1
|
Chen Z, Lin S, Chen T, Han M, Yang T, Wang Y, Bao S, Shen Z, Wan X, Zhang Z. Haem Oxygenase 1 is a potential target for creating etiolated/albino tea plants ( Camellia sinensis) with high theanine accumulation. HORTICULTURE RESEARCH 2023; 10:uhac269. [PMID: 37533676 PMCID: PMC10390853 DOI: 10.1093/hr/uhac269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/01/2022] [Indexed: 08/04/2023]
Abstract
Theanine content is highly correlated with sensory quality and health benefits of tea infusion. The tender shoots of etiolated and albino tea plants contain higher theanine than the normal green tea plants and are valuable materials for high quality green tea processing. However, why these etiolated or albino tea plants can highly accumulate theanine is largely unknown. In this study, we observed an Arabidopsis etiolated mutant hy1-100 (mutation in Haem Oxygenase 1, HO1) that accumulated higher levels of glutamine (an analog of theanine). We therefore identified CsHO1 in tea plants and found CsHO1 is conserved in amino acid sequences and subcellular localization with its homologs in other plants. Importantly, CsHO1 expression in the new shoots was much lower in an etiolated tea plants 'Huangkui' and an albino tea plant 'Huangshan Baicha' than that in normal green tea plants. The expression levels of CsHO1 were negatively correlated with theanine contents in these green, etiolated and albino shoots. Moreover, CsHO1 expression levels in various organs and different time points were also negatively correlated with theanine accumulation. The hy1-100 was hypersensitive to high levels of theanine and accumulated more theanine under theanine feeding, and these phenotypes were rescued by the expression of CsHO1 in this mutant. Transient knockdown CsHO1 expression in the new shoots of tea plant using antisense oligonucleotides (asODN) increased theanine accumulation. Collectively, these results demonstrated CsHO1 negatively regulates theanine accumulation in tea plants, and that low expression CsHO1 likely contributes to the theanine accumulation in etiolated/albino tea plants.
Collapse
Affiliation(s)
| | | | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhougao Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | |
Collapse
|
2
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
3
|
Wu J, Cheng J, Xu C, Qi S, Sun W, Wu S. AUREA maintains the balance between chlorophyll synthesis and adventitious root formation in tomato. HORTICULTURE RESEARCH 2020; 7:166. [PMID: 33082972 PMCID: PMC7527990 DOI: 10.1038/s41438-020-00386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/13/2020] [Accepted: 07/24/2020] [Indexed: 05/15/2023]
Abstract
Flooding tolerance is an important trait for tomato breeding. In this study, we obtained a recessive mutant exhibiting highly enhanced submergence resistance. Phenotypical analyses showed that this resistant to flooding (rf) mutant displays slightly chlorotic leaves and spontaneous initiation of adventitious roots (ARs) on stems. The mutation was mapped to the phytochromobilin synthase gene AUREA (AU), in which a single amino acid substitution from asparagine to tyrosine occurred. In addition to the classic function of AU in phytochrome and chlorophyll biogenesis in leaves, we uncovered its novel role in mediating AR formation on stems. We further observed temporal coincidence of the two phenotypes in the rf mutant: chlorosis and spontaneous AR formation and revealed that AU functions by maintaining heme homeostasis. Interestingly, our grafting results suggest that heme might play roles in AR initiation via long-distance transport from leaves to stems. Our results present genetic evidence for the involvement of the AU-heme oxygenase-1-heme pathway in AR initiation in tomato. As fruit production and yield in the rf mutant are minimally impacted, the mutation identified in this study may provide a target for biotechnological renovation of tomato germplasm in future breeding.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Jie Cheng
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Chunmiao Xu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Shilian Qi
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Wenru Sun
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 35002 Fujian, China
| |
Collapse
|
4
|
Deng Y, Wang C, Wang N, Wei L, Li W, Yao Y, Liao W. Roles of Small-Molecule Compounds in Plant Adventitious Root Development. Biomolecules 2019; 9:E420. [PMID: 31466349 PMCID: PMC6770160 DOI: 10.3390/biom9090420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/31/2023] Open
Abstract
Adventitious root (AR) is a kind of later root, which derives from stems and leaf petioles of plants. Many different kinds of small signaling molecules can transmit information between cells of multicellular organisms. It has been found that small molecules can be involved in many growth and development processes of plants, including stomatal movement, flowering, fruit ripening and developing, and AR formation. Therefore, this review focuses on discussing the functions and mechanisms of small signaling molecules in the adventitious rooting process. These compounds, such as nitric oxide (NO), hydrogen gas (H2), hydrogen sulfide (H2S), carbon monoxide (CO), methane (CH4), ethylene (ETH), and hydrogen peroxide (H2O2), can be involved in the induction of AR formation or development. This review also sums the crosstalk between these compounds. Besides, those signaling molecules can regulate the expressions of some genes during AR development, including cell division genes, auxin-related genes, and adventitious rooting-related genes. We conclude that these small-molecule compounds enhance adventitious rooting by regulating antioxidant, water balance, and photosynthetic systems as well as affecting transportation and distribution of auxin, and these compounds further conduct positive effects on horticultural plants under environmental stresses. Hence, the effect of these molecules in plant AR formation and development is definitely a hot issue to explore in the horticultural study now and in the future.
Collapse
Affiliation(s)
- Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weifang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
6
|
Steffens B, Rasmussen A. The Physiology of Adventitious Roots. PLANT PHYSIOLOGY 2016; 170:603-17. [PMID: 26697895 PMCID: PMC4734560 DOI: 10.1104/pp.15.01360] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 05/17/2023]
Abstract
Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3).
Collapse
Affiliation(s)
- Bianka Steffens
- Plant Physiology, Philipps University, 35043 Marburg, Germany (B.S.); andDivision of Plant and Crop Science, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (A.R.)
| | - Amanda Rasmussen
- Plant Physiology, Philipps University, 35043 Marburg, Germany (B.S.); andDivision of Plant and Crop Science, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (A.R.)
| |
Collapse
|
7
|
Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide 2016; 53:54-64. [DOI: 10.1016/j.niox.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/30/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
|
8
|
Hedayati V, Mousavi A, Razavi K, Cultrera N, Alagna F, Mariotti R, Hosseini-Mazinani M, Baldoni L. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings. PLANT CELL REPORTS 2015; 34:1151-64. [PMID: 25749737 DOI: 10.1007/s00299-015-1774-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/05/2023]
Abstract
Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.
Collapse
Affiliation(s)
- Vahideh Hedayati
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cui W, Qi F, Zhang Y, Cao H, Zhang J, Wang R, Shen W. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways. PLANT CELL REPORTS 2015; 34:435-45. [PMID: 25503851 DOI: 10.1007/s00299-014-1723-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 05/05/2023]
Abstract
Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.
Collapse
Affiliation(s)
- Weiti Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. PLANTA 2014; 240:701-12. [PMID: 25037719 DOI: 10.1007/s00425-014-2116-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/21/2014] [Indexed: 05/19/2023]
Abstract
Rice heme oxygenase 2 (OsHO2) mutants are chlorophyll deficient with distinct tetrapyrrole metabolite and transcript profiles, suggesting a potential regulatory role of the stromal-localized OsHO2 in tetrapyrrole biosynthesis. In plants, heme oxygenases (HOs) are classified into the subfamilies HO1 and HO2. HO1 are highly conserved plastid enzymes required for synthesizing the chromophore in phytochromes which mediate a number of light-regulated responses. However, the physiological and biochemical functions of HO2, which are distantly related to HO1, are not well understood, especially in crop plants. From a population of (60)Coγ-irradiated rice mutants, we identified the ylc2 (young leaf chlorosis 2) mutant which displays a chlorosis phenotype in seedlings with substantially reduced chlorophyll content. Normal leaf pigmentation is gradually restored in older plants while newly emerged leaves remain yellow. Transmission electron microscopy further revealed defective chloroplast structures in the ylc2 seedlings. Map-based cloning located the OsYLC2 gene on chromosome 3 and it encodes the OsHO2 protein. The gene identification was confirmed by complementation and T-DNA mutant analyses. Subcellular localization and chloroplast fractionation experiments indicated that OsHO2 resides in the stroma. However, recombinant enzyme assay demonstrated that OsHO2 is not a functional HO enzyme. Analysis of tetrapyrrole metabolites revealed the reduced levels of most chlorophyll and phytochromobilin precursors in the ylc2 mutant. On the other hand, elevated accumulation of 5-aminolevulinic acid and Mg-protoporphyrin IX was observed. These unique metabolite changes are accompanied by consistent changes in the expression levels of the corresponding tetrapyrrole biosynthesis genes. Taken together, our work suggests that OsHO2 has a potential regulatory role for tetrapyrrole biosynthesis in rice.
Collapse
Affiliation(s)
- Qingzhu Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1-8. [PMID: 24331413 DOI: 10.1016/j.jplph.2013.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 07/06/2013] [Accepted: 08/15/2013] [Indexed: 05/08/2023]
Abstract
Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a "biologically inert gas", recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO-mediated responses. We also suggested that exogenous HRW treatment on plants might be a good option to induce root organogenesis.
Collapse
Affiliation(s)
- Yuting Lin
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Qi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiti Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Hsu YY, Chao YY, Kao CH. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:63-9. [PMID: 22989945 DOI: 10.1016/j.jplph.2012.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca(2+) chelators and Ca(2+) channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca(2+) may regulate MJ action mainly through CaM-dependent mechanism.
Collapse
Affiliation(s)
- Yun Yen Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
13
|
Lin Y, Li M, Huang L, Shen W, Ren Y. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process. PLANT CELL REPORTS 2012; 31:1563-72. [PMID: 22532008 DOI: 10.1007/s00299-012-1270-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 05/24/2023]
Abstract
UNLABELLED Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. KEY MESSAGE Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.
Collapse
Affiliation(s)
- Yuting Lin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
14
|
Xuan W, Xu S, Li M, Han B, Zhang B, Zhang J, Lin Y, Huang J, Shen W, Cui J. Nitric oxide is involved in hemin-induced cucumber adventitious rooting process. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1032-9. [PMID: 22579358 DOI: 10.1016/j.jplph.2012.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/23/2012] [Accepted: 02/26/2012] [Indexed: 05/19/2023]
Abstract
Hemin, a heme oxygenase-1 (HO-1) inducer, was shown to exert numerous beneficial physiological functions in animals. Our previous study suggests that HO-1/carbon monoxide (CO) acts as a novel downstream signal system in the auxin-induced adventitious rooting. The objective of this study was to test whether nitric oxide (NO) is involved in hemin-induced cucumber adventitious rooting. Applications of hemin or CO aqueous solution to auxin-depleted cucumber explant induced up-regulation of cucumber HO-1 transcripts (CsHO1), NO production, and thereafter adventitious root formation, and some above responses were blocked by the combination treatment with two nitric oxide synthase (NOS)-like enzyme inhibitors N(G)-nitro-L-arginine methylester hydrochloride and N(G)-nitro-L-arginine, a HO-1 specific inhibitor zinc protoporphyrin IX, and a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt. However, these blocking responses were not observed using tungstate, an inhibitor of nitrate reductase, another NO producing enzyme in plants. Furthermore, the guanylate cyclase inhibitors 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalin-1-one and 6-anilino-5,8-quinolinedione reduced root development induced by hemin, whereas the cell-permeable cyclic guanosine monophosphate (cGMP) derivative 8-Br-cGMP reversed this effect. Together, our results indicated that at least in our experimental conditions, NO might operate downstream of hemin promoting adventitious root formation probably in a cGMP-dependent manner.
Collapse
Affiliation(s)
- Wei Xuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|