypotheses on the origins of archaea and, where possible, evaluate each hypothesis using bioinformatics tools. As a result we argue for a firmicute ancestry for archaea over proposals for an actinobacterial ancestry. CONCLUSION We believe a synthesis of the hypotheses of Lake, Gupta, and Cavalier-Smith is possible where a combination of antibiotic warfare and viral endosymbiosis in the bacilli led to dramatic changes in a bacterium that resulted in the birth of archaea and eukaryotes. REVIEWERS This article was reviewed by Patrick Forterre, Eugene Koonin, and Gáspár Jékely.
Collapse
|
14
|
Gabaldón T, Capella-Gutiérrez S. Lack of phylogenetic support for a supposed actinobacterial origin of peroxisomes. Gene 2010; 465:61-5. [DOI: 10.1016/j.gene.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/08/2010] [Accepted: 06/11/2010] [Indexed: 11/27/2022]
|