1
|
Thuy TTD, Lu HF, Bregente CJB, Huang FCA, Tu PC, Kao CY. Characterization of the broad-spectrum antibacterial activity of bacteriocin-like inhibitory substance-producing probiotics isolated from fermented foods. BMC Microbiol 2024; 24:85. [PMID: 38468236 PMCID: PMC10926564 DOI: 10.1186/s12866-024-03245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial peptides, such as bacteriocin, produced by probiotics have become a promising novel class of therapeutic agents for treating infectious diseases. Selected lactic acid bacteria (LAB) isolated from fermented foods with probiotic potential were evaluated for various tests, including exopolysaccharide production, antibiotic susceptibility, acid and bile tolerance, antibacterial activity, and cell adhesion and cytotoxicity to gastric cell lines. Six selected LAB strains maintained their high viability under gastrointestinal conditions, produced high exopolysaccharides, showed no or less cytotoxicity, and adhered successfully to gastric cells. Furthermore, three strains, Weissella confusa CYLB30, Lactiplantibacillus plantarum CYLB47, and Limosilactobacillus fermentum CYLB55, demonstrated a strong antibacterial effect against drug-resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica serovar Choleraesuis, Enterococcus faecium, and Staphylococcus aureus. Whole genome sequencing was performed on these three strains using the Nanopore platform; then, the results showed that all three strains did not harbor genes related to toxins, superantigens, and acquired antimicrobial resistance, in their genome. The bacteriocin gene cluster was found in CYLB47 genome, but not in CYLB30 and CYLB55 genomes. In SDS-PAGE, the extract of CYLB30 and CYLB47 bacteriocin-like inhibitory substance (BLIS) yielded a single band with a size of less than 10 kDa. These BLIS inhibited the growth and biofilm formation of drug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA), causing membrane disruption and inhibiting adhesion ability to human skin HaCaT cells. Moreover, CYLB30 and CYLB47 BLIS rescued the larvae after being infected with P. aeruginosa and MRSA infections. In conclusion, CYLB30 and CYLB47 BLIS may be potential alternative treatment for multidrug-resistant bacteria infections.
Collapse
Affiliation(s)
- Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
- College of Medical Technology, Southwestern University PHINMA, Cebu, Philippines
| | | | - Pei-Chun Tu
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Han B, Zhang L, Geng L, Jia H, Wang J, Ke L, Li A, Gao J, Wu T, Lu Y, Liu F, Song H, Wei X, Ma S, Zhan H, Wu Y, Liu Y, Wang Q, Diao Q, Zhang J, Dai P. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Nat Commun 2023; 14:7073. [PMID: 37925529 PMCID: PMC10625538 DOI: 10.1038/s41467-023-42946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
The greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a major bee pest that causes significant damage to beehives and results in economic losses. Bacillus thuringiensis (Bt) appears as a potential sustainable solution to control this pest. Here, we develop a novel Bt strain (designated BiotGm) that exhibits insecticidal activity against GWM larvae with a LC50 value lower than 2 μg/g, and low toxicity levels to honey bee with a LC50 = 20598.78 μg/mL for larvae and no observed adverse effect concentration = 100 μg/mL for adults. We design an entrapment method consisting of a lure for GWM larvae, BiotGm, and a trapping device that prevents bees from contacting the lure. We find that this method reduces the population of GWM larvae in both laboratory and field trials. Overall, these results provide a promising direction for the application of Bt-based biological control of GWM in beehives, although further optimization remain necessary.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Airui Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Lu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Liu
- Jiangxi Institute of Apicultural Research, Nanchang, 330201, China
| | - Huailei Song
- Shanxi Agricultural University, Taiyuan, 030006, China
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Shilong Ma
- Enshi Academy of Agricultural Sciences, Enshi, 445002, China
| | - Hongping Zhan
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongjun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Cassone BJ, Grove HC, Kurchaba N, Geronimo P, LeMoine CMR. Fat on plastic: Metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127862. [PMID: 34872037 DOI: 10.1016/j.jhazmat.2021.127862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The caterpillar larvae of the greater wax moth (Galleria mellonella) are avid plastivores, as when provided a diet of low-density polyethylene (LDPE) they actively feed on it. Recent work has highlighted the importance of their microbiome in the putative biodegradation of this plastic polymer, though the impact of plastic metabolism on the insect host is less clear. In the present study, we undertook an integrative approach spanning all levels of biological organization to explore the effects of a plastic diet on the metabolic physiology of this animal model of plastic biodegradation. We demonstrate that an LDPE diet is not sufficient to maintain optimal larval growth and survival. In addition, we confirm that plastic fed waxworms retain their fat body lipid stores in a manner proportional to their individual polyethylene consumption suggesting a direct effect of LDPE biodegradation. At the functional level, the oxidative capacity of the fat body of LDPE-fed larvae is maintained reflecting unaltered metabolic function of the tissue. Finally, metabolomic analyses confirmed fat body lipid stores maintenance in LDPE-fed worms, but uncovered various other nutritional deficiencies. Overall, this work unveils novel insights in the complex interplay between LDPE biodegradation and the metabolic physiology of this model plastivore.
Collapse
Affiliation(s)
- Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada.
| | - Harald C Grove
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | - Nicholas Kurchaba
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | - Paola Geronimo
- Department of Biology, Brandon University, Brandon, MB R78 6A9, Canada
| | | |
Collapse
|
4
|
Liu G, Lv Z, Wu Q, Zhou Z, Zhang G, Wan F, Yan Y. The Bactrocera dorsalis caspase-1 gene is expressed throughout development and required for female fertility. PEST MANAGEMENT SCIENCE 2020; 76:4104-4111. [PMID: 32578366 DOI: 10.1002/ps.5966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis is one of the most destructive pests of fruits and vegetables. The sterile insect technique (SIT) is an effective and environmentally friendly approach to the control of tephritid fruit flies. The pro-apoptotic gene head involution defective (hid) has been used as an effective lethal effector in SIT. It initiates an interaction cascade including activation of caspase-like proteases. However, the biological role of caspase activity in tephritid fruit flies has yet to be explored. RESULTS In this study, the B. dorsalis caspase-1 gene (Bdcp-1) was cloned and characterized. Sequence comparison showed that Bdcp-1 protein shared highly homology with Drosophila effector caspases Drice and Dcp-1. It is predicted to contain a short pro-domain because two proteolytic cleavage sites (Asp16 and Asp223 ) are present. Expression patterns indicated that Bdcp-1 is highly transcribed in embryos and expression was upregulated during metamorphosis and upon ultraviolet irradiation. RNA interference showed that Bdcp-1 is essential for ovarian development and female fertility. For example, knockdown of Bdcp-1 caused transcriptional downregulation of expression of the yolk protein-1 gene (Bdyp-1) and delayed ovarian development. The percentage of spawning females and female fecundity were significantly reduced. CONCLUSION This study illustrates the function of the Bdcp-1 gene and provides an attractive method to develop a biological way to control the oriental fruit fly through the control of caspases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, P. R. China
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhichuang Lv
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Wu
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
| | - Zhongshi Zhou
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guifen Zhang
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fanghao Wan
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Ying Yan
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
5
|
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190065. [PMID: 31438818 DOI: 10.1098/rstb.2019.0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In insects that undergo complete metamorphosis, cell death is essential for reshaping or removing larval tissues and organs, thus contributing to formation of the adult's body structure. In the last few decades, the study of metamorphosis in Lepidoptera and Diptera has provided broad information on the tissue remodelling processes that occur during larva-pupa-adult transition and made it possible to unravel the underlying regulatory pathways. This review summarizes recent knowledge on cell death mechanisms in Lepidoptera and other holometabolous insects, highlighting similarities and differences with Drosophila melanogaster, and discusses the role of apoptosis and autophagy in this developmental setting. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| |
Collapse
|
6
|
Hu JH, Cheng XY, Li JX, Xue B, Tian JH, Hu JS, Li B. Apoptosis of posterior silk gland of Bombyx mori during spinning period and the role of PI3K/Akt pathway. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21450. [PMID: 29400415 DOI: 10.1002/arch.21450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bombyx mori is an economic insect of the Lepidoptera. Its posterior silk gland (PSG) is an important organ for fibroin synthesis. In order to study the occurrence of apoptosis in PSG and the role of PI3K/Akt signaling pathway during spinning period, changes in morphology of silk gland, expressions of fibroin components Fib-H, Fib-L and P25 and Akt, TOR2, P70S6K and S6 in PI3K/Akt pathway, expressions of apoptosis related genes caspase-3, caspase-9 and activity of caspase-3 were explored. The results showed that the morphology of silk gland dramatically degenerated; transcription of Fib-H, Fib-L, and P25 gradually declined with time; and Fib-L protein level reduced by 0.6-fold at 72 h. Moreover, the transcription levels of Akt, TOR2, P70S6K, and S6 also decreased by 0.3-, 0.8-, 0.7-, and 0.1-fold, respectively, indicating that the downregulation of PI3K/Akt signaling pathway could lead to reduction in fibroin synthesis. In addition, the transcription levels of caspase-3 and caspase-9 increased by 1.3- and 3.6-fold, respectively, and the enzyme activity of caspase-3 grew at a maximum of 1.6-fold. The results showed the occurrence of apoptosis in PSG during spinning period. In conclusion, the present study indicated that both the decline in fibroin components and the increase in apoptosis-related genes were regulated by PI3K/Akt signaling pathway during spinning period, which shed new light on the functions of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jia-Huan Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiao-Yu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jin-Xin Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jiang-Hai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jing-Sheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
7
|
Montali A, Romanelli D, Cappellozza S, Grimaldi A, de Eguileor M, Tettamanti G. Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:518-528. [PMID: 28549564 DOI: 10.1016/j.asd.2017.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Over the years, the silkworm, Bombyx mori, has been manipulated by means of chemical and genetic approaches to improve silk production both quantitatively and qualitatively. The silk is produced by the silk gland, which degenerates quickly once the larva has finished spinning the cocoon. Thus, interfering with this degeneration process could help develop new technologies aimed at ameliorating silk yield. To this end, in this work we studied the cell death processes that lead to the demise of the posterior silk gland of B. mori, directing in particular our attention to autophagy and apoptosis. We focused on this portion of the gland because it produces fibroin, the main component of the silk thread. By using multiple markers, we provide a morphological, biochemical and molecular characterization of the apoptotic and autophagic processes and define their timing in this biological setting. Our data demonstrate that the activation of both autophagy and apoptosis is preceded by a transcriptional rise in key regulatory genes. Moreover, while autophagy is maintained active for several days and progressively digests silk gland cells, apoptosis is only switched on at a very late stage of silk gland demise.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Davide Romanelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Silvia Cappellozza
- CREA - Honey Bee and Silkworm Research Unit, Padua Seat, 35143 Padova, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
8
|
Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017; 8:335-350. [PMID: 28277944 PMCID: PMC5570432 DOI: 10.1080/19490976.2017.1293225] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.
Collapse
Affiliation(s)
- Shoshana Barnoy
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hanan Gancz
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Yuewei Zhu
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Cary L. Honnold
- Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Malabi M. Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,CONTACT Malabi M. Venkatesan Chief, Dept. of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD. 20910
| |
Collapse
|
9
|
Giannouli M, Palatucci AT, Rubino V, Ruggiero G, Romano M, Triassi M, Ricci V, Zarrilli R. Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiol 2014; 14:228. [PMID: 25170542 PMCID: PMC4148543 DOI: 10.1186/s12866-014-0228-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/19/2014] [Indexed: 02/08/2023] Open
Abstract
Background Helicobacter pylori is the first bacterium formally recognized as a carcinogen and is one of the most successful human pathogens, as over half of the world’s population is colonized by the bacterium. H. pylori-induced gastroduodenal disease depends on the inflammatory response of the host and on the production of specific bacterial virulence factors. The study of Helicobacter pylori pathogenic action would greatly benefit by easy-to-use models of infection. Results In the present study, we examined the effectiveness of the larvae of the wax moth Galleria mellonella as a new model for H. pylori infection. G. mellonella larvae were inoculated with bacterial suspensions or broth culture filtrates from either different wild-type H. pylori strains or their mutants defective in specific virulence determinants, such as VacA, CagA, CagE, the whole pathogenicity island (PAI) cag, urease, and gamma-glutamyl transpeptidase (GGT). We also tested purified VacA cytotoxin. Survival curves were plotted using the Kaplan-Meier method and LD50 lethal doses were calculated. Viable bacteria in the hemocoel were counted at different time points post-infection, while apoptosis in larval hemocytes was evaluated by annexin V staining. We found that wild-type and mutant H. pylori strains were able to survive and replicate in G. mellonella larvae which underwent death rapidly after infection. H. pylori mutant strains defective in either VacA, or CagA, or CagE, or cag PAI, or urease, but not GGT-defective mutants, were less virulent than the respective parental strain. Broth culture filtrates from wild-type strains G27 and 60190 and their mutants replicated the effects observed using their respective bacterial suspension. Also, purified VacA cytotoxin was able to kill the larvae. The killing of larvae always correlated with the induction of apoptosis in hemocytes. Conclusions G. mellonella larvae are susceptible to H. pylori infection and may represent an easy to use in vivo model to identify virulence factors and pathogenic mechanisms of H. pylori. The experimental model described can be useful to screen a large number of clinical H. pylori strain and to correlate virulence of H. pylori strains with patients’ disease status.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vittorio Ricci
- Department of Molecular Medicine, Human Physiology Section, University of Pavia Medical School, Pavia, Italy.
| | | |
Collapse
|
10
|
A molecular view of autophagy in Lepidoptera. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902315. [PMID: 25143951 PMCID: PMC4124216 DOI: 10.1155/2014/902315] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Metamorphosis represents a critical phase in the development of holometabolous insects, during which the larval body is completely reorganized: in fact, most of the larval organs undergo remodeling or completely degenerate before the final structure of the adult insect is rebuilt. In the past, increasing evidence emerged concerning the intervention of autophagy and apoptosis in the cell death processes that occur in larval organs of Lepidoptera during metamorphosis, but a molecular characterization of these pathways was undertaken only in recent years. In addition to developmentally programmed autophagy, there is growing interest in starvation-induced autophagy. Therefore we are now entering a new era of research on autophagy that foreshadows clarification of the role and regulatory mechanisms underlying this self-digesting process in Lepidoptera. Given that some of the most important lepidopteran species of high economic importance, such as the silkworm, Bombyx mori, belong to this insect order, we expect that this information on autophagy will be fully exploited not only in basic research but also for practical applications.
Collapse
|