1
|
Rao M, Teixeira JS, Flint A, Tamber S. Hazard Characterization of Antibiotic-resistant Aeromonas spp. Isolated from Mussel and Oyster Shellstock Available for Retail Purchase in Canada. J Food Prot 2024; 87:100374. [PMID: 39383948 DOI: 10.1016/j.jfp.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Surveillance and monitoring of foods for the presence of antimicrobial-resistant (AMR) bacteria are required to assess the risks these bacteria pose to human health. Frequently consumed raw or lightly cooked, live bivalve shellfish such as mussels and oysters can be a source of exposure to AMR bacteria. This study sought to determine the prevalence of third-generation cephalosporin (3GC) and carbapenem-resistant bacteria in live mussel and oyster shellstock available for retail purchase through the course of one calendar year. Just over half of the 180 samples (52%) tested positive for the presence of 3GC-resistant bacteria belonging to thirty distinct bacterial species. Speciation of the isolates was carried out using the Bruker MALDI Biotyper. Serratia spp., Aeromonas spp., and Rahnella spp. were the most frequently isolated groups of bacteria. Antibiotic resistance testing confirmed reduced susceptibility for 3GCs and/or carbapenems in 15 of the 29 Aeromonas isolates. Based on AMR patterns, and species identity, a subset of ten Aeromonas strains was chosen for further characterization by whole genome sequence analysis. Genomic analysis revealed the presence of multiple antibiotic resistance and virulence genes. A number of mobile genetic elements were also identified indicating the potential for horizontal gene transfer. Differences in gene detection by the bioinformatic tools and databases used (ResFinder. CARD RGI, PlasmidFinder, and MobSuite) are discussed. This study highlights the strengths and limitations of using genomics tools to perform hazard characterization of diverse foodborne bacterial species.
Collapse
Affiliation(s)
- Mary Rao
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Januana S Teixeira
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
2
|
Chen J, Goerdeler F, Jaroentomeechai T, Hernandez FXS, Wang X, Clausen H, Narimatsu Y, Satchell KJF. Biantennary N-glycans As Receptors for MARTX Toxins in Vibrio Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611726. [PMID: 39314294 PMCID: PMC11418979 DOI: 10.1101/2024.09.12.611726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multifunctional Autoprocessing Repeats-in-Toxin (MARTX) toxins are a diverse effector delivery platform of many Gram-negative bacteria that infect mammals, insects, and aquatic animal hosts. The mechanisms by which these toxins recognize host cell receptors for translocation of toxic effectors into the cell have remained elusive. Here, we map the first surface receptor-binding domain of a MARTX toxin from the highly lethal foodborne pathogen Vibrio vulnificus. This domain corresponds to a 273-amino acid sequence with predicted symmetrical immunoglobulin-like folds. We demonstrate that this domain binds internal N-acetylglucosamine on complex biantennary N-glycans with select preference for L1CAM and other N-glycoproteins with multiple N-glycans on host cell surfaces. This receptor binding domain is essential for V. vulnificus pathogenesis during intestinal infection. The identification of a highly conserved motif universally present as part of all N-glycans correlates with the V. vulnificus MARTX toxin boasting broad specificity and targeting nearly all cell types.
Collapse
Affiliation(s)
- Jiexi Chen
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Francisco X. S. Hernandez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
3
|
Cantillo Villa Y, Triga A, Katharios P. Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks. Pathogens 2023; 12:1337. [PMID: 38003801 PMCID: PMC10674900 DOI: 10.3390/pathogens12111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.
Collapse
Affiliation(s)
- Yanelys Cantillo Villa
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Aquatic Biologicals, Thalassocosmos, 71500 Gournes, Greece
| |
Collapse
|
4
|
Solís-Sánchez P, Fernández-Martínez M, Rodrigo-Calabia E, de Alegría-Puig CR. Chronic Diarrhea Due to Aeromonas hydrophila in an Immunosuppressed Patient with a Pancreas-Kidney Transplant. Pathogens 2023; 12:1151. [PMID: 37764959 PMCID: PMC10536218 DOI: 10.3390/pathogens12091151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family. A patient with a pancreas-kidney transplant had multiple episodes of abdominal sepsis after surgery. Aeromonas hydrophila was isolated in the ascitic and biliary fluid drains. After discharge, the patient had several diarrhea episodes, and A. hydrophila was isolated in four stool samples. We decided to test whether the one strain that we initially isolated in ascitic fluid was the same that appeared in the successive stool samples. Five isolates of A. hydrophila were found in the patient. Identification was performed using the MALDI-TOF system and confirmed via multiplex PCR. The analysis of the REP-PCR fingerprint patterns showed one cluster and confirmed that all isolates were related. We also demonstrated the virulent character of this species associated with genes encoding different toxins (act, alt, ast, hlyA, and aerA). The virulence of this species is associated with the expression of genes that encode different toxins, structural proteins, and metal-associated proteins. This case report highlights the severity of this disease, especially in immunocompromised patients, and its adequate treatment.
Collapse
Affiliation(s)
- Pablo Solís-Sánchez
- Internal Medicine Service, University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain
| | | | - Emilio Rodrigo-Calabia
- Nephrology Service, University Hospital Marqués de Valdecilla-IDIVAL, 39008 Santander, Spain
| | | |
Collapse
|
5
|
Lee HJ, Storesund JE, Lunestad BT, Hoel S, Lerfall J, Jakobsen AN. Whole genome sequence analysis of Aeromonas spp. isolated from ready-to-eat seafood: antimicrobial resistance and virulence factors. Front Microbiol 2023; 14:1175304. [PMID: 37455746 PMCID: PMC10348363 DOI: 10.3389/fmicb.2023.1175304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding β-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia E. Storesund
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Bjørn-Tore Lunestad
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Chakraborty N, Das BK, Bera AK, Borah S, Mohanty D, Yadav AK, Kumar J, Koushlesh SK, Chanu TN, Panda SP, Vallangi R. Co-Prevalence of Virulence and Pathogenic Potential in Multiple Antibiotic Resistant Aeromonas spp. from Diseased Fishes with In Silico Insight on the Virulent Protein Network. Life (Basel) 2022; 12:life12121979. [PMID: 36556344 PMCID: PMC9781969 DOI: 10.3390/life12121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Aeromonas species exhibit widespread presence in food, poultry, and aquaculture. They are major multi-drug-resistant fish pathogens. This study aims to identify Aeromonas species harbouring virulence genes aerolysin, flagellin, and lipase from diseased fishes of Assam wetlands with association with antibiotic resistance and in vivo pathogenicity. One hundred and thirty-four Aeromonas strains were isolated and thirty representative species identified using genus-specific 16S rRNA gene amplification. A. veronii was most prevalent (53.7%) followed by A. hydrophila (40.2%), A. caviae (4.47%), and A. dhakensis (1.49%). Ninety percent (90%) of strains harboured at least one of the studied virulence genes: aerA (73.3%), lip (46.6%), and flaA (26.6%). The highest multiple antibiotic resistance (MAR) index 0.8 corresponded to A. hydrophila DBTNE1 (MZ723069), containing all the studied genes. The lowest LD50 values (1.6 × 106 CFU/fish) corresponded to isolates having both aerA and lip. β-lactams showed utmost resistance and lowest for aminoglycosides. There was a significant (p < 0.05) Pearson chi-square test of association between the occurrence of virulence and antibiotic resistance. The in silico protein−protein interaction revealed important drug targets, such as σ28 transcription factor, aminoacyl-tRNA synthetase, and diacylglycerol kinase, with significant (p < 0.05) enrichment. This study suggests that fish-isolate Aeromonas strains represent potential threat to aquaculture with subsequent risk of transferring antibiotic resistance to human pathogens.
Collapse
Affiliation(s)
- Nabanita Chakraborty
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Basanta Kumar Das
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
- Correspondence: ; Tel.: +91-033-2592-1190; Fax: +91-033-2592-0388
| | - Asit Kumar Bera
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Simanku Borah
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Debasmita Mohanty
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Anil Kumar Yadav
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Jeetendra Kumar
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Prayagraj 211002, India
| | | | | | - Soumya Prasad Panda
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Ravali Vallangi
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| |
Collapse
|
7
|
da Silva S, Guedes FADF, Amaral JRV, Ribeiro JRDA, de Souza YPA, de Freitas-Almeida ÂC, Thompson FL, Ramos RTJ, Whiteley AS, Macrae A, de Oliveira SS. Aeromonas allosaccharophila Strain AE59-TE2 Is Highly Antagonistic towards Multidrug-Resistant Human Pathogens, What Does Its Genome Tell Us? Life (Basel) 2022; 12:1492. [PMID: 36294926 PMCID: PMC9605075 DOI: 10.3390/life12101492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were antagonistic towards problematic human pathogens. The genome of the most antagonistic strain was sequenced and identified as Aeromonas allosaccharophila. Its genome was fully annotated and mined for genes that might explain that activity. Strain AE59-TE was antagonistic toward clinically relevant gram-negative and gram-positive multidrug-resistant bacteria, including Klebsiella pneumoniae KPC, Escherichia coli ESBL, Salmonella typhimurium, and Staphylococcus aureus MRSA. Strain AE59-TE2 was identified by multilocus sequence analysis. Genome mining identified four genes homologous to the bacteriocin, zoocin A from Streptococcus equi and a gene 98% similar to cvpA linked to colicin V production. A. allosaccharophila strain AE59-TE2 produced antimicrobial activity against a broad range of bacteria, including important gram-negative bacteria, not typically targeted by bacteriocins. Herewere described novel zoocin genes that are promising for industrial applications in the food and health sectors. Interesting and important antagonistic activity is described combined with the first detailed genomic analysis of the species Aeromonas allosaccharophila.
Collapse
Affiliation(s)
- Sheila da Silva
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
| | - Fernanda Alves de Freitas Guedes
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
| | - João Ricardo Vidal Amaral
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
| | - José Roberto de Assis Ribeiro
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
| | | | - Ângela Correa de Freitas-Almeida
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro Biomédico, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Av. 28 de Setembro, 87, 3° Andar, Fundos, Vila Isabel, Rio de Janeiro 20550-170, Brazil
| | - Fabiano Lopes Thompson
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Instituto de Biologia, 2° Andar-Sala 93, Rio de Janeiro 219410-970, Brazil
| | - Rommel Thiago Jucá Ramos
- Instituto de Ciências Biológicas, Centro de Genômica e Biologia de Sistemas da Universidade Federal do Pará (UFPA), Rua Augusto Corrêa, 01 Guamá, Belém 66075-970, Brazil
| | - Andrew Steven Whiteley
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT 2601, Australia
| | - Andrew Macrae
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco I, 1° Andar-Sala 047, Rio de Janeiro 21941-902, Brazil
| | - Selma Soares de Oliveira
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2° Andar-Sala 032, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes da Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco I, 1° Andar-Sala 047, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
8
|
Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E. Comparative and Evolutionary Genomics of Isolates Provide Insight into the Pathoadaptation of Aeromonas. Genome Biol Evol 2021; 12:535-552. [PMID: 32196086 PMCID: PMC7250499 DOI: 10.1093/gbe/evaa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aeromonads are ubiquitous aquatic bacteria that cause opportunistic infections in humans, but their pathogenesis remains poorly understood. A pathogenomic approach was undertaken to provide insights into the emergence and evolution of pathogenic traits in aeromonads. The genomes of 64 Aeromonas strains representative of the whole genus were analyzed to study the distribution, phylogeny, and synteny of the flanking sequences of 13 virulence-associated genes. The reconstructed evolutionary histories varied markedly depending on the gene analyzed and ranged from vertical evolution, which followed the core genome evolution (alt and colAh), to complex evolution, involving gene loss by insertion sequence-driven gene disruption, horizontal gene transfer, and paraphyly with some virulence genes associated with a phylogroup (aer, ser, and type 3 secretion system components) or no phylogroup (type 3 secretion system effectors, Ast, ExoA, and RtxA toxins). The general pathogenomic overview of aeromonads showed great complexity with diverse evolution modes and gene organization and uneven distribution of virulence genes in the genus; the results provided insights into aeromonad pathoadaptation or the ability of members of this group to emerge as pathogens. Finally, these findings suggest that aeromonad virulence-associated genes should be examined at the population level and that studies performed on type or model strains at the species level cannot be generalized to the whole species.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, France
| | - Sophie M Colston
- US Naval Research Laboratory, National Academy of Sciences, National Research Council, Washington, District of Columbia
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département de Bactériologie, CHU de Nice and Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département d'Hygiène Hospitalière, CHRU de Montpellier, France
| |
Collapse
|
9
|
Growth by Insertion: The Family of Bacterial DDxP Proteins. Int J Mol Sci 2020; 21:ijms21239184. [PMID: 33276454 PMCID: PMC7730722 DOI: 10.3390/ijms21239184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
We have identified a variety of proteins in species of the Legionella, Aeromonas, Pseudomonas, Vibrio, Nitrosomonas, Nitrosospira, Variovorax, Halomonas, and Rhizobia genera, which feature repetitive modules of different length and composition, invariably ending at the COOH side with Asp-Asp-x-Pro (DDxP) motifs. DDxP proteins range in size from 900 to 6200 aa (amino acids), and contain 1 to 5 different module types, present in one or multiple copies. We hypothesize that DDxP proteins were modeled by the action of specific endonucleases inserting DNA segments into genes encoding DDxP motifs. Target site duplications (TSDs) formed upon repair of staggered ends generated by endonuclease cleavage would explain the DDxP motifs at repeat ends. TSDs acted eventually as targets for the insertion of more modules of the same or different types. Repeat clusters plausibly resulted from amplification of both repeat and flanking TSDs. The proposed growth shown by the insertion model is supported by the identification of homologous proteins lacking repeats in Pseudomonas and Rhizobium. The 85 DDxP repeats identified in this work vary in length, and can be sorted into short (136-215 aa) and long (243-304 aa) types. Conserved Asp-Gly-Asp-Gly-Asp motifs are located 11-19 aa from the terminal DDxP motifs in all repeats, and far upstream in most long repeats.
Collapse
|
10
|
Isolation and genomic characterization of a pathogenic Providencia rettgeri strain G0519 in turtle Trachemys scripta. Antonie van Leeuwenhoek 2020; 113:1633-1662. [PMID: 32951105 DOI: 10.1007/s10482-020-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Providencia rettgeri infection has occurred occasionally in aquaculture, but is rare in turtles. Here, a pathogenic P. rettgeri strain G0519 was isolated from a diseased slider turtle (Trachemys scripta) in China, and qPCR assay was established for the RTX toxin (rtxD) gene. Histopathological examination showed that many inflammatory cells were infiltrated into heart, liver and intestine, as well as the necrosis of liver, kidney and spleen. The genome consisted of one circular chromosome (4.493 Mb) and one plasmid (18.8 kb), and predicted to contain 4170 and 19 protein-coding genes, respectively. Multiple pathogenic and virulence factors (e.g., fimbria, adhesion, invasion, toxin, hemolysin, chemotaxis, secretion system), multidrug-resistant genes (e.g., ampC, per-1, oxa-1, sul1, tetR) and a novel genomic resistance island PRI519 were identified. Comparative genome analysis revealed the closest relationship was with P. rettgeri, and with P. heimbachae closer than with other Providencia spp. To our knowledge, this was first report on genomic characterization of multidrug-resistant pathogenic P. rettgeri in cultured turtles.
Collapse
|
11
|
Radisic V, Nimje PS, Bienfait AM, Marathe NP. Marine Plastics from Norwegian West Coast Carry Potentially Virulent Fish Pathogens and Opportunistic Human Pathogens Harboring New Variants of Antibiotic Resistance Genes. Microorganisms 2020; 8:microorganisms8081200. [PMID: 32784594 PMCID: PMC7464100 DOI: 10.3390/microorganisms8081200] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
To our best knowledge this is the first study characterizing fish pathogens isolated from marine plastics from the West coast of Norway for their potential for pathogenicity using whole genome sequencing. Marine plastic polymers identified as polyethylene, polyethylene/ethylene vinyl acetate copolymer and polypropylene, yielded a total of 37 bacterial isolates dominated by Pseudomonas spp. (70%). Six isolates representing either fish pathogens or opportunistic human pathogens were selected for whole genome sequencing (WGS). These included four isolates belonging to Aeromonas spp., one Acinetobacter beijerinckii isolate and one Morganella morganii isolate. Three Aeromonas salmonicida isolates were potentially virulent and carried virulence factors involved in attachment, type II and type VI secretion systems as well as toxins such as aerA/act, ahh1, ast, hlyA, rtxA and toxA. A. salmonicida and Acinetobacter beijerinckii carried new variants of antibiotic resistance genes (ARGs) such as β-lactamases and chloramphenicol acetyltransferase (catB), whereas Morganella morganii carried several clinically relevant ARGs. Our study shows that marine plastics carry not only potentially virulent fish pathogens but also multidrug resistant opportunistic human pathogens like M. morganii and may serve as vectors for transport of these pathogens in the marine environment.
Collapse
Affiliation(s)
- Vera Radisic
- Institute of Marine Research, 5005 Bergen, Norway; (V.R.); (P.S.N.); (A.M.B.)
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Priyank S. Nimje
- Institute of Marine Research, 5005 Bergen, Norway; (V.R.); (P.S.N.); (A.M.B.)
| | | | - Nachiket P. Marathe
- Institute of Marine Research, 5005 Bergen, Norway; (V.R.); (P.S.N.); (A.M.B.)
- Correspondence:
| |
Collapse
|
12
|
Bhowmick UD, Bhattacharjee S. Bacteriological, Clinical and Virulence Aspects of Aeromonas-associated Diseases in Humans. Pol J Microbiol 2019; 67:137-149. [PMID: 30015452 PMCID: PMC7256846 DOI: 10.21307/pjm-2018-020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 12/04/2022] Open
Abstract
Aeromonads have been isolated from varied environmental sources such as polluted and drinking water, as well as from tissues and body fluids of cold and warm-blooded animals. A phenotypically and genotypically heterogenous bacteria, aeromonads can be successfully identified by ribotyping and/or by analysing gyrB gene sequence, apart from classical biochemical characterization. Aeromonads are known to cause scepticemia in aquatic organisms, gastroenteritis and extraintestinal diseases such as scepticemia, skin, eye, wound and respiratory tract infections in humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of Aeromonas for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the Aeromonas group and related diseases in humans and other animals of human concern.
Collapse
Affiliation(s)
- Uttara Dey Bhowmick
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| |
Collapse
|
13
|
Kim BS. The Modes of Action of MARTX Toxin Effector Domains. Toxins (Basel) 2018; 10:toxins10120507. [PMID: 30513802 PMCID: PMC6315884 DOI: 10.3390/toxins10120507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
14
|
Avila-Calderón ED, Otero-Olarra JE, Flores-Romo L, Peralta H, Aguilera-Arreola MG, Morales-García MR, Calderón-Amador J, Medina-Chávez O, Donis-Maturano L, Ruiz-Palma MDS, Contreras-Rodríguez A. The Outer Membrane Vesicles of Aeromonas hydrophila ATCC ® 7966 TM: A Proteomic Analysis and Effect on Host Cells. Front Microbiol 2018; 9:2765. [PMID: 30519218 PMCID: PMC6250952 DOI: 10.3389/fmicb.2018.02765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) into the extracellular environment. OMVs have been studied extensively in bacterial pathogens, however, information related with the composition of Aeromonas hydrophila OMVs is missing. In this study we analyzed the composition of purified OMVs from A. hydrophila ATCC® 7966TM by proteomics. Also we studied the effect of OMVs on human peripheral blood mononuclear cells (PBMCs). Vesicles were grown in agar plates and then purified through ultracentrifugation steps. Purified vesicles showed an average diameter of 90-170 nm. Moreover, 211 unique proteins were found in OMVs from A. hydrophila; some of them are well-known as virulence factors such as: haemolysin Ahh1, RtxA toxin, extracellular lipase, HcpA protein, among others. OMVs from A. hydrophila ATCC® 7966TM induced lymphocyte activation and apoptosis in monocytes, as well as over-expression of pro-inflammatory cytokines. This work contributed to the knowledge of the composition of the vesicles of A. hydrophila ATCC® 7966TM and their interaction with the host cell.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Erick Otero-Olarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ma. Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Juana Calderón-Amador
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Olin Medina-Chávez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Donis-Maturano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - María del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- División Químico-Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
15
|
Awan F, Dong Y, Liu J, Wang N, Mushtaq MH, Lu C, Liu Y. Comparative genome analysis provides deep insights into Aeromonas hydrophila taxonomy and virulence-related factors. BMC Genomics 2018; 19:712. [PMID: 30257645 PMCID: PMC6158803 DOI: 10.1186/s12864-018-5100-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Aeromonas hydrophila is a potential zoonotic pathogen and primary fish pathogen. With overlapping characteristics, multiple isolates are often mislabelled and misclassified. Moreover, the potential pathogenic factors among the publicly available genomes in A. hydrophila strains of different origins have not yet been investigated. Results To identify the valid strains of A. hydrophila and their pathogenic factors, we performed a pan-genomic study. It revealed that there were 13 mislabelled strains and 49 valid strains that were further verified by Average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and in silico multiple locus strain typing (MLST). Multiple numbers of phages were detected among the strains and among them Aeromonas phi 018 was frequently present. The diversity in type III secretion system (T3SS) and conservation of type II and type VI secretion systems (T2SS and T6SS, respectively) among all the strains are important to study for designing future strategies. The most prevalent antibiotic resistances were found to be beta-lactamase, polymyxin and colistin resistances. The comparative analyses of sequence type (ST) 251 and other ST groups revealed that there were higher numbers of virulence factors in ST-251 than in other STs group. Conclusion Publicly available genomes have 13 mislabelled organisms, and there are only 49 valid A. hydrophila strains. This valid pan-genome identifies multiple prophages that can be further utilized. Different A. hydrophila strains harbour multiple virulence factors and antibiotic resistance genes. Identification of such factors is important for designing future treatment regimes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5100-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Hassan Mushtaq
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
16
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
17
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
18
|
Pang M, Lin X, Liu J, Guo C, Gao S, Du H, Lu C, Liu Y. Identification of Aeromonas hydrophila Genes Preferentially Expressed after Phagocytosis by Tetrahymena and Involvement of Methionine Sulfoxide Reductases. Front Cell Infect Microbiol 2016; 6:199. [PMID: 28083518 PMCID: PMC5183988 DOI: 10.3389/fcimb.2016.00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
Free-living protozoa affect the survival and virulence evolution of pathogens in the environment. In this study, we explored the fate of Aeromonas hydrophila when co-cultured with the bacteriovorous ciliate Tetrahymena thermophila and investigated bacterial gene expression associated with the co-culture. Virulent A. hydrophila strains were found to have ability to evade digestion in the vacuoles of this protozoan. In A. hydrophila, a total of 116 genes were identified as up-regulated following co-culture with T. thermophila by selective capture of transcribed sequences (SCOTS) and comparative dot-blot analysis. A large proportion of these genes (42/116) play a role in metabolism, and some of the genes have previously been characterized as required for bacterial survival and replication within macrophages. Then, we inactivated the genes encoding methionine sulfoxide reductases, msrA, and msrB, in A. hydrophila. Compared to the wild-type, the mutants ΔmsrA and ΔmsrAB displayed significantly reduced resistance to predation by T. thermophila, and 50% lethal dose (LD50) determinations in zebrafish demonstrated that both mutants were highly attenuated. This study forms a solid foundation for the study of mechanisms and implications of bacterial defenses.
Collapse
Affiliation(s)
- Maoda Pang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xiaoqin Lin
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jin Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Changming Guo
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Shanshan Gao
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hechao Du
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yongjie Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
19
|
Pang M, Xie X, Dong Y, Du H, Wang N, Lu C, Liu Y. Identification of novel virulence-related genes in Aeromonas hydrophila by screening transposon mutants in a Tetrahymena infection model. Vet Microbiol 2016; 199:36-46. [PMID: 28110783 DOI: 10.1016/j.vetmic.2016.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/24/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
Outbreaks of motile Aeromonad septicemia (MAS) in fish caused by sequence type (ST) 251 Aeromonas hydrophila have become a prominent problem for the aquaculture industry. The pathogenesis of A. hydrophila is very complicated, and some virulence factors remain to be identified. In this study, to identify novel virulence-related factors, ST251 A. hydrophila strain NJ-35 was used as the parental strain to construct a mutant library comprising 1030 mutant strains by transposon insertion mutagenesis. Subsequently, 33 virulence-attenuated transposon insertion mutants were identified using Tetrahymena and zebrafish as model hosts in sequence. Thermal asymmetric interlaced (Tail)-PCR and Southern blot analysis identified 21 single transposon insertion sites. Seven of the insertion sites are located in non-coding regions, whereas the other 14 insertion sites are located in genes, including aroA, rmlA, rtxA, chiA and plc. All insertion mutants exhibited attenuated virulence in Tetrahymena and zebrafish. Furthermore, the relationship of two genes, chiA and trkH, to virulence was confirmed by gene inactivation and subsequent restoration assays. This study provides new information about the genetic determinants of A. hydrophila pathogenicity and validates the Aeromonas-Tetrahymena co-culture model for high-throughput screening of A. hydrophila virulence factors.
Collapse
Affiliation(s)
- Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hechao Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
20
|
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol 2016; 7:1337. [PMID: 27610107 PMCID: PMC4997093 DOI: 10.3389/fmicb.2016.01337] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The ubiquitous "jack-of-all-trades," Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.
Collapse
Affiliation(s)
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigació Sanitària Pere Virgili, Universidad Rovira i Virgili, Reus Spain
| | - Donald McGarey
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| |
Collapse
|
21
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
22
|
Pathogenic Mechanisms of Actin Cross-Linking Toxins: Peeling Away the Layers. Curr Top Microbiol Immunol 2016; 399:87-112. [PMID: 27858184 DOI: 10.1007/82_2016_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin cross-linking toxins are produced by Gram-negative bacteria from Vibrio and Aeromonas genera. The toxins were named actin cross-linking domains (ACD), since the first and most of the subsequently discovered ACDs were found as effector domains in larger MARTX and VgrG toxins. Among recognized human pathogens, ACD is produced by Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Upon delivery to the cytoplasm of a host cell, ACD covalently cross-links actin monomers into non-polymerizable actin oligomers of various lengths. Provided sufficient doses of toxin are delivered, most or all actin can be promptly cross-linked into non-functional oligomers, leading to cell rounding, detachment from the substrate and, in many cases, cell death. Recently, a deeper layer of ACD toxicity with a less obvious but more potent mechanism was discovered. According to this finding, low doses of the ACD-produced actin oligomers can actively disrupt the actin cytoskeleton by potently inhibiting essential actin assembly proteins, formins. The first layer of toxicity is direct (as actin is the immediate and the only target), passive (since ACD-cross-linked actin oligomers are toxic only because they are non-functional), and less potent (as bulk quantities of one of the most abundant cytoplasmic proteins, actin, have to be modified). The second mechanism is indirect (as major targets, formins, are not affected by ACD directly), active (because actin oligomers act as "secondary" toxins), and highly potent [as it affects scarce and essential actin-binding proteins (ABPs)].
Collapse
|
23
|
Gavin HE, Satchell KJF. MARTX toxins as effector delivery platforms. Pathog Dis 2015; 73:ftv092. [PMID: 26472741 DOI: 10.1093/femspd/ftv092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Ji Y, Li J, Qin Z, Li A, Gu Z, Liu X, Lin L, Zhou Y. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence 2015; 6:515-22. [PMID: 26039879 DOI: 10.1080/21505594.2015.1049806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses.
Collapse
Affiliation(s)
- Yachan Ji
- a Department of Aquatic Animal Medicine; College of Fisheries; Huazhong Agricultural University ; Wuhan , China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep 2015; 5:9833. [PMID: 26014286 PMCID: PMC4444815 DOI: 10.1038/srep09833] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
Outbreaks in fish of motile Aeromonad septicemia (MAS) caused by Aeromonas hydrophila have caused a great concern worldwide. Here, for the first time, we provide two complete genomes of epidemic A. hydrophila strains isolated in China. To gain an insight into the pathogenicity of epidemic A. hydrophila, we performed comparative genomic analyses of five epidemic strains belonging to sequence type (ST) 251, together with the environmental strain ATCC 7966T. We found that the known virulence factors, including a type III secretion system, a type VI secretion system and lateral flagella, are not required for the high virulence of the ST251 clonal group. Additionally, our work identifies three utilization pathways for myo-inositol, sialic acid and L-fucose providing clues regarding the factors that underlie the epidemic and virulent nature of ST251 A. hydrophila. Based on the geographical distribution and biological resources of the ST251 clonal group, we conclude that ST251 is a high-risk clonal group of A. hydrophila which may be responsible for the MAS outbreaks in China and the southeastern United States.
Collapse
|
26
|
Vibrio vulnificus RtxA1 modulated calcium flux contributes reduced internalization in phagocytes. Life Sci 2015; 132:55-60. [PMID: 25916802 DOI: 10.1016/j.lfs.2015.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022]
Abstract
AIMS Vibrio vulnificusis an opportunistic pathogen that causes primary septicemia and wound infection with high mortality rate. This pathogen produces an RTX toxin (RtxA1) which can cause host cell rounding, cell death and interference with internalization by host phagocytes. However, the mechanism of RtxA1-induced phagocyte paralysis is not clear. MAIN METHODS Using the murine macrophage cell line RAW264.7, we measured cytotoxicity and phagocytosis of V. vulnificusin normal and calcium-depleted media. To deplete extracellular and cytosolic Ca(2+), cells were exposed to the calcium chelators ethylene glycol tetraacetic acid (EGTA) and 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl esteris (BAPTA-AM), respectively. The cytotoxicity was examined by measuring the activity of lactate dehydrogenase (LDH) released from the damaged cells. The gentamicin protection assay was conducted to determine the number of internalized bacteria, while acridine orange staining was applied to visualize the intracellular bacteria. The fluorescent indicator fura-2-acetoxymethyl ester (fura 2-AM) was used to measure the Ca(2+)signal post-infection. KEY FINDINGS We revealed that extracellular Ca(2+)was essential for phagocytes to internalize V. vulnificus. Meanwhile, cytosolic Ca(2+)flux in RAW264.7 cells induced by an RtxA1 isogenic mutant was repressed by the parent strain. Furthermore, depletion of extracellular Ca(2+)level by EGTA significantly reduced the cytotoxicity but did not affect the antiphagocytic activity of RtxA1 toxin. SIGNIFICANCE Our results indicated that RtxA1 may interfere with cytosolic Ca(2+)flux of phagocyte to promote bacteria colonization.
Collapse
|
27
|
Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators Inflamm 2014; 2014:393217. [PMID: 24891765 PMCID: PMC4033591 DOI: 10.1155/2014/393217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/21/2014] [Indexed: 12/26/2022] Open
Abstract
Background. Aeromonas hydrophila is an opportunistic bacterial pathogen that is associated with a number of human diseases. Hesperidin (HES) has been reported to exert antioxidant and anti-inflammatory activities. Objectives. The aim of this study was to investigate the potential effect of HES treatment on inflammatory response induced by A. hydrophila infection in murine. Methods. A. hydrophila-infected mice were treated with HES at 250 mg/kg b.wt./week for 4 consecutive weeks. Phagocytosis, reactive oxygen species production, CD4+/CD8+ T cell ratio, and CD14 expression on intestinal infiltrating monocytes were evaluated. The expression of E-selectin and intercellular adhesion molecule 1 on stimulated HUVECs and RAW macrophage was evaluated. Results. Percentage of CD4+ T cells in the intestinal tissues of infected treated mice was highly significantly increased; however, phagocytic index, ROS production, CD8+ T cells percentage, and CD14 expression on monocytes were significantly reduced. On the other hand, HES significantly inhibited A-LPS- and A-ECP-induced E-selectin and ICAM-1 expression on HUVECs and ICAM-1 expression on RAW macrophage. Conclusion. Present data indicated that HES has a potential role in the suppression of inflammatory response induced by A. hydrophila toxins through downmodulation of ROS production and CD14 and adhesion molecules expression, as well as increase of CD4+/CD8+ cell ratio.
Collapse
|
28
|
Abstract
Tiki proteins appear to antagonize Wnt signalling pathway by acting as Wnt proteases, thereby affecting Wnt solubility by its amino-terminal cleavage. Tiki1 protease activity was shown to be metal ion-dependent and was inhibited by chelating agents and thus was tentatively proposed to be a metalloprotease. Nevertheless, Tiki proteins exhibit no detectable sequence similarity to previously described metalloproteases, but instead have been reported as being homologues of TraB proteins (Pfam ID: PF01963), a widely distributed family of unknown function and structure. Here, we show that Tiki proteins are members of a new superfamily of domains contained not just in TraB proteins, but also in erythromycin esterase (Pfam ID: PF05139), DUF399 (domain of unknown function 399; Pfam ID: PF04187) and MARTX toxins that contribute to host invasion and pathogenesis by bacteria. We establish the core fold of this enzymatic domain and its catalytic residues.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | |
Collapse
|
29
|
Li C, Wang R, Su B, Luo Y, Terhune J, Beck B, Peatman E. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:447-455. [PMID: 23219904 DOI: 10.1016/j.dci.2012.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
The mucosal surfaces of fish serve as the first line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and integrating environmental, nutritional, social, and health cues. Pathogen invasion can disrupt this delicate homeostasis with profound impacts on signaling throughout the organism. Here, we investigated the transcriptional effects of virulent Aeromonas hydrophila infection in channel catfish skin, Ictalurus punctatus. We utilized a new 8 × 60 K Agilent microarray for catfish to examine gene expression profiles at critical early timepoints following challenge--2 h, 8 h, and 12 h. Expression of a total of 2,168 unique genes was significantly perturbed during at least one timepoint. We observed dysregulation of genes involved in antioxidant, cytoskeletal, immune, junctional, and nervous system pathways. In particular, A. hydrophila infection rapidly altered a number of potentially critical lectins, chemokines, interleukins, and other mucosal factors in a manner predicted to enhance its ability to adhere to and invade the catfish host.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Li C, Beck B, Su B, Terhune J, Peatman E. Early mucosal responses in blue catfish (Ictalurus furcatus) skin to Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2013; 34:920-928. [PMID: 23337110 DOI: 10.1016/j.fsi.2013.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Bacterial pathogens are well-equipped to detect, adhere to, and initiate infection in their finfish hosts. The mucosal surfaces of fish, such as the skin, function as the front line of defense against such bacterial insults that are routinely encountered in the aquatic environment. While recent progress has been made, and despite the obvious importance of mucosal surfaces, the precise molecular events that occur soon after encountering bacterial pathogens remain unclear. Indeed, these early events are critical in mounting appropriate responses that ultimately determine host survival or death. In the present study, we investigated the transcriptional consequences of a virulent Aeromonas hydrophila challenge in the skin of blue catfish, Ictalurus furcatus. We utilized an 8×60K Agilent microarray to examine gene expression profiles at key early timepoints following challenge (2 h, 12 h, and 24 h). A total of 1155 unique genes were significantly altered during at least one timepoint. We observed dysregulation in a number of genes involved in diverse pathways including those involved in antioxidant responses, apoptosis, cytoskeletal rearrangement, immunity, and extracellular matrix protein diversity and regulation. Taken together, A. hydrophila coordinately modulates mucosal factors across numerous cellular pathways in a manner predicted to enhance its ability to adhere to and infect the blue catfish host.
Collapse
Affiliation(s)
- Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|