1
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Peng J, Ramatchandirin B, Pearah A, Maheshwari A, He L. Development and Functions of Mitochondria in Early Life. NEWBORN (CLARKSVILLE, MD.) 2022; 1:131-141. [PMID: 37206110 PMCID: PMC10193534 DOI: 10.5005/jp-journals-11002-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are highly dynamic organelles of bacterial origin in eukaryotic cells. These play a central role in metabolism and adenosine triphosphate (ATP) synthesis and in the production and regulation of reactive oxygen species (ROS). In addition to the generation of energy, mitochondria perform numerous other functions to support key developmental events such as fertilization during reproduction, oocyte maturation, and the development of the embryo. During embryonic and neonatal development, mitochondria may have important effects on metabolic, energetic, and epigenetic regulation, which may have significant short- and long-term effects on embryonic and offspring health. Hence, the environment, epigenome, and early-life regulation are all linked by mitochondrial integrity, communication, and metabolism.
Collapse
Affiliation(s)
- Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Balamurugan Ramatchandirin
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alexia Pearah
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| | - Ling He
- Department of Pediatrics and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Abstract
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.
Collapse
|
5
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
6
|
Investigation of myocardial dysfunction using three-dimensional speckle tracking echocardiography in a genetic positive hypertrophic cardiomyopathy Chinese family. Cardiol Young 2018; 28:1106-1114. [PMID: 29978770 DOI: 10.1017/s1047951118000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We previously reported four heterozygous missense mutations of MYH7, KCNQ1, MYLK2, and TMEM70 in a single three-generation Chinese family with dual Long QT and hypertrophic cardiomyopathy phenotypes for the first time. However, the clinical course among the family members was various, and the potential myocardial dysfunction has not been investigated. OBJECTIVES The objective of this study was to investigate the echocardiographic and electrocardiographic characteristics in a genetic positive Chinese family with hypertrophic cardiomyopathy and further to explore the association between myocardial dysfunction and electric activity, and the identified mutations. METHODS A comprehensive echocardiogram - standard two-dimensional Doppler echocardiography and three-dimensional speckle tracking echocardiography - and electrocardiogram were obtained for members in this family. RESULTS As previously reported, four missense mutations - MYH7-H1717Q, KCNQ1-R190W, MYLK2-K324E, and TMEM70-I147T - were identified in this family. The MYH7-H1717Q mutation carriers had significantly increased left ventricular mass indices, elevated E/e' ratio, deteriorated global longitudinal stain, but enhanced global circumferential and radial strain compared with those in non-mutation patients (all p<0.05). The KCNQ1-R190W carriers showed significantly prolonged QTc intervals, and the MYLK2-K324E mutation carriers showed inverted T-waves (both p<0.05). However, the TMEM70-I147T mutation carriers had similar echocardiography and electrocardiographic data as non-mutation patients. CONCLUSIONS Three of the identified four mutations had potential pathogenic effects in this family: MYH7-H1717Q was associated with increased left ventricular thickness, elevated left ventricular filling pressure, and altered myocardial deformation; KCNQ1-R190W and MYLK2-K324E mutations were correlated with electrocardiographic abnormalities reflected in long QT phenotype and inverted T-waves, respectively.
Collapse
|
7
|
Carbon monoxide (CO) modulates hydrogen peroxide (H 2O 2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp Eye Res 2018; 169:68-78. [PMID: 29407220 DOI: 10.1016/j.exer.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial components are of great importance for the maintenance of lens transparency. In our previous work, we confirmed that carbon monoxide (CO) can protect human and rabbit lens epithelial cells (LECs) from hydrogen peroxide (H2O2)-mediated apoptosis, while the mechanism remains undefined. Because CO can bind to mitochondrial cytochrome c oxidase (COX), we evaluated the effect of CO on the regulation of mitochondrial biogenesis and function in H2O2-treated rabbit LECs. To evaluate mitochondrial biogenesis, several mitochondrial transcription factors (PGC-1α, NRF-1, and mtTFA) were detected by western blot analysis. To assess cellular metabolism, adenosine triphosphate (ATP) levels and COX enzymatic activity were measured. In addition, mitochondrial permeability transition pores (mPTP) opening, dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c mitochondrial translocation, and apoptotic molecules were also detected to evaluate mitochondrial apoptosis pathway. Furthermore, the interaction of Bcl-2 and COX was assessed by co-immunoprecipitation. Finally, CO-mediated regulation of cellular function was detected in Bcl-2-knockdown cells. Our results confirmed that CO pretreatment restored H2O2-induced down-regulation of mitochondrial transcription factors expression, COX activity and ATP production. Moreover, CO pretreatment attenuated mPTP opening, ΔΨm loss, cytochrome c mitochondrial translocation, and activation of apoptotic molecules. Bcl-2 was identified to bind to COX, and silence of Bcl-2 expression prevented CO-regulated cellular metabolism and cytoprotection. These data suggest that CO modulates H2O2-induced cellular dysfunction by increasing mitochondrial biogenesis, enhancing cellular metabolism, and attenuating mitochondrial apoptosis cascade. Moreover, Bcl-2 expression was vital for CO to regulate cellular metabolism and cytoprotection in LECs.
Collapse
|
8
|
Kubota M, Shui YB, Liu M, Bai F, Huang AJ, Ma N, Beebe DC, Siegfried CJ. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med 2016; 97:513-519. [PMID: 27445101 PMCID: PMC4996752 DOI: 10.1016/j.freeradbiomed.2016.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE The hypoxic environment around the lens is important for maintaining lens transparency. Lens epithelial cells (LECs) play a key role in lens metabolism. We measured oxygen consumption to assess the role of human LECs in maintaining hypoxia around the lens, as well as the impact of systemic and ocular diagnosis on these cells. METHODS Baseline cellular respiration was measured in rabbit LECs (NN1003A), canine kidney epithelial cells (MDCK), trabecular meshwork cells (TM-5), and bovine corneal endothelial cells (CCEE) using a XF96 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA), which measures oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro. Following informed written consent, lens capsule epithelial cells were obtained from patients during cataract surgery and were divided into small explants in 96-well plates. Capsules were removed when LECs became confluent. OCR was normalized to the number of cells per well using rabbit LECs as a standard. The effect of patient age, sex, race, and presence of diabetes or glaucoma on oxygen consumption was assessed by using the Mann-Whitney U test and multivariate regression analysis. RESULTS Primary LECs were obtained from 69 patients. The OCR from donors aged 70 and over was lower than that of those under 70 years (2.21±1.037 vs. 2.86±1.383 fmol/min/cell; p<0.05). Diabetic patients had lower OCR than non-diabetic patients (2.02±0.911 vs. 2.79±1.332fmol/min/cell; p<0.05), and glaucoma patients had lower OCR than non-glaucoma patients (2.27±1.19 vs. 2.83±1.286 fmol/min/cell; p<0.05). Multivariate regression analysis confirmed that donors aged 70 and over (p<0.05), diabetic patients (p<0.01), and glaucoma patients (p<0.05) had significantly lower OCR, independent of other variables. Gender and race had no significant effect on OCR. CONCLUSIONS The lower oxygen consumption rate of human LECs in older donors and patients with diabetes or glaucoma could contribute to cataract development. Diabetes and glaucoma are particularly important factors associated with decreased OCR, independent of age. Ongoing studies are examining pO2 at the anterior surface of the lens in vivo and oxygen consumption in the patient's LECs.
Collapse
Affiliation(s)
- M Kubota
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Y B Shui
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - M Liu
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - F Bai
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - A J Huang
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| | - N Ma
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - D C Beebe
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States; Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - C J Siegfried
- Departments of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
9
|
Magner M, Dvorakova V, Tesarova M, Mazurova S, Hansikova H, Zahorec M, Brennerova K, Bzduch V, Spiegel R, Horovitz Y, Mandel H, Eminoğlu FT, Mayr JA, Koch J, Martinelli D, Bertini E, Konstantopoulou V, Smet J, Rahman S, Broomfield A, Stojanović V, Dionisi-Vici C, van Coster R, Morava E, Sperl W, Zeman J, Honzik T. TMEM70 deficiency: long-term outcome of 48 patients. J Inherit Metab Dis 2015; 38:417-26. [PMID: 25326274 DOI: 10.1007/s10545-014-9774-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/11/2014] [Accepted: 09/21/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES TMEM70 deficiency is the most common nuclear-encoded defect affecting the ATP synthase. In this multicentre retrospective study we characterise the natural history of the disease, treatment and outcome in 48 patients with mutations in TMEM70. Eleven centers from eight European countries, Turkey and Israel participated. RESULTS All 27 Roma and eight non-Roma patients were homozygous for the common mutation c.317-2A > G. Five patients were compound heterozygotes for the common mutation and mutations c.470 T > A, c.628A > C, c.118_119insGT or c.251delC. Six Arab Muslims and two Turkish patients were homozygous for mutations c.238C > T, c.316 + 1G > T, c.336 T > A, c.578_579delCA, c.535C > T, c.359delC. Age of onset was neonatal in 41 patients, infantile in six cases and two years in one child. The most frequent symptoms at onset were poor feeding, hypotonia, lethargy, respiratory and heart failure, accompanied by lactic acidosis, 3-methylglutaconic aciduria and hyperammonaemia. Symptoms further included: developmental delay (98%), hypotonia (95%), faltering growth (94%), short stature (89%), non-progressive cardiomyopathy (89%), microcephaly (71%), facial dysmorphism (66%), hypospadias (50% of the males), persistent pulmonary hypertension of the newborn (22%) and Wolff-Parkinson-White syndrome (13%). One or more acute metabolic crises occurred in 24 surviving children, frequently followed by developmental regression. Hyperammonaemic episodes responded well to infusion with glucose and lipid emulsion, and ammonia scavengers or haemodiafiltration. Ten-year survival was 63%, importantly for prognostication, no child died after the age of five years. CONCLUSION TMEM70 deficiency is a panethnic, multisystemic disease with variable outcome depending mainly on adequate management of hyperammonaemic crises in the neonatal period and early childhood.
Collapse
Affiliation(s)
- Martin Magner
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, 12808, Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Zuo L, Hu J, Shao H, Lei C, Qi W, Liu Y, Miao Y, Ma X, Huang CLH, Wang B, Zhou X, Zhang Y, Liu L. Dual LQT1 and HCM phenotypes associated with tetrad heterozygous mutations inKCNQ1,MYH7,MYLK2, andTMEM70genes in a three-generation Chinese family. Europace 2015; 18:602-9. [DOI: 10.1093/europace/euv043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/08/2015] [Indexed: 11/14/2022] Open
|
11
|
Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E. CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet 2015; 96:258-65. [PMID: 25597511 DOI: 10.1016/j.ajhg.2014.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022] Open
Abstract
3-methylglutaconic aciduria (3-MGA-uria) is a nonspecific finding associated with mitochondrial dysfunction, including defects of oxidative phosphorylation. 3-MGA-uria is classified into five groups, of which one, type IV, is genetically heterogeneous. Here we report five children with a form of type IV 3-MGA-uria characterized by cataracts, severe psychomotor regression during febrile episodes, epilepsy, neutropenia with frequent infections, and death in early childhood. Four of the individuals were of Greenlandic descent, and one was North American, of Northern European and Asian descent. Through a combination of homozygosity mapping in the Greenlandic individuals and exome sequencing in the North American, we identified biallelic variants in the caseinolytic peptidase B homolog (CLPB). The causative variants included one missense variant, c.803C>T (p.Thr268Met), and two nonsense variants, c.961A>T (p.Lys321*) and c.1249C>T (p.Arg417*). The level of CLPB protein was markedly decreased in fibroblasts and liver of affected individuals. CLPB is proposed to function as a mitochondrial chaperone involved in disaggregation of misfolded proteins, resulting from stress such as heat denaturation.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Atrophy/genetics
- Atrophy/pathology
- Base Sequence
- Brain/pathology
- Cataract/genetics
- Cataract/pathology
- Child, Preschool
- Codon, Nonsense/genetics
- Endopeptidase Clp/genetics
- Endopeptidase Clp/metabolism
- Epilepsy/genetics
- Epilepsy/pathology
- Exome/genetics
- Fatal Outcome
- Female
- Fibroblasts/metabolism
- Genes, Recessive/genetics
- Greenland
- Humans
- Infant
- Infant, Newborn
- Liver/metabolism
- Male
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/pathology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/pathology
- Molecular Sequence Data
- Movement Disorders/genetics
- Movement Disorders/pathology
- Mutation, Missense/genetics
- Neutropenia/genetics
- Neutropenia/pathology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Carol Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | - Laurie Smith
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Flemming Wibrand
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Mette Christensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Andrea Atherton
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Emily Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Neil Miller
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Stephen F Kingsmore
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 2014; 177:754-63. [PMID: 25465824 DOI: 10.1016/j.ijcard.2014.11.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVES One of the most frequently affected organs in mitochondrial disorders (MIDs), defined as hereditary diseases due to affection of the mitochondrial energy metabolism, is the heart. Cardiac involvement (CI) in MIDs has therapeutic and prognostic implications. This review aims at summarizing and discussing the various cardiac manifestations in MIDs. METHODS Data for this review were identified by searches of MEDLINE, Current Contents, and PubMed using appropriate search terms. RESULTS CI in MIDs may be classified according to various different criteria. In the present review cardiac abnormalities in MIDs are discussed according to their frequency with which they occur. CI in MIDs includes cardiomyopathy, arrhythmias, heart failure, pulmonary hypertension, dilation of the aortic root, pericardial effusion, coronary heart disease, autonomous nervous system dysfunction, congenital heart defects, or sudden cardiac death. The most frequent among the cardiomyopathies is hypertrophic cardiomyopathy, followed by dilated cardiomyopathy, and noncompaction. CONCLUSIONS CI in MID is more variable and prevalent than previously thought. All tissues of the heart may be variably affected. The most frequently affected tissue is the myocardium. MIDs should be included in the differential diagnoses of cardiac disease.
Collapse
|
13
|
Diodato D, Invernizzi F, Lamantea E, Fagiolari G, Parini R, Menni F, Parenti G, Bollani L, Pasquini E, Donati MA, Cassandrini D, Santorelli FM, Haack TB, Prokisch H, Ghezzi D, Lamperti C, Zeviani M. Common and Novel TMEM70 Mutations in a Cohort of Italian Patients with Mitochondrial Encephalocardiomyopathy. JIMD Rep 2014; 15:71-8. [PMID: 24740313 PMCID: PMC4270871 DOI: 10.1007/8904_2014_300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
ATP synthase or complex V (cV) of the oxidative phosphorylation system is responsible for the production of ATP, dissipating the electrochemical gradient generated by the mitochondrial respiratory chain. In addition to maternally transmitted cV dysfunction caused by mutations in mtDNA genes (MT-ATP6 or MT-ATP8), encoding cV subunits, recessive mutations in the nuclear TMEM70 are the most frequent cause of ATP synthase deficiency.We report on a cohort of ten Italian patients presenting with neonatal lactic acidosis, respiratory distress, hypotonia, cardiomyopathy and psychomotor delay and harbouring mutations in TMEM70, including the common splice mutation and four novel variants. TMEM70 protein was virtually absent in all tested TMEM70 patients' specimens.The exact function of TMEM70 is not known, but it is considered to impact on cV assembly since TMEM70 mutations have been associated with isolated cV activity reduction. We detected a clear cV biochemical defect in TMEM70 patients' fibroblasts, whereas the assay was not reliable in frozen muscle. Nevertheless, the evaluation of the amount of holocomplexes in patients with TMEM70 mutations showed a nearly absent cV in muscles and a strong decrease of cV with accumulation of sub-assembly species in fibroblasts. In our cohort we found not only cV deficiencies but also impairment of other OXPHOS complexes. By ultrastructural analysis of muscle tissue from one patient with isolated cV deficiency, we found a severely impaired mitochondrial morphology with loss of the cristae. These findings indicate that cV impairment could indirectly alter other respiratory chain complex activities by disrupting the mitochondrial cristae structure.
Collapse
Affiliation(s)
- Daria Diodato
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
| | - Federica Invernizzi
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
| | - Eleonora Lamantea
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
| | - Gigliola Fagiolari
- />Neuromuscular Unit, Department of Neurology, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Rossella Parini
- />Unit of Metabolic Disorders, Department of Pediatrics, Foundation MBBM/San Gerardo University Hospital, 20900 Monza, Italy
| | - Francesca Menni
- />Pediatric Clinic, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Giancarlo Parenti
- />Department of Metabolic Diseases, University of Naples “Federico II”, 80138 Naples, Italy
| | - Lina Bollani
- />Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Elisabetta Pasquini
- />Unit of Metabolic and Muscular Diseases, Meyer Children Hospital, 50132 Florence, Italy
| | - Maria A. Donati
- />Unit of Metabolic and Muscular Diseases, Meyer Children Hospital, 50132 Florence, Italy
| | | | | | - Tobias B. Haack
- />Institute of Human Genetics, Technical University, 81675 Munich, Germany
- />Helmholtz Zentrum München, 81675 Munich, Germany
| | - Holger Prokisch
- />Institute of Human Genetics, Technical University, 81675 Munich, Germany
- />Helmholtz Zentrum München, 81675 Munich, Germany
| | - Daniele Ghezzi
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
| | - Costanza Lamperti
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
| | - Massimo Zeviani
- />Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Temolo 4, 20126 Milan, Italy
- />Mitochondrial Biology Unit, MRC, Wellcome Trust/MRC Building, Hills Road, CB2 0XY Cambridge, UK
| |
Collapse
|
14
|
Kratochvílová H, Hejzlarová K, Vrbacký M, Mráček T, Karbanová V, Tesařová M, Gombitová A, Cmarko D, Wittig I, Zeman J, Houštěk J. Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion 2014; 15:1-9. [DOI: 10.1016/j.mito.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/09/2023]
|
15
|
HEJZLAROVÁ K, MRÁČEK T, VRBACKÝ M, KAPLANOVÁ V, KARBANOVÁ V, NŮSKOVÁ H, PECINA P, HOUŠTĚK J. Nuclear Genetic Defects of Mitochondrial ATP Synthase. Physiol Res 2014; 63:S57-71. [DOI: 10.33549/physiolres.932643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme’s structural subunits α and ε, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. HOUŠTĚK
- Department of Bioenergetics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|