1
|
Iwanicki T, Chen JW, Hirai J, DeTurk H, Steck M, Goetze E, Porter ML. Shining new light on naupliar eyes: A novel molecular phylogeny for Pleuromamma (Family: Metridinidae) and the characterization of luciferase and opsin expression. Mol Phylogenet Evol 2024; 201:108200. [PMID: 39278382 DOI: 10.1016/j.ympev.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Pleuromamma (Giesbrecht, 1898) is a cosmopolitan genus of metridinid copepods, with species that perform remarkable diel vertical migrations (DVM) and emit a bioluminescent secretion when disturbed that varies both spectrally and kinetically. Copepod bioluminescence is autogenic and uses luciferase enzymes that catalyze a luciferin, coelenterazine, to produce light. Pleuromamma possess naupliar eyes, relatively simple photosensitive structures used for many visually-guided behaviors. Yet the fundamental molecular unit for vision, the opsin protein, has not been previously described for the family. The light producers and detectors are important to study because DVM is a behavior that mediates significant active elemental fluxes between the upper ocean and midwaters across vast stretches of oceanic habitat, and DVM is guided by visual behaviors, with animals tracking an isolume. Here we provide the first fully resolved molecular phylogeny for Pleuromamma (Family: Metridinidae) and describe the luciferase and opsin gene diversity and expression using de novo assembled transcriptomes. We successfully sequenced and assembled transcriptomes for 10 of 11 described species of Pleuromamma as well as two other metridinid species: Metridia longa and Gaussia princeps. In all species, we obtained coding sequences of one putative rhabdomeric middle wavelength sensitive visual opsin gene, as well as several non-visual opsins - a c-type pteropsin and a tetra-opsin type peropsin. Furthermore, Pleuromamma express luciferases from each of two main evolutionary clades (Luc1 and Luc2), and a single paralog (Luc2a) dominates expression throughout the group. The variation in luciferase number, sequence, and expression among species could lead to different spectral and kinetic properties of bioluminescence and aid in congener recognition.
Collapse
Affiliation(s)
- Tom Iwanicki
- The Earth Commons Institute, Georgetown University, Washington, DC, USA; Smithsonian Institution, National Museum of Natural History, Department of Invertebrate Zoology, Washington, DC, USA; School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Jessica W Chen
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Hunter DeTurk
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA; College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - Mireille Steck
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Erica Goetze
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
2
|
Bioluminescent imaging systems boosting near-infrared signals in mammalian cells. Photochem Photobiol Sci 2023:10.1007/s43630-023-00367-8. [PMID: 36732398 DOI: 10.1007/s43630-023-00367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Bioluminescence (BL) is broadly used as an optical readout in bioassays and molecular imaging. In this study, the near-infrared (NIR) BL imaging systems were developed. The system was harnessed by prototype copepod luciferases, artificial luciferase 30 (ALuc30) and its miniaturized version picALuc, and were characterized with 17 kinds of coelenterazine (CTZ) analogues carrying bulky functional groups or cyanine 5 (Cy5). They were analyzed of BL spectral peaks and enzymatic kinetics, and explained with computational modeling. The results showed that (1) the picALuc-based system surprisingly boosts the BL intensities predominantly in the red and NIR region with its specific CTZ analogues; (2) both ALuc30- and picALuc-based systems develop unique through-bond energy transfer (TBET)-driven spectral bands in the NIR region with a Cy5-conjugated CTZ analogue (Cy5-CTZ); and (3) according to the computational modeling, the miniaturized version, picALuc, has a large binding pocket, which can accommodate CTZ analogues containing bulky functional groups and thus allowing NIR BL. This study is an important addition to the BL imaging toolbox with respect to the development of orthogonal NIR reporter systems applicable to physiological samples, together with the understanding of the BL-emitting chemistry of marine luciferases.
Collapse
|
3
|
Takatsu K, Kobayashi N, Wu N, Janin YL, Yamazaki T, Kuroda Y. Biophysical analysis of Gaussia Luciferase bioluminescence mechanisms using a non-oxidizable coelenterazine. BBA ADVANCES 2022; 3:100068. [PMID: 37082267 PMCID: PMC10074842 DOI: 10.1016/j.bbadva.2022.100068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gaussia luciferase (GLuc 18.2kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). It is a helical protein where two homologous sequential repeats form two anti-parallel bundles, each made of four helices. We previously identified a hydrophobic cavity as a prime candidate for the catalytic site, but GLuc's fast bioluminescence reaction hampered a detailed analysis. Here, we used azacoelenterazine (Aza-CTZ), a non-oxidizable coelenterazine (CTZ) analog, as a probe to investigate its binding mode to GLuc. While analysing GLuc's activity, we unexpectedly found that salt and monovalent anions are absolutely required for Gluc's bioluminescence, which retrospectively appears reasonable for a sea-dwelling organism. The NMR-based investigation, using chemical shift perturbations monitored by 15N-1H HSQC, suggested that Aza-CTZ (and thus unoxidized CTZ) binds to residues in or near the hydrophobic cavity. These NMR data are in line with a recent structural prediction of GLuc, hypothesizing that large structural changes occur in regions remote from the hydrophobic cavity upon the addition of CTZ. Interestingly, these results point toward a unique mode of catalysis to achieve CTZ oxidative decarboxylation.
Collapse
|
4
|
Wu N, Kobayashi N, Kuroda Y, Yamazaki T. Reflecting on mutational and biophysical analysis of Gaussia princeps Luciferase from a structural perspective: a unique bioluminescent enzyme. Biophys Rev 2022; 14:1513-1520. [PMID: 36659992 PMCID: PMC9842821 DOI: 10.1007/s12551-022-01025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Gaussia princeps luciferase (GLuc 18.2 kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). GLuc is a small luciferase, attracting much attention as a potential reporter protein. However, compared to firefly and Renilla luciferases, which have been thoroughly characterized and are used in a wide range of applications, structural and biophysical studies of GLuc have been slow to appear. Here, we review the biophysical and mutational studies of GLuc's bioluminescence from a structural viewpoint, particularly in view of its recent NMR solution structure, where two homologous sequential repeats form two anti-parallel bundles, each made of four helices, grabbing a short N-terminal helix. Additionally, a long loop classified as an intrinsically disordered region separates the two bundles forming one side of a hydrophobic pocket that is most likely the binding/catalytic site. We compare the NMR-determined structure with a recent AlphaFold2 prediction. Overall, the AlphaFold2 structure was in line with the solution structure; however, it surprisingly revealed a possible, alternative conformation, where the N-terminal helix is replaced by a newly formed α helix in the C-terminal tail that is unfolded in the NMR structure. In addition, we discuss the results of previous mutational analysis focusing on a putative catalytic core identified by chemical shift perturbation analysis and molecular dynamics simulations performed using both the NMR and the AlphaFold2 structures. In particular, we discuss the role of the possible conformational change and the hydrophobic pocket in GLuc's activity. Overall, the discussion points toward GLuc's unexpected and unusual characteristics that appear to be much more flexible than traditional enzymes, resulting in a unique mode of catalysis to achieve CTZ oxidative decarboxylation. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01025-6.
Collapse
Affiliation(s)
- Nan Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001 People’s Republic of China
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, RSC, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-Shi, Tokyo, 184-8588 Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, RSC, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
5
|
A New Lineage of Artificial Luciferases for Mammalian Cell Imaging. Methods Mol Biol 2021. [PMID: 34050461 DOI: 10.1007/978-1-0716-1258-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The present protocol introduces a new lineage of artificial luciferases (ALucs) with unique optical properties for mammalian cell imaging. The primary candidate sequence was first created with a sequence logo generator, resulting in a total of 11 sibling sequences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools in public databases. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases and from a prior series of ALucs produced by our laboratory using a smaller basis set. The protocol also exemplifies that the new lineage of ALucs was strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.
Collapse
|
6
|
Hensley NM, Ellis EA, Leung NY, Coupart J, Mikhailovsky A, Taketa DA, Tessler M, Gruber DF, De Tomaso AW, Mitani Y, Rivers TJ, Gerrish GA, Torres E, Oakley TH. Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies. Mol Ecol 2021; 30:1864-1879. [PMID: 33031624 DOI: 10.1111/mec.15673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase. In addition to emission spectra ("colour") of bioluminescence from 21 cypridinid species, we report 13 new c-luciferase genes from de novo transcriptomes, including in vitro assays to confirm function of four of those genes. Our comparative analyses suggest some amino acid sites in c-luciferase evolved under episodic diversifying selection and may be associated with changes in both enzyme kinetics and colour, two enzymatic functions that directly impact the phenotype of bioluminescent signals. The analyses also suggest multiple other amino acid positions in c-luciferase evolved neutrally or under purifying selection, and may have impacted the variation of colour of bioluminescent signals across genera. Previous mutagenesis studies at candidate sites show epistatic interactions, which could constrain the evolution of c-luciferase function. This work provides important steps toward understanding the genetic basis of diversification of behavioural signals across multiple species, suggesting different evolutionary processes act at different times during a radiation of species. These results set the stage for additional mutagenesis studies that could explicitly link selection, drift, and constraint to the evolution of phenotypic diversification.
Collapse
Affiliation(s)
- Nicholai M Hensley
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily A Ellis
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Nicole Y Leung
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - John Coupart
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Michael Tessler
- American Museum of Natural History and New York University, New York, NY, USA
- Department of Biology, St. Francis College, Brooklyn, NY, USA
| | - David F Gruber
- Department of Biology and Environmental Science, City University of New York Baruch College, New York, NY, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Trevor J Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Gretchen A Gerrish
- Department of Biology, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Elizabeth Torres
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Lau ES, Oakley TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc 2020; 96:673-691. [PMID: 33306257 DOI: 10.1111/brv.12672] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or 'multi-level convergent evolution'. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.
Collapse
Affiliation(s)
- Emily S Lau
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, U.S.A
| |
Collapse
|
8
|
Babkova P, Dunajova Z, Chaloupkova R, Damborsky J, Bednar D, Marek M. Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics. Comput Struct Biotechnol J 2020; 18:1497-1508. [PMID: 32637047 PMCID: PMC7327271 DOI: 10.1016/j.csbj.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Ancestral sequence reconstruction is a powerful method for inferring ancestors of modern enzymes and for studying structure-function relationships of enzymes. We have previously applied this approach to haloalkane dehalogenases (HLDs) from the subfamily HLD-II and obtained thermodynamically highly stabilized enzymes (ΔT m up to 24 °C), showing improved catalytic properties. Here we combined crystallographic structural analysis and computational molecular dynamics simulations to gain insight into the mechanisms by which ancestral HLDs became more robust enzymes with novel catalytic properties. Reconstructed ancestors exhibited similar structure topology as their descendants with the exception of a few loop deviations. Strikingly, molecular dynamics simulations revealed restricted conformational dynamics of ancestral enzymes, which prefer a single state, in contrast to modern enzymes adopting two different conformational states. The restricted dynamics can potentially be linked to their exceptional stabilization. The study provides molecular insights into protein stabilization due to ancestral sequence reconstruction, which is becoming a widely used approach for obtaining robust protein catalysts.
Collapse
Affiliation(s)
- Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zuzana Dunajova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, Bld. A13, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Markova SV, Larionova MD, Vysotski ES. Shining Light on the Secreted Luciferases of Marine Copepods: Current Knowledge and Applications. Photochem Photobiol 2019; 95:705-721. [PMID: 30585639 DOI: 10.1111/php.13077] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Copepod luciferases-a family of small secretory proteins of 18.4-24.3 kDa, including a signal peptide-are responsible for bright secreted bioluminescence of some marine copepods. The copepod luciferases use coelenterazine as a substrate to produce blue light in a simple oxidation reaction without any additional cofactors. They do not share sequence or structural similarity with other identified bioluminescent proteins including coelenterazine-dependent Renilla and Oplophorus luciferases. The small size, strong luminescence activity and high stability, including thermostability, make secreted copepod luciferases very attractive candidates as reporter proteins which are particularly useful for nondisruptive reporter assays and for high-throughput format. The most known and extensively investigated representatives of this family are the first cloned GpLuc and MLuc luciferases from copepods Gaussia princeps and Metridia longa, respectively. Immediately after cloning, these homologous luciferases were successfully applied as bioluminescent reporters in vivo and in vitro, and since then, the scope of their applications continues to grow. This review is an attempt to systemize and critically evaluate the data scattered through numerous articles regarding the main structural features of copepod luciferases, their luminescent and physicochemical properties. We also review the main trends of their application as bioluminescent reporters in cell and molecular biology.
Collapse
Affiliation(s)
- Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Marina D Larionova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
10
|
Tessler M, Gaffney JP, Crawford JM, Trautman E, Gujarati NA, Alatalo P, Pieribone VA, Gruber DF. Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens. PeerJ 2018; 6:e5506. [PMID: 30233994 PMCID: PMC6140675 DOI: 10.7717/peerj.5506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bioluminescent copepods are often the most abundant marine zooplankton and play critical roles in oceanic food webs. Metridia copepods exhibit particularly bright bioluminescence, and the molecular basis of their light production has just recently begun to be explored. Here we add to this body of work by transcriptomically profiling Metridia lucens, a common species found in temperate, northern, and southern latitudes. In this previously molecularly-uncharacterized species, we find the typical luciferase paralog gene set found in Metridia. More surprisingly, we recover noteworthy putative luciferase sequences that had not been described from Metridia species, indicating that bioluminescence produced by these copepods may be more complex than previously known. This includes another copepod luciferase, as well as one from a shrimp. Furthermore, feeding experiments using mass spectrometry and 13C labelled L-tyrosine and L-phenylalanine firmly establish that M. lucens produces its own coelenterazine luciferin rather than acquiring it through diet. This coelenterazine synthesis has only been directly confirmed in one other copepod species.
Collapse
Affiliation(s)
- Michael Tessler
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Jean P Gaffney
- Department of Natural Sciences, City University of New York, Bernard M. Baruch College, New York, NY, United States of America.,Biology, City University of New York, Graduate School and University Center, New York, NY, United States of America
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, United States of America
| | - Eric Trautman
- Department of Chemistry, Yale University, New Haven, CT, United States of America
| | - Nehaben A Gujarati
- Department of Natural Sciences, City University of New York, Bernard M. Baruch College, New York, NY, United States of America
| | - Philip Alatalo
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Vincent A Pieribone
- Cellular and Molecular Physiology, Yale University, New Haven, CT, United States of America
| | - David F Gruber
- Department of Natural Sciences, City University of New York, Bernard M. Baruch College, New York, NY, United States of America.,Biology, City University of New York, Graduate School and University Center, New York, NY, United States of America
| |
Collapse
|
11
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
12
|
Kim SB, Nishihara R, Citterio D, Suzuki K. Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools. ACS COMBINATORIAL SCIENCE 2017; 19:594-599. [PMID: 28742969 DOI: 10.1021/acscombsci.7b00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research
Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Ryo Nishihara
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Koji Suzuki
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
13
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
14
|
Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. Chembiochem 2017; 18:1448-1456. [PMID: 28419658 DOI: 10.1002/cbic.201700197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/08/2022]
Abstract
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.
Collapse
Affiliation(s)
- Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
15
|
Ohtsuka S, Nishida S. Copepod Biodiversity in Japan: Recent Advances in Japanese Copepodology. SPECIES DIVERSITY OF ANIMALS IN JAPAN 2017. [DOI: 10.1007/978-4-431-56432-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
16
|
Larionova MD, Markova SV, Vysotski ES. The novel extremely psychrophilic luciferase from Metridia longa: Properties of a high-purity protein produced in insect cells. Biochem Biophys Res Commun 2016; 483:772-778. [PMID: 27965100 DOI: 10.1016/j.bbrc.2016.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
The bright bioluminescence of copepod Metridia longa is conditioned by a small secreted coelenterazine-dependent luciferase (MLuc). To date, three isoforms of MLuc differing in length, sequences, and some properties were cloned and successfully applied as high sensitive bioluminescent reporters. In this work, we report cloning of a novel group of genes from M. longa encoding extremely psychrophilic isoforms of MLuc (MLuc2-type). The novel isoforms share only ∼54-64% of protein sequence identity with the previously cloned isoforms and, consequently, are the product of a separate group of paralogous genes. The MLuc2 isoform with consensus sequence was produced as a natively folded protein using baculovirus/insect cell expression system, purified, and characterized. The MLuc2 displays a very high bioluminescent activity and high thermostability similar to those of the previously characterized M. longa luciferase isoform MLuc7. However, in contrast to MLuc7 revealing the highest activity at 12-17 °C and 0.5 M NaCl, the bioluminescence optima of MLuc2 isoforms are at ∼5 °C and 1 M NaCl. The MLuc2 adaptation to cold is also accompanied by decrease of melting temperature and affinity to substrate suggesting a more conformational flexibility of a protein structure. The luciferase isoforms with different temperature optima may provide adaptability of the M. longa bioluminescence to the changes of water temperature during diurnal vertical migrations.
Collapse
Affiliation(s)
- Marina D Larionova
- Photobiology Lab, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Svetlana V Markova
- Photobiology Lab, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Lab, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia.
| |
Collapse
|
17
|
Takenaka Y, Ikeo K, Shigeri Y. Molecular Cloning of Secreted Luciferases from Marine Planktonic Copepods. Methods Mol Biol 2016; 1461:33-41. [PMID: 27424893 DOI: 10.1007/978-1-4939-3813-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Secreted luciferases isolated from copepod crustaceans are frequently used for nondisruptive reporter-gene assays, such as the continuous, automated and/or high-throughput monitoring of gene expression in living cells. All known copepod luciferases share highly conserved amino acid residues in two similar, repeated domains in the sequence. The similarity in the domains are ideal nature for designing PCR primers to amplify cDNA fragments of unidentified copepod luciferases from bioluminescent copepod crustaceans. Here, we introduce how to establish a cDNA encoding novel copepod luciferases from a copepod specimen by PCR with degenerated primers.
Collapse
Affiliation(s)
- Yasuhiro Takenaka
- Department of Diabetes and Endocrinology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| |
Collapse
|
18
|
Markova SV, Vysotski ES. Coelenterazine-dependent luciferases. BIOCHEMISTRY (MOSCOW) 2015; 80:714-32. [DOI: 10.1134/s0006297915060073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Luft C, Freeman J, Elliott D, Al-Tamimi N, Kriston-Vizi J, Heintze J, Lindenschmidt I, Seed B, Ketteler R. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC BIOCHEMISTRY 2014; 15:14. [PMID: 25007711 PMCID: PMC4099409 DOI: 10.1186/1471-2091-15-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Abstract
Background Secreted luciferases are highly useful bioluminescent reporters for cell-based assays and drug discovery. A variety of secreted luciferases from marine organisms have been described that harbor an N-terminal signal peptide for release along the classical secretory pathway. Here, we have characterized the secretion of Gaussia luciferase in more detail. Results We describe three basic mechanisms by which GLUC can be released from cells: first, classical secretion by virtue of the N-terminal signal peptide; second, internal signal peptide-mediated secretion and third, non-conventional secretion in the absence of an N-terminal signal peptide. Non-conventional release of dNGLUC is not stress-induced, does not require autophagy and can be enhanced by growth factor stimulation. Furthermore, we have identified the golgi-associated, gamma adaptin ear containing, ARF binding protein 1 (GGA1) as a suppressor of release of dNGLUC. Conclusions Due to its secretion via multiple secretion pathways GLUC can find multiple applications as a research tool to study classical and non-conventional secretion. As GLUC can also be released from a reporter construct by internal signal peptide-mediated secretion it can be incorporated in a novel bicistronic secretion system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robin Ketteler
- Medical Research Council, Laboratory for Moleclar and Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|