1
|
Peng C, Fan S, Peng P. Characterization of complete mitochondrial genome of Periclimenes brevicarpalis (Decapoda: Palaemonidae). Mitochondrial DNA B Resour 2024; 9:1414-1417. [PMID: 39435182 PMCID: PMC11492385 DOI: 10.1080/23802359.2024.2417927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Periclimenes brevicarpalis is widely distributed in the Indo West Pacific oceans. The mitochondrial genome of P. brevicarpalis was sequenced and assembled firstly by next generation sequencing technology in our study. The complete mitochondrial genome of P. brevicarpalis was 16,673 bp in size, consisted of 22 transfer RNA genes, 13 protein coding genes and two ribosomal RNA genes. The contents of the four bases were C (25.62%), T (28.73%), A (31.64%), and G (14.01%). The result of phylogenetic analysis showed that P. brevicarpaliswas clustered with Anchistus australis. In conclusion, our research provided valuable data for phylogenetic analysis of the Palaemonidae family as the first report about mitochondrial genomes in Periclimenes.
Collapse
Affiliation(s)
- Chao Peng
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan University of Arts and Science, Hunan, Changde, China
| | - Sigang Fan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - PengFei Peng
- South China Sea Marine Survey and Technology Center, State Oceanic Administration, Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, China
| |
Collapse
|
2
|
Wang Y, Qiao G, Yue Y, Peng S, Fu H. Transcriptomic Analysis of the Hepatopancreas in the Sex-Related Size Differences of Macrobrachium nipponense. Vet Sci 2024; 11:445. [PMID: 39330824 PMCID: PMC11435631 DOI: 10.3390/vetsci11090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Macrobrachium nipponense, a commercially popular crustacean species within the Chinese context, is recognized for its exceptional nutritional composition and palatability. There are significant differences in growth between male and female M. nipponense. Herein, transcriptomics was used to determine the hepatopancreas transcriptome differences between sex-related size differences in M. nipponense. We identified 974 differentially expressed genes (DEGs) between the SHE (female) and BHE (male) groups, which were validated using RT-qPCR. The genes encoding matrix metalloproteinase-9 (MM9), Ribosome-binding protein 1 (RBP1), Aly/REF export factor 2, and hematological and neurological expressed 1 (HN1) may play a role in modulating the sex-related size differences observed in M. nipponense. Clusters of orthologous groups and gene ontology functional analysis demonstrated that the DEGs for sex-related size in M.nipponense were associated with various biological functions. The Kyoto Encyclopedia of Genes and Genomes pathways analysis demonstrated that upregulated DEGs were mainly enriched in lysine biosynthesis, tryptophan metabolism, and lysine degradation pathways, whereas the downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, retinol metabolism, and drug metabolism-cytochrome P450 pathways. The results indicated the molecular mechanism underlying the sex-related size differences and identified key genes. This data will be invaluable to support explanations of individual differences between male and female prawns.
Collapse
Affiliation(s)
- Yabing Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Guangde Qiao
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Yanfeng Yue
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Shiming Peng
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.W.); (G.Q.)
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
3
|
Jiang G, Xue Y, Arifuzzaman A, Huang X. Identification and characterization of the Dmrt1B gene in the oriental river prawn, Macrobrachium nipponense. Dev Genes Evol 2024; 234:21-32. [PMID: 38616194 DOI: 10.1007/s00427-024-00715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yucai Xue
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Arifuzzaman Arifuzzaman
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- Centre for Research On Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Wan H, Yu L, Cui X, Guo S, Mu S, Kang X. A pattern recognition receptor interleukin-1 receptor is involved in reproductive immunity in Macrobrachium nipponense ovary. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109481. [PMID: 38479568 DOI: 10.1016/j.fsi.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
The family of TIR domain-containing receptors includes numerous proteins involved in innate immunity. In this study, a member of this family was characterized from the ovary of the oriental river prawn Macrobrachium nipponense and identified as interleukin-1 receptor (MnIL-1R). Meanwhile, to elucidate the conservation of IL-1R, its orthologous were identified in several crustacean species as well. In addition, the expression pattern of MnIL-1R in various adult tissues and post different pathogen-associated molecular patterns (PAMPs) challenge in ovary was analyzed with qRT-PCR technology. Finally, the roles of MnIL-1R in the ovary were analyzed by RNAi technology. The main results are as follows: (1) MnIL-1R comprises a 1785 bp ORF encoding 594 amino acids and is structurally composed of five domains: a signal peptide, two immunoglobulin (IG) domains, a transmembrane region, and a TIR-2 domain; (2) the TIR domain showed a high conservation among analyzed crustacean species; (3) MnIL-1R is widely detected in all tested tissues including ovary; (4) MnIL-1R showed a positive response to challenges with LPS, PGN, and polyI:C in the ovary; (5) its IG domain showed strong binding ability to LPS and PGN, confirming its role as a pattern recognition receptor; (6) the expression patterns of several members of the Toll signaling pathway (Myd88, TRAF-6, Dorsal, and Relish) was similar to that of MnIL-1R after challenges with LPS, PGN, and polyI:C in the ovary; (7) the silencing of MnIL-1R resulted in down-regulation of theses gene' (Myd88, TRAF-6, Dorsal, and Relish) expression level in the ovary. These results suggest that MnIL-1R can activate the Toll signaling pathway in the ovary by directly recognizing LPS and PGN through its IG domain, thereby contributing to the immune response in the ovary of M. nipponense.
Collapse
Affiliation(s)
- Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province, 071002, China
| | - Lei Yu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
5
|
Gao X, Gao Z, Zhang M, Qiao H, Jiang S, Zhang W, Xiong Y, Jin S, Fu H. Identifying Relationships between Glutathione S-Transferase-2 Single Nucleotide Polymorphisms and Hypoxia Tolerance and Growth Traits in Macrobrachium nipponense. Animals (Basel) 2024; 14:666. [PMID: 38473051 DOI: 10.3390/ani14050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Investigating hypoxia tolerance and growth trait single nucleotide polymorphisms (SNPs) in Macrobrachium nipponense is conducive to cultivating prawns with hypoxia tolerance and good growth characteristics. The glutathione S-transferase-2 gene (GST-2) has been shown to regulate hypoxia responses in M. nipponense. In this study, we identified a single GST-2 SNP in M. nipponense, and analyzed its regulatory relationship with hypoxia tolerance and growth. The GST-2 sequence was amplified with a polymerase chain reaction from 197 "Taihu Lake No. 3", "Taihu Lake No. 2", and Pearl River population samples to identify SNP loci. The full-length Mn-GST2 sequence was 2317 bp, including three exons and two introns. In total, 38 candidate SNP loci were identified from GST-2 using Mega11.0 comparisons, with most loci moderately polymorphic in terms of genetic diversity. Locus genotypes were also analyzed, and basic genetic parameters for loci were calculated using Popgene32 and PIC_CALC. The expected heterozygosity of the 38 SNP loci ranged from 0.2334 to 0.4997, with an average of 0.4107, while observed heterozygosity ranged from 0.1929 to 0.4721, with an average of 0.3401. The polymorphic information content ranged from 0.21 to 0.37. From SPSS analyses, the G+256A locus was significantly correlated with hypoxia tolerance across all three M. nipponense populations, while the SNP loci A+261C, C+898T, A+1370C, and G+1373T were significantly associated with growth traits. Further analyses revealed that the T+2017C locus was significantly correlated with hypoxia tolerance in "Taihu Lake No. 2" populations, G+256A, A+808T, C+1032T, and A+1530G loci were significantly correlated with hypoxia tolerance in "Taihu Lake No. 3" populations, while no SNP loci were correlated with hypoxia tolerance in Pearl River populations. A+1370C and G+1373T loci, which were associated with growth traits, exhibited a high degree of linkage disequilibrium (r2 = 0.89 and r2 > 0.8), suggesting potential genetic linkage. Our data suggest associations between hypoxia tolerance and growth trait SNP loci in M. nipponense, and provide valuable evidence for the genetic improvement of growth and hypoxia tolerance in this prawn species.
Collapse
Affiliation(s)
- Xuanbin Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Minglei Zhang
- Shandong Freshwater Fisheries Research Institute, Jinan 250013, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
6
|
Jiang G, Xue Y, Huang X. Temperature-Induced Sex Differentiation in River Prawn ( Macrobrachium nipponense): Mechanisms and Effects. Int J Mol Sci 2024; 25:1207. [PMID: 38279207 PMCID: PMC10816446 DOI: 10.3390/ijms25021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Macrobrachium nipponense is gonochoristic and sexually dimorphic. The male prawn grows faster and usually has a larger size than the female. Therefore, a higher male proportion in stock usually results in higher yield. To investigate the impact of temperature on sexual differentiation in M. nipponense, two temperature treatments (26 °C and 31 °C) were conducted. The results showed that compared to the 31 °C treatment (3.20 ± 0.12), the 26 °C treatment displayed a lower female/male ratio (2.20 ± 0.11), which implied that a lower temperature could induce masculinization in M. nipponense. The temperature-sensitive sex differentiation phase was 25-35 days post hatching (DPH) at 26 °C while 15-20 DPH at 31 °C. Transcriptome and qPCR analysis revealed that a lower temperature up-regulated the expression of genes related to androgen secretion, and down-regulated the expressions of genes related to oogonia differentiation. Thirty-one temperature-regulated sex-differentiation genes were identified and the molecular mechanism of temperature-regulated sex differentiation was suggested. The finding of this study indicates that temperature regulation can be proposed as an innovative strategy for improving the culture yield of M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Yucai Xue
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Marques-Neto JC, de Lima GM, Maciel CMT, Maciel BR, Abrunhosa FA, Sampaio I, Maciel CR. In silico prospecting of the mtDNA of Macrobrachium amazonicum from transcriptome data. BMC Genomics 2023; 24:677. [PMID: 37950193 PMCID: PMC10637016 DOI: 10.1186/s12864-023-09770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Macrobrachium amazonicum is a freshwater prawn widely distributed in South America that is undergoing speciation, so the denomination "M. amazonicum complex" is used for it. The mitochondrial cytochrome c oxidase subunit I (COI) gene has been used to elucidate this speciation, but heteroplasmies and pseudogenes have been recorded, making separation difficult. Obtaining genes from cDNA (RNA) rather than genomic DNA is an effective tool to mitigate those two types of occurrences. The aim of this study was to assemble in silico the mitochondrial DNA (mtDNA) of the Amazonian coastal population of M. amazonicum inhabiting the state of Pará. RESULTS Sequences were obtained from the prawn's transcriptome using the de novo approach. Six libraries of cDNA from the androgen gland, hepatopancreas, and muscle tissue were used. The mtDNA of M. amazonicum was 14,960 bp in length. It contained 13 protein-coding genes, 21 complete transfer RNAs, and the 12S and 16S subunits of ribosomal RNA. All regions were found on the light strand except tRNAGln, which was on the heavy strand. The control region (D-loop) was not recovered, making for a gap of 793 bp. The cladogram showed the formation of the well-defined Macrobrachium clade, with high support value in the established branches (91-100). The three-dimensional spatial conformation of the mtDNA-encoded proteins showed that most of them were mainly composed of major α-helices that typically shows in those proteins inserted in the membrane (mitochondrial). CONCLUSIONS It was possible to assemble a large part of the mitochondrial genome of M. amazonicum in silico using data from other genomes deposited in GenBank and to validate it through the similarities between its COI and 16S genes and those from animals of the same region deposited in GenBank. Depositing the M. amazonicum mtDNA sequences in GenBank may help solve the taxonomic problems recorded for the species, in addition to providing complete sequences of candidate coding genes for use as biomarkers in ecological studies.
Collapse
Affiliation(s)
- Jerônimo Costa Marques-Neto
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Gabriel Monteiro de Lima
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Carlos Murilo Tenório Maciel
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Bruna Ramalho Maciel
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Fernando Araujo Abrunhosa
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Carcinology, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Iracilda Sampaio
- Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Cristiana Ramalho Maciel
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil.
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil.
| |
Collapse
|
8
|
Li Y, Ye Y, Li W, Liu X, Zhao Y, Jiang Q, Che X. Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense. Animals (Basel) 2023; 13:2884. [PMID: 37760284 PMCID: PMC10525465 DOI: 10.3390/ani13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China's shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‱ for 6 weeks. The gills from the control (0‱) and isotonic groups (14‱) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‱. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China; (Y.Y.); (W.L.); (Y.Z.)
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China;
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China; (Y.L.); (X.L.)
| |
Collapse
|
9
|
Gao Z, Zhang W, Jiang S, Yuan H, Cai P, Jin S, Fu H. Identification of Male Sex-Related Genes Regulated by SDHB in Macrobrachium nipponense Based on Transcriptome Analysis after an RNAi Knockdown. Int J Mol Sci 2023; 24:13176. [PMID: 37685979 PMCID: PMC10487615 DOI: 10.3390/ijms241713176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The oriental river prawn (Macrobrachium nipponense) is a commercially important species in Asia. A previous study showed that the succinate dehydrogenase complex iron sulfur subunit B (SDHB) gene participates in testes development in this species through its effect on the expression of the insulin-like androgenic gland hormone gene. This study knocked-down the Mn-SDHB genes in M. nipponense using RNAi. A transcriptome analysis of the androgenic gland and testes was then performed to discover the male sex-related genes regulated by SDHB and investigate the mechanism of male sexual development in this species. More than 16,623 unigenes were discovered in each sample generated. In the androgenic gland, most of the differentially expressed genes were enriched in the hypertrophic cardiomyopathy pathway, while in the testes, they were enriched in the citrate cycle pathway. In addition, after Mn-SDHB knockdown, five genes were found to be downregulated in the androgenic gland in a series of biological processes associated with phosphorylated carbohydrate synthesis and transformations in the glycolysis/gluconeogenesis pathway. Moreover, a total of nine male sex-related genes were identified including Pro-resilin, insulin-like androgenic gland hormone, Protein mono-ADP-ribosyltransferase PAPR11, DNAJC2, C-type Lectin-1, Tyrosine-protein kinase Yes, Vigilin, and Sperm motility kinase Y-like, demonstrating the regulatory effects of Mn-SDHB, and providing a reference for the further study of the mechanisms of male development in M. nipponense.
Collapse
Affiliation(s)
- Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Z.G.); (H.Y.); (P.C.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Z.G.); (H.Y.); (P.C.)
| | - Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Z.G.); (H.Y.); (P.C.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Z.G.); (H.Y.); (P.C.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Z.G.); (H.Y.); (P.C.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.)
| |
Collapse
|
10
|
Mou CY, Li Q, Huang ZP, Ke HY, Zhao H, Zhao ZM, Duan YL, Li HD, Xiao Y, Qian ZM, Du J, Zhou J, Zhang L. PacBio single-molecule long-read sequencing provides new insights into the complexity of full-length transcripts in oriental river prawn, macrobrachium nipponense. BMC Genomics 2023; 24:340. [PMID: 37340366 DOI: 10.1186/s12864-023-09442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Oriental river prawn (Macrobrachium nipponense) is one of the most dominant species in shrimp farming in China, which is a rich source of protein and contributes to a significant impact on the quality of human life. Thus, more complete and accurate annotation of gene models are important for the breeding research of oriental river prawn. RESULTS A full-length transcriptome of oriental river prawn muscle was obtained using the PacBio Sequel platform. Then, 37.99 Gb of subreads were sequenced, including 584,498 circular consensus sequences, among which 512,216 were full length non-chimeric sequences. After Illumina-based correction of long PacBio reads, 6,599 error-corrected isoforms were identified. Transcriptome structural analysis revealed 2,263 and 2,555 alternative splicing (AS) events and alternative polyadenylation (APA) sites, respectively. In total, 620 novel genes (NGs), 197 putative transcription factors (TFs), and 291 novel long non-coding RNAs (lncRNAs) were identified. CONCLUSIONS In summary, this study offers novel insights into the transcriptome complexity and diversity of this prawn species, and provides valuable information for understanding the genomic structure and improving the draft genome annotation of oriental river prawn.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhi-Peng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hong-Yu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Zhong-Meng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yuan-Liang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Hua-Dong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Yu Xiao
- Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Zhou-Ming Qian
- Chengdu Eaters Agricultural Group Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
11
|
Bi K, Du J, Chen J, Wang H, Zhang K, Wang Y, Hou L, Meng Q. Screening and functional analysis of three Spiroplasma eriocheiris glycosylated protein interactions with Macrobrachium nipponense C-type lectins. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108810. [PMID: 37169109 DOI: 10.1016/j.fsi.2023.108810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.
Collapse
Affiliation(s)
- Keran Bi
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jun Chen
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Huicong Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Kun Zhang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Yuheng Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
12
|
Chen WY, Gong YQ, Zhou XR, Zhang RD, Liu SH, Lu W, Ren Q, Huang Y. Eight TRIM32 isoforms from oriental river prawn Macrobrachium nipponense are involved in innate immunity during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:368-380. [PMID: 36243272 DOI: 10.1016/j.fsi.2022.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. In this study, full-length MnTRIM32 cDNA was obtained from oriental river prawn Macrobrachium nipponense, and eight MnTRIM32 isoforms generated by alternative splicing were identified. The open reading frames of the eight MnTRIM32 isoforms were predicted to be separately composed of 402, 346, 347, 346, 414, 358, 359, and 358 amino acid residues. Protein structural analysis revealed that all MnTRIM32 isoforms contained a RING domain and a coiled coil region. MnTRIM32 was ubiquitously expressed in all tissues tested, with the highest expression in the hepatopancreas. The mRNA levels of MnTRIM32 in the gills, stomach, and intestine of prawns were found to undergo time-dependent enhancement following white spot syndrome virus (WSSV) stimulation. Double-stranded RNA interference studies revealed that MnTRIM32 silencing significantly downregulated the expression levels of interferon (IFN) regulatory factor MnIRF, IFN-like factor MnVago4, and tumor necrosis factor MnTNF. Furthermore, knockdown of MnTRIM32 in WSSV-challenged prawns increased the expression of VP28 and the number of WSSV copies, suggesting that MnTRIM32 plays a positive role in limiting WSSV infection. These findings provided strong evidence for the important role of MnTRIM32 in the antiviral innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Wei-Yu Chen
- College of Water Conservancy and Hydropower Engineering, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Yi-Qing Gong
- Institute of Water Science and Technology, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Xu-Ri Zhou
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Rui-Dong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Song-Hai Liu
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Wei Lu
- Jiangsu Power Transmission and Transformation Company Limited, 280 Heyan Road, Nanjing, Jiangsu, 210038, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China.
| |
Collapse
|
13
|
Jin S, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. RNA Interference Analysis Reveals the Positive Regulatory Role of Ferritin in Testis Development in the Oriental River Prawn, Macrobrachium nipponense. Front Physiol 2022; 13:805861. [PMID: 35250613 PMCID: PMC8896479 DOI: 10.3389/fphys.2022.805861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferritin plays an essential role in organismic and cellular iron homeostasis in Macrobrachium nipponense. In this study, we aimed to investigate the role of ferritin in the sexual development of male M. nipponense. According to the qPCR analysis of different tissues and developmental stages, ferritin exhibited high expression levels in the testis and androgenic gland, from post-larval developmental stage 5 (PL5) to PL15, indicating that it may be involved in gonad differentiation and development, especially in male sexual development. In situ hybridization and qPCR analysis in various reproductive cycles of the testis indicated that ferritin may play an essential role in spermatogonia development in M. nipponense. RNAi analysis revealed that ferritin positively affected mRNA expression of the insulin-like androgenic gland (Mn-IAG) and the secretion of testosterone, and thus positively affected testis development in M. nipponense. This study highlighted the functions of ferritin in the sexual development of male M. nipponense and provided important information for the establishment of a technique to regulate the process of testis development in M. nipponense.
Collapse
Affiliation(s)
| | - Hongtuo Fu
- *Correspondence: Hongtuo Fu, , orcid.org/000-0003-2974-9464
| | | | | | | | | | | | | |
Collapse
|
14
|
Huang Y, Si Q, Du J, Ren Q. Yorkie Negatively Regulates the Expression of Antimicrobial Proteins by Inducing Cactus Transcription in Prawns Macrobrachium nipponense. Front Immunol 2022; 13:828271. [PMID: 35126401 PMCID: PMC8811168 DOI: 10.3389/fimmu.2022.828271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway controls organ size and immune system in Drosophila and mammals. Yorkie acts as a transcriptional co-activator in the Hippo pathway and cross-talks with other essential pathways. In this study, a Yorkie gene and two Cactus isoforms (designated as MnYorkie, MnCactus-a, and MnCactus-b, respectively) were isolated and characterized from oriental river prawns (Macrobrachium nipponense). Results showed that MnYorkie includes 1620 bp open reading frame and encodes a protein of 539 amino acids (aa). MnCactus-a (377 aa) and MnCactus-b (471 aa) were produced by alternative splicing. MnYorkie and MnCactus were continuously expressed in all selected tissues. Upon Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Vibrio parahaemolyticus stimulation, the mRNA levels of MnYorkie and MnCactus in hemocytes and intestines underwent time-dependent enhancement. RNA interference studies showed that MnYorkie silencing remarkably downregulated the transcription of MnCactus but upregulated the expression of seven immune-related genes. In addition, MnYorkie silencing in vivo decreased the susceptibility of prawns to bacterial challenge. After S. aureus and V. parahaemolyticus infection, the survival rate of prawns increased significantly from 2 to 6 days, which corresponded to the period of MnYorkie knockdown. All these findings suggested that MnYorkie in the Hippo pathway might exhibit remarkable biological roles in the immune defense of M. nipponense by negatively regulating the expression of immune-related genes and promoting the transcription of MnCactus.
Collapse
Affiliation(s)
- Ying Huang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
- *Correspondence: Ying Huang, ; Qian Ren,
| | - Qin Si
- Biodiversity and Biosafety Research Center, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Ying Huang, ; Qian Ren,
| |
Collapse
|
15
|
Jin S, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Identification and Characterization of the Pyruvate Dehydrogenase E1 Gene in the Oriental River Prawn, Macrobrachium nipponense. Front Endocrinol (Lausanne) 2021; 12:752501. [PMID: 34790171 PMCID: PMC8591192 DOI: 10.3389/fendo.2021.752501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Pyruvate dehydrogenase E1 (PDHE1) is thought to play essential roles in energy metabolism, and a previous study suggested that it also has potential regulatory roles in male sexual development in the oriental river prawn, Macrobrachium nipponense. In this study, we used rapid amplification of cDNA ends, quantitative polymerase chain reaction (qPCR), in situ hybridization, western blotting, RNA interference (RNAi), and histological analyses to assess the potential functions of Mn-PDHE1 in the sexual development of male M. nipponense. The full cDNA sequence of Mn-PDHE1 was 1,614 base pairs long, including a 1,077 base pair open reading frame that encodes 358 amino acids. qPCR analysis revealed the regulatory functions of PDHE1 in male sexual development in M. nipponense and in the metamorphosis process. In situ hybridization and western blot results indicated that PDHE1 was involved in testis development, and RNAi analysis showed that PDHE1 positively regulated the expression of insulin-like androgenic gland factor in M. nipponense. Compared with the cell types in the testes of control prawns, histological analysis showed that the number of sperm was dramatically lower after test subjects were injected with Mn-PDHE1 dsRNA, whereas the numbers of spermatogonia and spermatocytes were higher. Sperm constituted only 1% of cells at 14 days after injection in the RNAi group. This indicated that knockdown of the expression of PDHE1 delayed testis development. Thus, PDHE1 has positive effects on male sexual development in M. nipponense. This study highlights the functions of PDHE1 in M. nipponense and its essential roles in the regulation of testis development.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
16
|
Fujita J, Drumm DT, Iguchi A, Tominaga O, Kai Y, Yamashita Y. Small vs. large eggs: comparative population connectivity and demographic history along a depth gradient in deep-sea crangonid Argis shrimps. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The crangonid shrimps Argis hozawai, A. lar and A. toyamaensis, co-distributed in the Sea of Japan, exhibit intriguing differences in geographical and bathymetric distributions and in reproductive biology. Argis hozawai (150–250 m depth) and A. lar (200–300 m) are broadly distributed in the north-western Pacific Ocean and spawn relatively large numbers of small eggs, whereas A. toyamaensis (250–2000 m) is distributed in the Sea of Japan and spawns a small number of large eggs. We examined the relationship between egg size and dispersal patterns in the deep sea by comparing genetic population structures using mitochondrial DNA sequence variation. We found little or no genetic divergence within the Sea of Japan for A. hozawai and A. lar, whereas there was a slight but significantly higher genetic differentiation in A. toyamaensis. This suggests that A. toyamaensis has lower dispersal ability than A. hozawai and A. lar, and therefore might maximize larval survival through larger size at hatching, with either direct or abbreviated larval development, to adapt to the deep-sea environment in the Sea of Japan. We also detected the effects of drastic environmental changes during the Pleistocene glacial periods on their demographic processes in the Sea of Japan.
Collapse
Affiliation(s)
- Junta Fujita
- Kyoto Prefectural Higashi-Maizuru High School, 766, Sengenji, Maizuru, Kyoto, Japan
| | | | - Akira Iguchi
- Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Osamu Tominaga
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Yoshiaki Kai
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto, Japan
| | - Yoh Yamashita
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto, Japan
| |
Collapse
|
17
|
Identification of candidate genes from androgenic gland in Macrobrachium nipponense regulated by eyestalk ablation. Sci Rep 2021; 11:19855. [PMID: 34615913 PMCID: PMC8494903 DOI: 10.1038/s41598-021-99022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
The eyestalk of crustaceans, such as Macrobrachium nipponense, contains many neurosecretory hormones affecting the process of reproduction, molting, metabolism of glucose, and other functions. In this study, important metabolic pathways and candidate genes involved in male sexual development were selected from M. nipponense. The methodology involved performing long-read and next generation transcriptome sequencing of genes from the androgenic gland after eyestalk ablation. qPCR analysis revealed that the mRNA expression of Mn-IAG was significantly increased after ablation of both the single-side (SS) and double-side (DS) eyestalk, compared with the control group (CG). The long-read transcriptome generated 49,840 non-redundant transcripts. A total of 1319, 2092 and 4351 differentially expressed genes (DEGs) were identified between CG versus SS, SS versus DS and CG versus DS, respectively. These data indicated that ablation of the double-sided eyestalk played stronger regulatory roles than the single-side ablation on male sexual development in M. nipponense. This was consistent with the qPCR analysis. Cell Cycle, Cellular Senescence, Oxidative Phosphorylation, Glycolysis/Gluconeogenesis and Steroid Hormone Biosynthesis were the primary enriched metabolic pathways in all three comparisons, and the important genes from these metabolic pathways were also selected. qPCR permitted secondary confirmation of ten DEGs identified through RNA-seq. RNAi-mediated silencing analyses of Hydroxysteroid dehydrogenase like 1 (HSDL1) revealed that HSDL1 has a positive regulatory effect on testes development. This study provides valuable insight into male sexual development in M. nipponense, including metabolic pathways and genes, paving the way for advanced studies on male sexual development in this species and in other crustaceans.
Collapse
|
18
|
Li H, Yang M, Chen G, Wu Y, Xiang Y, Zhu H, Ma K, Ibrahim S, Yang G, Tang Q. The complete mitogenome of giant freshwater prawn ( Macrobrachium rosenbergii) from two different selective breeding populations in China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1984-1986. [PMID: 34179489 PMCID: PMC8205049 DOI: 10.1080/23802359.2021.1938720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The giant freshwater prawn (GFP), Macrobrachium rosenbergii, is one of the largest freshwater shrimps in the world, being widely cultured because of its high economic value. In this study, complete mitogenomes of two GFP individuals from different selective breeding populations, 'South Taihu No.2' (ST) and 'Shufeng' (SF), were newly sequenced, compared with each other, and with those of other published Macrobrachium species. The total length is 15,767 bp (ST) and 15,766 bp (SF), including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and one control region. The phylogenetic analyses based on whole mitogenome sequences suggest that 'Shufeng' has a slightly distant relationship with 'South Taihu No.2', with a pairwise genetic distance of 0.011. This study can provide a genetic background for the GFP selective breeding, and add significantly to the knowledgebase regarding crustacean biology and aquaculture as well.
Collapse
Affiliation(s)
- Hongping Li
- College of Life Science, Huzhou University, Huzhou, China
| | - Minmin Yang
- College of Life Science, Huzhou University, Huzhou, China
| | - Guozhu Chen
- College of Life Science, Huzhou University, Huzhou, China
| | - Yunming Wu
- College of Life Science, Huzhou University, Huzhou, China
| | - Yumei Xiang
- College of Life Science, Huzhou University, Huzhou, China
| | - Huo Zhu
- College of Life Science, Huzhou University, Huzhou, China
| | - Kemin Ma
- College of Life Science, Huzhou University, Huzhou, China
| | - Salifu Ibrahim
- College of Life Science, Huzhou University, Huzhou, China
| | - Guoliang Yang
- College of Life Science, Huzhou University, Huzhou, China.,Jiangsu Shufeng Prawn Breeding Co., LTD, Gaoyou, China
| | - Qiongying Tang
- College of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
19
|
Jin S, Fu Y, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Transcriptome Profiling Analysis of the Testis After Eyestalk Ablation for Selection of the Candidate Genes Involved in the Male Sexual Development in Macrobrachium nipponense. Front Genet 2021; 12:675928. [PMID: 34135943 PMCID: PMC8202825 DOI: 10.3389/fgene.2021.675928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022] Open
Abstract
The eyestalk of crustacean species secretes many hormones, affecting the process of reproduction, molting, metabolism of glucose, and other functions in crustaceans. In this study, important metabolic pathways and candidate genes involved in the male sexual development were identified through performing the transcriptome profiling analysis of the testis after the ablation of eyestalk from Macrobrachium nipponense. The histological observations revealed that the testis development became vigorous after eyestalk ablation, indicating that the hormones secreted by the eyestalk have negative effects on the testis development in M. nipponense. Transcriptome profiling analysis revealed that 1,039, 1,226, and 3,682 differentially expressed genes (DEGs) were identified between normal prawns (CG) vs single-side eyestalk ablation prawns (SS), SS vs double-side eyestalk ablation prawns (DS), and CG vs DS, respectively, indicating that the ablation of double-side eyestalk has more significant regulatory roles on male sexual development than that of single-side ablation, which was consistent with the histological observations. Lysosome, Apoptosis, Glycolysis/Gluconeogenesis, and Insulin signaling pathway were the main enriched metabolic pathways in all of these three comparisons, and the important genes from these metabolic pathways were also selected. The qPCR verifications of 10 DEGs from these metabolic pathways were the same as those of RNA-seq. The qPCR, in situ hybridization, and RNA interference analysis of Mn-NFkBα revealed that NFkBα has a positive regulatory effect on testis development. This study provided new insights on male sexual development in M. nipponense, promoting the studies on male sexual development in other crustaceans as well.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yin Fu
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
20
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Function analysis and molecular characterization of cyclin A in ovary development of oriental river prawn, Macrobrachium nipponense. Gene 2021; 788:145583. [PMID: 33753150 DOI: 10.1016/j.gene.2021.145583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
Macrobrachium nipponense has the characteristics of fast ovarian development cycle, which leads to the coexistence of multiple generations, the reduction of commodity specifications and the low economic benefit. Therefore, the study on the mechanism of ovarian development is of great significance to the development of industry. Cyclin A (CycA)is a key gene regulating ovarian development in vertebrates, but little information was available for its function in crustaceans. In this study, the full-length cDNA of Mn-CycA was obtained from the ovary. The full-length cDNA (2033 bp) with an open reading frame of 1368 bp, encoded a 456-amino acid protein. qRT-PCR revealed tissue-specific expression pattern of Mn-CycA, with abundant expression in the ovary. Results in different developmental stages of ovary indicated that Mn-CycA expression is positively correlated with ovarian maturation. qRT-PCR In different developmental stages, the expression of Mn-CycA mRNA gradually increased during the embryonic stage and decreased significantly on the first day of the hatching stage. At the 25th day of the metamorphosis stage, the expression level of Mn-CycAmRNA in female shrimp was 3.5 times higher than that in male shrimp, which may be related to the proliferation of oogonia and the formation of oocytes. In situ hybridization (ISH) of ovary showed Mn-CycA was examined in all stages and was mainly located in oogonia and oocytes. Compared with the control group, the obvious change of gonad somatic index (GSI) proved that injection of Mn-CycA dsRNA could delay the ovarian development cycle, which provided strong evidence for the involvement of Mn-CycA in ovarian maturation and oogenesis, and expanded a new perspective for studying the fast ovarian development cycle in M. nipponense.
Collapse
|
22
|
Li Y, Jiang Q, Chen Q, Liu Z, Huang Y, Tian J, Huang Y, Zhao Y. Comparison of growth performance and biochemical components between parent and hybrid offspring in the oriental river prawn, Macrobrachium nipponense. Anim Genet 2021; 52:185-197. [PMID: 33503281 DOI: 10.1111/age.13041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/23/2022]
Abstract
Macrobrachium nipponense, as one of the large-yield farmed shrimp, is facing germplasm degradation. Genetic improvement through hybridization is one of the effective methods to solve this problem. In this study, using a three-line hybrid strategy, two-hybrid F1 populations were obtained using three local populations of M. nipponense as parents for crossbreeding. Five populations were then cultured for 3 months. Growth rate performance was measured by the hepatosomatic index, weight gain, body length growth rate and special growth rate. Biochemical components were also assessed. The results showed that the survival rate and growth performance of the hybrid progeny were better than those of the parents. The levels of triglycerides, total cholesterol, glycogen and lactic acid of the hybrid population were higher than those of the parents. This was consistent with variation in the activity of four digestive enzymes. Compared with the results of the fatty acid and amino acid analysis, it was found that the contents of polyunsaturated fatty acids such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid and eight essential amino acids in the hybrid populations were significantly higher than those of their parents, and the contents of flavor amino acids were higher. The expression level of molting genes related to the growth of the parent populations was lower than that of the hybrids. These results show that crossbreeding is effective for the genetic improvement of M. nipponense germplasm. Hybrids showed advantages in growth and nutrition and multigenerational breeding will be required to form a stable germplasm.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qiang Chen
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yinying Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
23
|
Jin S, Bian C, Jiang S, Han K, Xiong Y, Zhang W, Shi C, Qiao H, Gao Z, Li R, Huang Y, Gong Y, You X, Fan G, Shi Q, Fu H. A chromosome-level genome assembly of the oriental river prawn, Macrobrachium nipponense. Gigascience 2021; 10:giaa160. [PMID: 33459341 PMCID: PMC7812440 DOI: 10.1093/gigascience/giaa160] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The oriental river prawn, Macrobrachium nipponense, is an economically important shrimp in China. Male prawns have higher commercial value than females because the former grow faster and reach larger sizes. It is therefore important to reveal sex-differentiation and development mechanisms of the oriental river prawn to enable genetic improvement. RESULTS We sequenced 293.3 Gb of raw Illumina short reads and 405.7 Gb of Pacific Biosciences long reads. The final whole-genome assembly of the Oriental river prawn was ∼4.5 Gb in size, with predictions of 44,086 protein-coding genes. A total of 49 chromosomes were determined, with an anchor ratio of 94.7% and a scaffold N50 of 86.8 Mb. A whole-genome duplication event was deduced to have happened 109.8 million years ago. By integration of genome and transcriptome data, 21 genes were predicted as sex-related candidate genes. CONCLUSION The first high-quality chromosome-level genome assembly of the oriental river prawn was obtained. These genomic data, along with transcriptome sequences, are essential for understanding sex-differentiation and development mechanisms in the oriental river prawn, as well as providing genetic resources for in-depth studies on developmental and evolutionary biology in arthropods.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | | | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zijian Gao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
24
|
González-Castellano I, Pons J, González-Ortegón E, Martínez-Lage A. Mitogenome phylogenetics in the genus Palaemon (Crustacea: Decapoda) sheds light on species crypticism in the rockpool shrimp P. elegans. PLoS One 2020; 15:e0237037. [PMID: 32810189 PMCID: PMC7444591 DOI: 10.1371/journal.pone.0237037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The genus Palaemon comprises worldwide marine and freshwater shrimps and prawns, and some of them are ecologically or commercially important species. Palaemon is not currently a monophyletic group, so phylogenetics and systematics are constantly changing. Species crypticism has been pointed out in several Palaemon species, being the clearest evidence in the European rockpool shrimp P. elegans. Here we sequenced and described seven European Palaemon mitochondrial genomes. The mitochondrial protein-coding genes were used, along with those of three other Palaemon species, to perform mitogenome phylogenetic analyses to clarify the evolutionary relationships within the genus, and particularly to shed light on the cryptic species found within P. elegans. The Messinian Salinity Crisis (5.3-5.9 Ma, late Miocene) was proposed to be the origin of this cryptic species and it was used as aged constraint for calibration analysis. We provide the largest and the first time-calibrated mitogenome phylogeny of the genus Palaemon and mitogenome substitution rate was estimated (1.59% per million years) in Decapoda for the first time. Our results highlighted the need for future systematics changes in Palaemon and crypticism in P. elegans was confirmed. Mitochondrial genome and cox1 (1.41%) substitution rate estimates matched those published elsewhere, arguing that the Messinian Salinity Crisis was a plausible event driving the split between P. elegans and its cryptic species. Molecular dating suggested that Pleistocene glaciations were likely involved in the differentiation between the Atlantic and Mediterranean populations of P. elegans. On the contrary, the divergence between the Atlantic and Mediterranean populations of the common littoral shrimp P. serratus was greater and dated to be much older (4.5-12.3 Ma, Plio-Miocene), so we considered that they could represent two separated species. Therefore, species crypticism in the genus Palaemon seems to be a common phenomenon.
Collapse
Affiliation(s)
- Inés González-Castellano
- Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| | - Joan Pons
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), Consejo Superior de Investigaciones Científicas (CSIC) and Universitat de les Illes Balears, Esporles, Spain
| | - Enrique González-Ortegón
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Spain
| | - Andrés Martínez-Lage
- Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
25
|
Huang Y, Ma FT, Ren Q. Function of the MOB kinase activator-like 1 in the innate immune defense of the oriental river prawn (Macrobrachium nipponense). FISH & SHELLFISH IMMUNOLOGY 2020; 102:440-448. [PMID: 32418908 DOI: 10.1016/j.fsi.2020.04.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The monopolar spindle one binder (MOB) protein, a key signal transducer of the Hippo signaling pathway, is involved in growth control and cancer. In this study, a new MOB kinase activator-like 1 of the oriental river prawns, Macrobrachium nipponense, (MnMOB1) was isolated and characterized. The open reading frame of MnMOB1 consisted of 651 nucleotides that encoded 216 amino acid residues and contained the Mob1_phocein domain. Phylogenetic analysis revealed that MnMOB1 clustered together with the MOB1 from Penaeus vannamei. The distribution of MnMOB1 expression in various tissues of normal prawn revealed that the MnMOB1 expression was highest in the hepatopancreas followed by those in the intestines, gill, heart, stomach, and hemocytes. In prawns challenged with Staphylococcus aureus and Vibrio parahaemolyticus, the expression levels of MnMOB1 in the hepatopancreas, gills, and intestine were upregulated. Furthermore, the expression levels of crustins and anti-lipopolysaccharide factors in prawn injected with S. aureus and V. parahaemolyticus and MnMOB1 knockdown were significantly decreased relative to those in the control group. These findings indicated that MnMOB1 is involved in the regulation of antimicrobial peptide expression and plays a crucial role in the innate immunity of M. nipponense.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Fu-Tong Ma
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
26
|
Wang K, Dai X, Zhang C, Cao X, Zhang R, Zhang Z, Huang X, Ren Q. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 101:225-233. [PMID: 32247046 DOI: 10.1016/j.fsi.2020.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The Wnt signal transduction pathway is involved in a wide variety of cellular processes, including cell proliferation, differentiation, apoptosis, and immunity against microbial infection. In the current study, we cloned and characterized two Wnt homologues (Mn-Wnt4 and Mn-Wnt16) in Macrobrachium nipponense. The full length cDNA of Mn-Wnt4 was 3144 bp with a 1074 bp open reading frame (ORF) that encoded a protein containing 358 amino acid residues. The full length cDNA of Mn-Wnt16 transcript was 2893 bp with a 1281 bp ORF that encoded a 427 amino acid protein. Mn-Wnt4 and Mn-Wnt16 proteins contained a highly conserved WNT1 domain. Tissue distribution analysis showed that Mn-Wnt4 and Mn-Wnt16 were highly expressed in the stomach. The transcriptional levels of Mn-Wnt4 and Mn-Wnt16 in the stomach were upregulated at most tested time points after bacterial (Staphylococcus aureus and Vibrio parahaemolyticus) and viral (White spot syndrome virus) infection. Moreover, the expression levels of some antimicrobial peptides (AMPs) (including anti-lipopolysaccharide factor [ALF] and crustin [CRU]) were upregulated after V. parahaemolyticus infection. We further used dsRNA-mediated RNA interference technology to explore the relationship between these two Wnt genes and the expression levels of AMPs during V. parahaemolyticus infection. Mn-Wnt4 knockdown could significantly inhibit the expression of ALF1 and CRU4 in the stomach of V. parahaemolyticus-injected prawns, whereas Mn-Wnt16 silencing could result in the inhibition of the expression level of CRU3 and CRU4 in the stomach of V. parahaemolyticus-infected prawns. These findings indicated that the Wnt gene family might participate in the body's innate immune response to Vibrio infection by regulating the synthesis of a variety of AMPs. Our study will help to understand the role of the Wnt signaling pathway in the immune response of crustaceans.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
27
|
Xu L, Yang M, Fu H, Sun S, Qiao H, Zhang W, Gong Y, Jiang S, Xiong Y, Jin S, Wu Y. Molecular cloning, expression, and in situ hybridization analysis of MnGPx-3 and MnGPx-4 from oriental river prawn, Macrobrachium nipponense, in response to hypoxia and reoxygenation. PLoS One 2020; 15:e0229171. [PMID: 32084182 PMCID: PMC7034814 DOI: 10.1371/journal.pone.0229171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022] Open
Abstract
Glutathione peroxidase (GPx) has been the focus of increased research because of its important role as an antioxidant and in reactive oxygen species (ROS) induced damage repair. Studies on GPxs have relevance with Macrobrachium nipponense because it has poor tolerance to hypoxia in Macrobrachium nipponense. The two subunits named as MnGPx-3 and MnGPx-4 according to the glutathione peroxidase nomenclature system. Both full-length cDNAs were cloned from the hepatopancreas. In this study, we analyzed the expression of two GPxs in Macrobrachium nipponense in response to changes in environmental oxygen. Expression levels of MnGPx-3 and MnGPx-4 indicated that both have strong responses to hypoxia. In situ hybridization showed that MnGPx-3 and MnGPx-4 were located in secretory and storage cells in hepatopancreas. These results suggest that GPx gene is expressed and released by secretory cells and released response to hypoxia. In the gill tissue, however, GPxs are located in blood cells, suggesting that they perform different functions in different tissues or organs. The results of in situ hybridization were consistent with those of quantitative Real-time PCR. This study provides a basis for understanding the oxidative stress response in M. nipponense under hypoxia.
Collapse
Affiliation(s)
- Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
| | - Ming Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, People’s Republic of China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
28
|
Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100662. [PMID: 32114312 DOI: 10.1016/j.cbd.2020.100662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023]
Abstract
A better understanding of the mechanisms underlying the male sexual differentiation of Macrobrachium nipponense is urgently needed in order to maintain sustainable development of the M. nipponense industry. Environmental factors, especially temperature and illumination, have dramatic effects on gonadal development. The aim of the present study was to identify key genes and metabolites involved in the male sexual differentiation and development of M. nipponense through integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times. A total of 268 differentially abundant metabolites and 11,832 differentially expressed genes (DEGs) were identified. According to integrated metabolomics and transcriptome analyses, glycerophospholipid and sphingolipid metabolism was predicted to have dramatic effects on the male sexual differentiation and development of M. nipponense. According to the KEGG enrichment analysis of DEGs, oxidative phosphorylation, glycolysis/gluconeogenesis, the HIF-1 signaling pathway, the citrate cycle, steroid hormone synthesis, and the spliceosome complex were predicted to promote male differentiation and development by providing adenosine triphosphate, promoting the synthesis of steroid hormones, and providing correct gene products. Quantitative polymerase chain reaction analysis and in situ hybridization showed that the SDHB, PDE1, HSDL1, CYP81F2, SRSF, and SNRNP40 genes were differentially expressed, suggesting roles in the male sexual differentiation and development of M. nipponense. Strong candidate sex-related metabolic pathways and genes in M. nipponense were identified by integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times, as confirmed by PCR analysis and in situ hybridization.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
29
|
Zhang Y, Fu Y, Jiang S, Qiao H, Xiong Y, Fu H, Zhang W, Gong Y, Jin S, Wu Y. Comparative metabolomics analysis of ovarian developmental stages in Macrobrachium nipponense. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100648. [PMID: 32078987 DOI: 10.1016/j.cbd.2019.100648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023]
Abstract
Rapid sexual maturity of female Macrobrachium nipponense is a severe problem for the aquaculture industry. To date, there have been only transcriptome studies investigating ovarian development, and studies using other tools, such as metabolomics are lacking. Metabolomics reveals changes in the level of metabolites in tissues in relation to current physiological characteristics, and can yield valuable insight into the growth and development of organisms. In this study, we systematically analyzed 15 samples from five different ovarian developmental stages in M. nipponense to learn more about how metabolites change over reproduction. Gas chromatography/time-of-flight mass spectroscopy revealed an array of different compounds and 83-162 pathways depending on the stage. Furthermore, 89 metabolites and 14 pathways were significantly different across stages. It is hypothesized that N-acetyl-N-formyl-5-methoxykynurenamine, ascorbate, fructose-2,6-bisphosphate, cortexolone and other metabolites that significantly differed by stage are regulated by hormones and are closely related to ovarian development. However, for other metabolites that changed with development, such as cytidine and xanthine, an association with ovarian development has yet to be revealed. Quantitative polymerase chain reaction was used to correlate gene changes to metabolites in the pathway for biosynthesis of plant secondary metabolites. We found that the TCA cycle rate may be the cause of female miniaturization during the reproductive period, and that the control of fatty acid content via aquaculture nutrition may be an exogenous tool for regulatory control of maturation. This study provides a systematic and comprehensive metabolomics analysis of ovarian development in M. nipponense and lays a foundation for addressing the problem of rapid sexual maturity.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Yin Fu
- Shanghai Institute of Nutrition and Health, CAS, Shanghai 200031, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
30
|
Yuan F, Yang Z, Tang T, Xie S, Liu F. A 28.6-kD small heat shock protein (MnHSP28.6) protects Macrobrachium nipponense against heavy metal toxicity and oxidative stress by virtue of its anti-aggregation activity. FISH & SHELLFISH IMMUNOLOGY 2019; 95:635-643. [PMID: 31678183 DOI: 10.1016/j.fsi.2019.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones and involved into various physiological and stress processes. In the present study, a 28.6-kD sHSP coding gene, MnHSP28.6, was cloned and characterized from the oriental river prawn Macrobrachium nipponense. Tissue distribution analysis via qPCR and western blot revealed that MnHSP28.6 predominantly expressed in muscle. The temporal transcription of MnHSP28.6 in muscle after bacterial challenge, heavy metal exposure and doxorubicin (DOX) injection was investigated by qPCR. The results showed that the expression of MnHSP28.6 were strongly enhanced by both Cd2+ and Cu2+ exposure, as well as DOX injection, but not by bacterial infection. Aggregation assays showed that recombinant MnHSP28.6 could effectively prevent temperature-induced aggregation of citrate synthase, and reduction-induced aggregation of insulin in vitro. MnHSP28.6 also could protect muscle extracts from heat-induced protein denaturation and superoxide dismutase (SOD) inactivation. Expressing MnHSP28.6 in E. coli conferred host cell impressive protection against H2O2 compared to control. These results suggest a protective role of MnHSP28.6 in maintaining protein homeostasis, preventing aggregation, promoting resistance to heavy metal and keeping redox balance.
Collapse
Affiliation(s)
- Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
31
|
Jin S, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Identification of potentially novel functions of DNA polymerase zeta catalytic subunit in oriental river prawn, Macrobrachium nipoponense: cloning, qPCR, in situ hybridization and RNAi analysis. 3 Biotech 2019; 9:330. [PMID: 31448186 DOI: 10.1007/s13205-019-1857-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/01/2022] Open
Abstract
The goal of this study was to analyze the functions of DNA polymerase zeta catalytic subunit (Rev3) in the oriental river prawn Macrobrachium nipponense (Mn-Rev3) with a focus on its potential roles in sex differentiation and development. The full length of Mn-Rev3 cDNA sequence was 6832 base pairs (bp) with an open reading frame of 6102 bp encoding 2033 amino acids. Mn-Rev3 showed the closest evolutionary relationship with Penaeus vannamei. The highest expression level of Mn-Rev3 occurred in the hepatopancreas and strong signals were observed in hepatopancreas cells, suggesting that Mn-Rev3 played a role in the immune system. Expression levels of Mn-Rev3 also were relatively high in the androgenic gland and testis, suggesting its potential roles in male sexual differentiation and development. During development, expression of Mn-Rev3 was highest on larval day 15 and relatively high from post-larval day 1 (PL1) to PL15, indicating that it played essential roles in promoting metamorphosis and gonad differentiation and development in M. nipponense. Strong Mn-Rev3 signals were detected in spermatids, spermatocytes, and sperm in the testes, and Mn-Rev3 expression was higher in the testes during the reproductive season than in the non-reproductive season. This result indicated that Rev3 promoted whole testis development, and especially sperm development, in M. nipponense. The expression level of Mn-Rev3 was high from ovary V to ovary II stages, indicating that Rev3 may be involved in yolk deposition. The expression level of Mn-insulin-like androgenic gland hormone (Mn-IAG) and the content of testosterone showed the same expression pattern as that of Mn-Rev3 after injection of double-stranded RNA of Mn-Rev3, which indicated that Rev3 had positive effects on male sexual differentiation and development in M. nipponense. The results of this study advance our understanding of male sexual development in M. nipponense and provide the basis for further studies of male sexual differentiation and development in crustaceans.
Collapse
Affiliation(s)
- Shubo Jin
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Yuning Hu
- 2Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People's Republic of China
| | - Hongtuo Fu
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
- 2Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People's Republic of China
| | - Sufei Jiang
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Yiwei Xiong
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Hui Qiao
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Wenyi Zhang
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Yongsheng Gong
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| | - Yan Wu
- 1Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, 214081 Jiangsu Province People's Republic of China
| |
Collapse
|
32
|
Wang G, Wu C, Ge J, Chen Y, Han Z, Guo P, Li J. Identification of complete F-type mitochondrial genome in Lamprotula scripta and Lamprotula caveata and analysis on DUI. Gene 2019; 710:59-65. [PMID: 31039434 DOI: 10.1016/j.gene.2019.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial DNA is typically passed to offspring through maternal inheritance. However, in mussels, two kinds of mitochondrial DNA exist: F and M type, which are referred to as doubly uniparental inheritance (DUI). Studies have shown that DUI may be related to gender determination. In this study, we obtained the first complete F-type mitochondrial genome of Lamprotula scripta and Lamprotula caveata which were 16,250 bp and 16,641 bp in length, respectively, and had 13 protein coding genes (PCGs), 22 transfer RNAs, 2 ribosomal RNAs and 27 non-coding (NC) regions. The largest NC region of L. scripta was 639 bp and located between ND5 and tRNAGln. The largest NC of L. caveata was 1046 bp and also located between ND5 and tRNAGln. The overall AT content of L. scripta and L. caveata was 58.95% and 58.66%, respectively, which were lower than Lamprotula leai, Lamprotula gottschei and Lamprotula tortuosa. We next compared F and M mitochondrial genomic data on freshwater mussels and established a phylogenetic tree based on amino acid sequences of 13 PCGs and COII gene. Our results showed that F- and M-type mitochondria were significantly separated into two branches, and the basic structure of phylogenetic trees were divided into four distinct groups: Unioninae, Anodontini, Gonideinae and Ambleminae. Relatives of Gonideinae and Ambleminae were more closely related than Unioninae and Anodontini, indicating significant differences in mtDNA between the two mitogenome types. Moreover, we revealed that L. scripta and L. caveata are closely relatives, suggesting that they are both subordinates of the Gonideinae subfamily. Consequently, we speculate that the formation of DUI hinders their disappearance, which provides a basis for further studies into the mechanisms and genetic diversities of DUI formation.
Collapse
Affiliation(s)
- Guiling Wang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Congdi Wu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Jingyuan Ge
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ya Chen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhenyong Han
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Guo
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
33
|
Jin S, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Potential Functions of Gem-Associated Protein 2-Like Isoform X1 in the Oriental River Prawn Macrobrachium nipponense: Cloning, qPCR, In Situ Hybridization, and RNAi Analysis. Int J Mol Sci 2019; 20:ijms20163995. [PMID: 31426338 PMCID: PMC6720513 DOI: 10.3390/ijms20163995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022] Open
Abstract
Gem-associated protein 2-like isoform X1 (GEM) was previously predicted to be involved in the sexual development of male Macrobrachium nipponense. In this study, we analyze the GEM functions in depth using quantitative polymerase chain reaction (qPCR), in situ hybridization, and RNA interference (RNAi). The full-length Mn-GEM cDNA sequence was 1018 base pairs (bp) long with an open reading frame of 777 bp encoding 258 amino acids. qPCR analysis of Mn-GEM in different tissues and developmental stages showed that Mn-GEM was highly expressed in the gonad and from post-larval developmental stage day 5 (PL5) to PL15, which indicated that GEM has potential roles in gonad differentiation and development in M. nipponense. In situ hybridization and qPCR analysis of various stages of the reproductive cycle of the testis and ovary indicated that GEM may promote spermatid development and gametogenesis in M. nipponense. After injecting with double-stranded RNA (dsRNA) of Mn-GEM, mRNA expression of Mn-insulin-like androgenic gland hormone (Mn-IAG) and the content of testosterone increased with the decrease of Mn-GEM expression, indicating that GEM has negative effects on the male sexual differentiation and development in M. nipponense. Results of this study highlight the functions of GEM in M. nipponense, which can be applied to future studies of male sexual development in M. nipponense and other crustacean species.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
34
|
Involvement of a TNF homologue in balancing the host immune system of Macrobrachium nipponense. Int J Biol Macromol 2019; 134:73-79. [DOI: 10.1016/j.ijbiomac.2019.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
|
35
|
Tang T, Yang Z, Li J, Yuan F, Xie S, Liu F. Identification of multiple ferritin genes in Macrobrachium nipponense and their involvement in redox homeostasis and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:701-709. [PMID: 31004801 DOI: 10.1016/j.fsi.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Based on the transcriptome database, we screened out four ferritin subunit genes (MnFer2-5) from the oriental river prawn Macrobrachium nipponense, which encode two non-secretory and two secretory peptides. MnFer2 and 4 possess a strictly conserved ferroxidase site, and MnFer3 has a non-typical ferroxidase site. MnFer5 seems to be a number of ferritin families, which has a distinct dinuclear metal binding motif, but lacks an iron ion channel, a ferroxidase site and a nucleation site. Diverse tissue-specific transcriptions of the four genes indicate their functional diversity in the prawn. Among them, MnFer2 is mainly expressed in hepatopancreas and intestines, MnFer3 and 4 are predominantly expressed in gills, and MnFer5 is widely expressed in various tissues with high presence in intestines, hepatopancreas and haemocytes. The transcription of all the four MnFer genes can be strongly induced by doxorubicin, indicating the involvement of these ferritin subunits in protection from oxidative stress. Upon Aeromonas hydrophila infection, only MnFer5 is persistently up-regulated, while other subunits including MnFer2-4 are down-regulated during the early stage, followed by recovery and even a slight increase at 48 h post bacterial challenge. Moreover, the iron binding capacity of recombinant MnFer2 is also demonstrated in vitro. The E. coli expressing MnFer2 displays increased resistance to hydrogen peroxidase cytotoxicity. These results suggest a protective role of ferritins from M. nipponense in iron homeostasis, redox biology and antibacterial immunity and shed light on the molecule evolution of crustacean ferritin subunits.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jing Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
36
|
Cloning and characterisation of Na+/K+-ATPase and carbonic anhydrase from oriental river prawn Macrobrachium nipponense. Int J Biol Macromol 2019; 129:809-817. [DOI: 10.1016/j.ijbiomac.2019.02.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/04/2023]
|
37
|
Li X, Yang H, Gao X, Zhang H, Chen N, Miao Z, Liu X, Zhang X. The pathogenicity characterization of non-O1 Vibrio cholerae and its activation on immune system in freshwater shrimp Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2019; 87:507-514. [PMID: 30711493 DOI: 10.1016/j.fsi.2019.01.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Outbreaks of mass mortalities among cultured Macrobrachium nipponense occurred in a commercial hatchery during the autumn of 2017 in Jiangsu province, P. R. China, and non-O1 Vibrio cholerae was isolated and identified as causal agents of M. nipponense, with a LD50 value 4.09 × 104 CFU/mL. Detection of virulence-associated genes by PCR indicated that XL1 was positive for Mp, HlyA, RtxA, OmpU, Ace, Zot and T6SS. Furthermore, the results of extracellular enzyme analysis revealed that the strain can produce lecithinase, amylase, gelatinase and hemolysin. Histopathological analysis revealed that the hepatic tubule lumen and the gap between the hepatic tubules became larger, and the brush border disappeared in the hepatopancreas. Quantitive real-time PCR (qRT-PCR) was undertaken to measure mRNA expression levels for thirteen immune related genes in M. nipponense after non-O1 V. cholerae infection. The transcriptional analysis of these immune related genes demonstrated that the expression levels of dorsal, relish, p38, crustin1, crustin2, crustin3, hemocyanin, i-lysozyme, anti-lipopolysaccharide factors 1, anti-lipopolysaccharide factors 2, prophenoloxidase were significantly up-regulated in hemolymph of M. nipponense post-infection. These results revealed varying expression profiles and clear transcriptional activation of these immune related genes in hemolymph, which will contribute to better understand the pathogenesis and host defensive system in non-O1 V. cholerae invasion.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Honghua Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhen Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Yu J, Ji X, Wang X, Li T, Wang H, Zeng Q. Identification and characterization of differentially expressed genes in hepatopancreas of oriental river prawn Macrobrachium nipponense under nitrite stress. FISH & SHELLFISH IMMUNOLOGY 2019; 87:144-154. [PMID: 30630047 DOI: 10.1016/j.fsi.2018.12.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is a highly adaptable, tolerant, and fecund freshwater prawn that inhabits a wide range of aquatic environments. The hepatopancreas of crustaceans is not only a site for secretion of digestive enzymes, and also plays important roles in several metabolic processes, such as lipid and carbohydrate metabolism. It is the main organ for the detoxification and immunity. In this study, high-throughput sequencing techniques were used to detect the effect of nitrite stress (10 mg/L nitrite-N for 48 h) on gene expression in the hepatopancreas of M. nipponense. A total of 13,769 million reads were harvested, and 94,534 transcripts were de novo assembled using Trinity software and produced 56,054 non-redundant transcripts. A total of 825 differentially expressed genes were obtained comparing 48 h nitrite stress with control group. In the analysis of GO and KEGG database, significant differences were found in 49 pathways. Immune-related pathways under nitrite stress included arginine and proline metabolism, glutamate metabolism, Jak-Stat signaling pathway, endocytosis, wnt signaling pathway, RIG-I-like receptor signaling pathway, TGF-beta signaling pathway, GnRH signaling pathway and phagosome. Apoptosis-related pathway was also significantly altered, such as lysosome and apoptosis. Remarkably, nitrite stress altered the expression patterns of key apoptosis genes (tetraspanins-like protein, LAMP, CD63, caspase 3C and Caspase 1) and immune genes (Serine proteinase-like protein, C-type lectin, daf-36, SOCS-2, alpha-2-macroglobulin), confirmed that nitrite-stress induce immune response and eventually even apoptosis. This study provided a new insight into the role of hepatopancreas in crustaceans, and further investigation will continue.
Collapse
Affiliation(s)
- Jielun Yu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Xiangshan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Xuepeng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Tongming Li
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Hui Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China.
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
39
|
Li Y, Song J, Shen X, Cai Y, Cheng H, Zhang X, Yan B, Chu KH. The first mitochondrial genome of Macrobrachium rosenbergii from China: phylogeny and gene rearrangement within Caridea. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1540262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Yongqi Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Jun Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, China
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Xiaqing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Huaihai Institute of Technology, Lianyungang, China
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
40
|
Zarehgashti G, Etemadian Y, Valipour AR, Rahnama M, Khodabandeh F, Fahim A. Production of a Semi Ready-to-Eat Shrimp Soup Powder and Assessment of Its Shelf Life. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.1.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
41
|
Sun S, Guo Z, Fu H, Zhu J, Ge X. Integrated metabolomic and transcriptomic analysis of brain energy metabolism in the male Oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1154-1165. [PMID: 30261455 DOI: 10.1016/j.envpol.2018.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia is as an endocrine disruptor, and, in crustaceans, the energy metabolic consequences of hypoxia in the brain tissue are still poorly understood. We combined gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis and high-throughput RNA sequencing to evaluate the metabolic effects and subjacent regulatory pathways in the brain tissue of the male Oriental river prawn (Macrobrachium nipponense) in response to hypoxia and reoxygenation. We recorded LC50 and heartbeats per minute of male M. nipponense juveniles. Hypoxia resulted in the generation of reactive oxygen species in the brain cells and alterations in gene expression and metabolite concentrations in the prawn brain tissue in a time-dependent manner. The transcriptomic analyses revealed specific changes in the expression of genes associated with metabolism pathways, which was consistent with the changes in energy metabolism indicated by the GC-MS metabolomic analysis. Quantitative real-time polymerase chain reaction and western blot confirmed the transcriptional induction of these genes because of hypoxia. The lactate levels increased significantly during hypoxia and decreased to normal after reoxygenation; this is consistent with a shift towards anaerobic metabolism, which may cause metabolic abnormalities in the brain tissue of M. nipponense. Overall, these results are consistent with metabolic disruption in the brain of M. nipponense exposed to hypoxia and will help in understanding how crustacean brain tissue adapts and responds to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning City, Guangxi Province 530021, PR China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
42
|
Xu L, Yang M, Fu H, Sun S, Qiao H, Zhang W, Gong Y, Jiang S, Xiong Y, Jin S, Wu Y. Molecular Cloning and Expression of MnGST-1 and MnGST-2 from Oriental River Prawn, Macrobrachium nipponense, in Response to Hypoxia and Reoxygenation. Int J Mol Sci 2018; 19:E3102. [PMID: 30308983 PMCID: PMC6213060 DOI: 10.3390/ijms19103102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
The glutathione-S-transferase (GST) superfamily includes seven classes, and different classes have different functions. GST superfamily members function in various processes including detoxification of xenobiotics, protection against oxidative damage, and intracellular transport of hormones, endogenous metabolites, and exogenous chemicals. Herein, to elucidate the tissue-specific expression pattern of GSTs in response to hypoxia stress, which induces cell death, we investigated the expression of GSTs in response to hypoxia and reoxygenation in oriental river prawn, Macrobrachium nipponense. Full-length cDNAs of two δ class GSTs were cloned from the hepatopancreas, and named MnGST-1 and MnGST-2 based on the established GST nomenclature system. Expression profiles of both GSTs in various tissues were different under acute and chronic experimental hypoxia stress conditions, suggesting that both respond strongly to hypoxia-induced oxidative stress. However, the intensity of responses to hypoxia and reoxygenation were different in different tissues. During acute hypoxia stress, MnGST-1 responds earlier than MnGST-2 in the hepatopancreas and gill, but more slowly in muscle. By contrast, during chronic hypoxia stress, MnGST-2 plays a more important role in the hepatopancreas and gill than MnGST-1.
Collapse
Affiliation(s)
- Lei Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Ming Yang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
43
|
Sun S, Gu Z, Fu H, Zhu J, Ge X, Wu X. Hypoxia Induces Changes in AMP-Activated Protein Kinase Activity and Energy Metabolism in Muscle Tissue of the Oriental River Prawn Macrobrachium nipponense. Front Physiol 2018; 9:751. [PMID: 29962970 PMCID: PMC6011032 DOI: 10.3389/fphys.2018.00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia has important effects on biological activity in crustaceans, and modulation of energy metabolism is a crucial aspect of crustaceans’ ability to respond to hypoxia. The adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) enzyme is very important in cellular energy homeostasis; however, little information is known about the role of AMPK in the response of prawns to acute hypoxia. In the present study, three subunits of AMPK were cloned from the oriental river prawn, Macrobrachium nipponense. The full-length cDNAs of the α, β, and γ AMPK subunits were 1,837, 3,174, and 3,773 bp long, with open reading frames of 529, 289, and 961 amino acids, respectively. Primary amino acid sequence alignment of these three subunits revealed conserved similarity between the functional domains of the M. nipponense AMPK protein with AMPK proteins of other animals. The expression of the three AMPK subunits was higher in muscle tissue than in other tissues. Furthermore, the mRNA expression of AMPKα, AMPKβ, and AMPKγ were significantly up-regulated in M. nipponense muscle tissue after acute hypoxia. Probing with a phospho-AMPKα antibody revealed that AMPK is phosphorylated following hypoxia; this phosphorylation event was found to be essential for AMPK activation. Levels of glucose and lactic acid in hemolymph and muscle tissue were significantly changed over the course of hypoxia and recovery, indicating dynamic changes in energy metabolism in response to hypoxic stress. The activation of AMPK by hypoxic stress in M. nipponense was compared to levels of muscular AMP, ADP, and ATP, as determined by HPLC; it was found that activation of AMPK may not completely correlate with AMP:ATP ratios in prawns under hypoxic conditions. These findings confirm that the α, β, and γ subunits of the prawn AMPK protein are regulated at the transcriptional and protein levels during hypoxic stress to facilitate maintenance of energy homeostasis.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhongbao Gu
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| |
Collapse
|
44
|
Jin S, Fu H, Sun S, Jiang S, Xiong Y, Gong Y, Qiao H, Zhang W, Wu Y. iTRAQ-based quantitative proteomic analysis of the androgenic glands of the oriental river prawn, Macrobrachium nipponense , during nonreproductive and reproductive seasons. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:50-57. [DOI: 10.1016/j.cbd.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/17/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
|
45
|
Sun S, Guo Z, Fu H, Ge X, Zhu J, Gu Z. Based on the Metabolomic Approach the Energy Metabolism Responses of Oriental River Prawn Macrobrachium nipponense Hepatopancreas to Acute Hypoxia and Reoxygenation. Front Physiol 2018; 9:76. [PMID: 29686619 PMCID: PMC5900017 DOI: 10.3389/fphys.2018.00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia represents a major physiological challenge for prawns and is a problem in aquaculture. Therefore, an understanding of the metabolic response mechanism of economically important prawn species to hypoxia and re-oxygenation is essential. However, little is known about the intrinsic mechanisms by which the oriental river prawn Macrobrachium nipponense copes with hypoxia at the metabolic level. In this study, we conducted gas chromatography-mass spectrometry-based metabolomics studies and assays of energy metabolism-related parameters to investigate the metabolic mechanisms in the hepatopancreas of M. nipponense in response to 2.0 O2/L hypoxia for 6 and 24 h, and reoxygenation for 6 h following hypoxia for 24 h. Prawns under hypoxic stress displayed higher glycolysis-related enzyme activities and lower mRNA expression levels of aerobic respiratory enzymes than those in the normoxic control group, and those parameters returned to control levels in the reoxygenated group. Our results showed that hypoxia induced significant metabolomic alterations in the prawn hepatopancreas within 24 h. The main metabolic alterations were depletion of amino acids and 2-hydroxybutanoic acid and accumulation of lactate. Further, the findings indicated that hypoxia disturbed energy metabolism and induced antioxidant defense regulation in prawns. Surprisingly, recovery from hypoxia (i.e., reoxygenation) significantly affected 25 metabolites. Some amino acids (valine, leucine, isoleucine, lysine, glutamate, and methionine) were markedly decreased compared to the control group, suggesting that increased degradation of amino acids occurred to provide energy in prawns at reoxygenation conditions. This study describes the acute metabolomic alterations that occur in prawns in response to hypoxia and demonstrates the potential of the altered metabolites as biomarkers of hypoxia.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhongbao Guo
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
46
|
Zhao C, Fu H, Sun S, Qiao H, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y. Experimental inoculation of oriental river prawn Macrobrachium nipponense with white spot syndrome virus (WSSV). DISEASES OF AQUATIC ORGANISMS 2017; 126:125-134. [PMID: 29044042 DOI: 10.3354/dao03165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is an economically important species that is widely farmed in China. White spot syndrome virus (WSSV) is one of the most devastating pathogens of the cultured shrimp Litopenaeus vannamei, responsible for massive loss of its commercial products worldwide. We investigated the infectivity and pathogenicity of WSSV in adult M. nipponense using standardized conditions for L. vannamei. The median lethal dose of WSSV in adult M. nipponense was 103.84±0.06 copies g-1, which was about 1000-fold higher than in L. vannamei (100.59±0.22 copies g-1). WSSV was detected by 2-step PCR in the gills, hepatopancreas, muscle, stomach, heart, gut, nerve, integument, pereopod, eyestalk, testis, and ovary of experimentally infected dead M. nipponense. Lesions were observed histologically following WSSV injection, showing basophilic intranuclear inclusion bodies in the hepatopancreas and subsequently in the gills. The clearance of WSSV was observed in hepatopancreas and gills at 48 and 96 h post-inoculation, respectively. No histological lesions were detected in muscle from 0-96 h post-injection. The results show that the oriental river prawn M. nipponense can be infected by WSSV and the infections are self limiting over time; therefore, M. nipponense may serve as a useful model for studying resistance to WSSV.
Collapse
Affiliation(s)
- Caiyuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin S, Fu H, Sun S, Jiang S, Xiong Y, Gong Y, Qiao H, Zhang W, Wu Y. Integrated analysis of microRNA and mRNA expression profiles during the sex-differentiation sensitive period in oriental river prawn, Macrobrachium nipponense. Sci Rep 2017; 7:12011. [PMID: 28931848 PMCID: PMC5607309 DOI: 10.1038/s41598-017-10867-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Male oriental river prawns (Macrobrachium nipponense) grow faster than females, and therefore, reach larger sizes by harvest time. Histological observations have indicated that the sex-differentiation sensitive period (which includes the formation of the androgenic gland, the testis, and the ovary) is from post-larvae (PL) developmental stage for M. nipponense. In this study, we prepared four microRNA (miRNA) and mRNA libraries using samples collected from sex-differentiation sensitive period (PL7 to PL16) to perform RNA-sequencing for identifying sex-related candidate miRNAs, genes, and metabolic pathways. A total of nine intersection miRNAs were identified, of which three were highly expressed in the androgenic gland, and their expression was verified by quantitative Real-Time PCR (qPCR). These three miRNAs and their 11 predicted target genes may be strong candidates for sex-related miRNAs and sex-related genes in M. nipponense. Five vital sex-related metabolic pathways were also identified that may regulate other sex-differentiation and sex-determination mechanisms. Finding of the study provide important insights to enhance our understanding on sex-differentiation and sex-determination mechanisms for M. nipponense.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, P. R. China
| |
Collapse
|
48
|
Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:39-48. [DOI: 10.1016/j.cbd.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 11/18/2022]
|
49
|
Sun W, Huynh BL, Ojo JA, Coates BS, Kusi F, Roberts PA, Pittendrigh BR. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Sun S, Xuan F, Fu H, Zhu J, Ge X, Wu X. Molecular cloning, characterization and expression analysis of caspase-3 from the oriental river prawn, Macrobrachium nipponense when exposed to acute hypoxia and reoxygenation. FISH & SHELLFISH IMMUNOLOGY 2017; 62:291-302. [PMID: 28159694 DOI: 10.1016/j.fsi.2017.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Caspases are present in the cytosol as inactive proenzymes but become activated when apoptosis is initiated, playing an essential role at various stages of the process. In this study, a caspase-3 (Mncaspase-3c) was cloned from gill of the oriental river prawn Macrobrachium nipponense by reverse-transcription polymerase chain reaction and rapid amplification of cDNA ends, and its properties were characterized. The 1730-bp cDNA contained an open reading frame of 1566 bp, a 123-bp 5'-untranslated region (UTR), and a 41-bp 3'-UTR containing a poly(A) tail. The molecular mass of the deduced amino acid (aa) sequence (521 aa) was 56.3 kDa with an estimated pI of 5.01. The MnCaspase-3c sequence contained a predicted caspase family p20 domain and a caspase family p10 domain at positions 236-367 and 378-468 respectively. Recombinant MnCaspase-3c protein was expressed in Escherichia coli and purified. In vitro activity assays indicated that the recombinant MnCaspase-3c hydrolyzed the substrate Ac-DEVD-pNA, suggesting a physiological role as a caspase-3. Caspase-3c gene transcripts were distributed in all M. nipponense tissues tested by quantitative RT-PCR, being especially abundant in hemocytes. Comet assays in gill tissues showed an obvious time-dependent response to hypoxia. Furthermore, Mncaspase-3c, at both the mRNA and protein levels, was demonstrated to participate in the apoptotic process in gill after stimulation by acute hypoxia. Overall, these results indicate that hypoxia triggers apoptosis in shrimp gill tissues.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Fujun Xuan
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng City, Jiangsu Province 224002, PR China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, PR China
| |
Collapse
|