1
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
2
|
Yu M, Fan Y, Zhao Y, Tang Y. MicroRNA-140-3p inhibits proliferation and promotes apoptosis in non-small cell lung cancer by targeting MDIG. ENVIRONMENTAL TOXICOLOGY 2024; 39:1521-1530. [PMID: 38009637 DOI: 10.1002/tox.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yueren Fan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yihang Zhao
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Thakur C, Qiu Y, Zhang Q, Carruthers NJ, Yu M, Bi Z, Fu Y, Wadgaonkar P, Almutairy B, Seno A, Stemmer PM, Chen F. Deletion of mdig enhances H3K36me3 and metastatic potential of the triple negative breast cancer cells. iScience 2022; 25:105057. [PMID: 36124233 PMCID: PMC9482110 DOI: 10.1016/j.isci.2022.105057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
In this report, we provide evidence showing diminished expression of the mineral dust-induced gene (mdig), a previously identified oncogenic gene, in human triple negative breast cancer (TNBC). Using a mouse model of orthotopic xenograft of the TNBC MDA-MB-231 cells, we demonstrate that mdig promotes the growth of primary tumors but inhibits metastasis of these cells in vivo. Knockout of mdig resulted in an enhancement of H3K36me3 in the genome and upregulation of some X chromosome-linked genes for cell motility, invasion, and metastasis. Silencing MAGED2, one of the most upregulated and H3K36me3-enriched genes resulted from mdig depletion, can partially reverse the invasive migration of the mdig knockout cells. The anti-metastatic and inhibitory role of mdig on H3K36me3 was cross-validated in another cell line, A549 lung cancer cells. Together, our data suggest that mdig is antagonist against H3K36me3 that enforces expression of genes, such as MAGED2, for cell invasion and metastasis. Loss of mdig expression in TNBC and metastatic breast cancer Knockout of mdig enforces metastasis of the TNBC cells Mdig antagonizes H3K36me3 that promotes expression of X-linked metastatic genes Silencing MAGED2 reduces invasive migration of the mdig knockout cells
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yiran Qiu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Miaomiao Yu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province, China
| | - Zhuoyue Bi
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yao Fu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O. Box 11961, Riyadh, Saudi Arabia
| | - Akimasa Seno
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Fei Chen
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
6
|
Thakur C, Carruthers NJ, Zhang Q, Xu L, Fu Y, Bi Z, Qiu Y, Zhang W, Wadgaonkar P, Almutairy B, Guo C, Stemmer PM, Chen F. Depletion of Mdig Changes Proteomic Profiling in Triple Negative Breast Cancer Cells. Biomedicines 2022; 10:2021. [PMID: 36009568 PMCID: PMC9405604 DOI: 10.3390/biomedicines10082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancers are highly aggressive with an overall poor prognosis and limited therapeutic options. We had previously investigated the role of mdig, an oncogenic gene induced by some environmental risk factors, on the pathogenesis of breast cancer. However, a comprehensive analysis of the proteomic profile affected by mdig in triple-negative breast cancer has not been determined yet. Using label-free bottom-up quantitative proteomics, we compared wildtype control and mdig knockout MDA-MB-231 cells and identified the proteins and pathways that are significantly altered with mdig deletion. A total of 904 differentially expressed (p < 0.005) proteins were identified in the KO cells. Approximately 30 pathways and networks linked to the pathogenicity of breast cancer were either up- or downregulated, such as EIF2 signaling, the unfolded protein response, and isoleucine degradation I. Ingenuity Pathway Analysis established that the differentially expressed proteins have relevant biological actions in cell growth, motility, and malignancy. These data provide the first insight into protein expression patterns in breast cancer associated with a complete disruption of the mdig gene and yielded substantial information on the key proteins, biological processes, and pathways modulated by mdig that contribute to breast cancer tumorigenicity and invasiveness.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Nicholas J. Carruthers
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chunna Guo
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Geng F, Yang W, Song D, Hou H, Han B, Chen Y, Zhao H. MDIG, a 2‑oxoglutarate‑dependent oxygenase, acts as an oncogene and predicts the prognosis of multiple types of cancer. Int J Oncol 2022; 61:82. [PMID: 35583005 PMCID: PMC9162052 DOI: 10.3892/ijo.2022.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022] Open
Abstract
Recent studies have indicated that mineral dust‑induced gene (MDIG) is an oncogene induced by environmental factors, which has a key role in the development and progression of various tumor types, through epigenetic modifications; however, there are no previous pan‑cancer analyses of MDIG. In the present study, a comprehensive pan‑cancer analysis of MDIG was performed using public databases. The results demonstrated that MDIG was upregulated in tumor tissue samples compared with normal tissue, that it was present in all cancer cell lines and it was closely associated with the prognosis of patients with different tumor types. Furthermore, MDIG expression was closely associated with the immunological characteristics of the tumor microenvironment (TME), such as the frequency of tumor‑infiltrating immune cells, TME‑relevant signatures, immunostimulatory genes, immune checkpoint genes, chemokine receptor genes, tumor mutational burden and microsatellite instability. In parallel, high expression of MDIG was associated with improved overall survival of patients and this was verified in a cohort of patients who had received anti‑programmed cell death 1 ligand 1 treatment. Furthermore, high expression of MDIG led to multiple drug resistance in The Cancer Genome Atlas‑lung adenocarcinoma cohort. In addition, gene set variant analysis and gene set enrichment analysis indicated that MDIG was involved in cell cycle regulation. In vitro experiments suggested that MDIG promoted cell proliferation through the mTOR complex 2/Akt and pyruvate dehydrogenase kinase 1/Akt signaling pathways. In summary, the present study suggests that MDIG may be a prognostic biomarker and therapeutic target for various cancer types.
Collapse
Affiliation(s)
- Feng Geng
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Yang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Northern Theatre Command, Shenyang, Liaoning 110001, P.R. China
| | - Dandan Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haijia Hou
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bing Han
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yecheng Chen
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongwen Zhao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Petkova V, Marinova D, Kyurkchiyan S, Stancheva G, Mekov E, Kachakova-Yordanova D, Slavova Y, Kostadinov D, Mitev V, Kaneva R. Expression analysis of MINA53: correlation with aberrantly expressed mRNAs and pathological features in non-small lung cancer. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2019117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dora Marinova
- Department of Health Care, UMHAT ‘Medika’, University of Ruse, Ruse, Bulgaria
| | - Silva Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Evgeni Mekov
- Department of Occupational Diseases, UMHAT ‘Sveti Ivan Rilski’, Medical University of Sofia, Sofia, Bulgaria
| | - Darina Kachakova-Yordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Yanina Slavova
- Department of Public Health and Social Activities, UMHAT ‘Medika’, University of Ruse, Ruse, Bulgaria
| | - Dimitar Kostadinov
- Department of Pulmonary Diseases, MHATPD ‘Sveta Sofia’, Medical University of Sofia, Sofia, Bulgaria
| | - Vanyo Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
9
|
Molecular Signatures of JMJD10/MINA53 in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12051141. [PMID: 32370161 PMCID: PMC7281541 DOI: 10.3390/cancers12051141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The JMJD10 gene and its encoded protein MYC-induced nuclear antigen (MINA53) are associated with multiple cancers. Besides having both an oncogenic and tumor suppressor function, the intricate role of JMJD10 in cancer is complex as it depends on the cancer type. In particular, the functional role of JMJD10/MINA53 in gastric cancer has been poorly understood. In this study, we have unraveled the molecular signatures and functional roles of JMJD10/MINA53 in gastric cancer by multiple approaches, i.e., multi-omics bioinformatics study, analysis of human gastric cancer tissues, and studies in vitro using knockdown or overexpression strategies in gastric cancer cell lines. The results indicated that the JMJD10 gene and MINA53 protein are commonly overexpressed in cancer patients. JMJD10/MINA53 is involved in the regulation of proliferation and survival of gastric cancer by controlling cell cycle gene expression. These processes are highly associated with MINA53 enzymatic activity in the regulation of H3K9me3 methylation status and controlling activation of AP-1 signaling pathways. This highlights the oncogenic role of JMJD10/MINA53 in gastric cancer and opens the opportunity to develop therapeutic targeting of JMJD10/MINA53 in gastric cancer.
Collapse
|
10
|
Zhang Q, Thakur C, Fu Y, Bi Z, Wadgaonkar P, Xu L, Liu Z, Liu W, Wang J, Kidder BL, Chen F. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics 2020; 10:602-614. [PMID: 31903140 PMCID: PMC6929976 DOI: 10.7150/thno.36220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The mineral dust-induced gene (mdig) is overexpressed in a number of human cancers, suggesting critical roles of this gene played on the pathogenesis of cancers. Unlike several other JmjC-domain containing proteins that exhibit histone demethylase activity, it remains enigmatic whether mdig is involved in the demethylation processes of the histone proteins. Methods: To provide direct evidence suggesting contribution of mdig to the demethylation of histone proteins, we recently examined the histone methylation profiles in human bronchial epithelial cells as well as two cancer cell lines with mdig knockout through CRISPR-Cas9 gene editing. Results: Global histone methylation analysis revealed a pronounced increase of the repressive histone trimethylation in three different cell types with mdig depletion, including trimethylation of lysines 9 and 27 on histone H3 (H3K9me3, H3K27me3) and trimethylation of lysine 20 of histone H4 (H4K20me3). Importantly, data from both ChIP-seq and RNA-seq suggested that genetic disruption of mdig enriches repressive histone trimethylation and inhibits expression of target genes in the oncogenic pathways of cell growth, stemness of the cells, tissue fibrosis, and cell motility. Conclusion: Taken together, our study provides the first insight into the molecular effects of mdig as an antagonist for repressive histone methylation markers and suggests that targeting mdig may represent a new area to explore in cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Wang Q, Geng F, Zhou H, Chen Y, Du J, Zhang X, Song D, Zhao H. MDIG promotes cisplatin resistance of lung adenocarcinoma by regulating ABC transporter expression via activation of the WNT/β-catenin signaling pathway. Oncol Lett 2019; 18:4294-4307. [PMID: 31579066 DOI: 10.3892/ol.2019.10774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/05/2019] [Indexed: 12/18/2022] Open
Abstract
Mineral dust-induced gene (MDIG) is a proto- oncogene associated with lung cancer that serves a key role in the biological processes of tumorigenesis. The aim of the present study was to determine whether MDIG is involved in cisplatin (DDP) resistance in lung adenocarcinoma, and to investigate the associated molecular mechanism. In the present study, MDIG-knockdown and MDIG-overexpressing A549 cells and DDP-resistant A549/DDP cells were initially constructed, and then the mRNA and protein expression levels of MDIG and ATP-binding cassette (ABC) transporters (ABCB1, ABCC1, ABCG2), and the expression levels of the major associated proteins in the WNT/β-catenin pathway were determined by reverse transcription-quantitative PCR and Western blotting experiments. The results revealed that the mRNA and protein expression levels of MDIG in A549/DDP cells were significantly higher compared with those in A549 cells, and that the protein expression levels of MDIG increased in a dose-dependent manner with increasing DDP concentrations. Overexpression of MDIG in A549 and A549/DDP cells led to an increase in the IC50 value, whereas silencing of MDIG led to a clear reduction in the IC50 value. The overexpression of MDIG in the A549 and A549/DDP cells markedly upregulated the mRNA and protein expression levels of ABCB1, ABCC1, ABCG2, WNT family member 5A, WNT family member 3A and active β-catenin, and these were markedly decreased following MDIG silencing. Taken together, these results demonstrated that the DDP resistance of lung adenocarcinoma may be associated with an upregulation of MDIG expression, and that the expression levels of MDIG are positively associated with the degree of DDP resistance. Furthermore, MDIG promoted the expression of ABC transporters in tumor cells by activating the WNT/β-catenin signaling pathway, which may, in turn, lead to DDP resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Geng
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haomin Zhou
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yecheng Chen
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Juan Du
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinyu Zhang
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dandan Song
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongwen Zhao
- Department of Pulmonary Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Zhang Q, Thakur C, Shi J, Sun J, Fu Y, Stemmer P, Chen F. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol 2019; 57:27-35. [PMID: 31276784 PMCID: PMC6844078 DOI: 10.1016/j.semcancer.2019.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Mineral dust-induced gene (mdig) encodes a member of the evolutionarily conserved JmjC family proteins that play fundamental roles in regulating chromatin-based processes as well as transcription of the genes in eukaryotic cells. This gene is also named as myc-induced nuclear antigen 53 (MINA), nucleolar protein 52 (NO52) and ribosomal oxygenase 2 (RIOX2). Increased expression of mdig had been noted in a number of human cancers, esp. lung cancer. Emerging evidence suggests that the oncogenic activity of mdig is most likely achieved through its regulation on the demethylation of histone proteins, despite it lacks the structural identities of the demethylases. Here, we discuss the latest discoveries on the characteristics of the mdig protein and its roles in a wide variety of normal and carcinogenic processes. We will also provide perspectives on how mdig is involved in the maintenance and differentiation of the embryonic stem cells, somatic stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Junwei Shi
- Nantong Pulmonary Hospital, 500 Yonghe Road, Gangzha Qu, Nantong, 226011, Jiangsu Province, China
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Bundred JR, Hendrix E, Coleman ML. The emerging roles of ribosomal histidyl hydroxylases in cell biology, physiology and disease. Cell Mol Life Sci 2018; 75:4093-4105. [PMID: 30151692 PMCID: PMC6182338 DOI: 10.1007/s00018-018-2903-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Hydroxylation is a novel protein modification catalyzed by a family of oxygenases that depend on fundamental nutrients and metabolites for activity. Protein hydroxylases have been implicated in a variety of key cellular processes that play important roles in both normal homeostasis and pathogenesis. Here, in this review, we summarize the current literature on a highly conserved sub-family of oxygenases that catalyze protein histidyl hydroxylation. We discuss the evidence supporting the biochemical assignment of these emerging enzymes as ribosomal protein hydroxylases, and provide an overview of their role in immunology, bone development, and cancer.
Collapse
Affiliation(s)
- James R Bundred
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eline Hendrix
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathew L Coleman
- Tumour Oxygenase Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
14
|
Thakur C, Chen B, Li L, Zhang Q, Yang ZQ, Chen F. Loss of mdig expression enhances DNA and histone methylation and metastasis of aggressive breast cancer. Signal Transduct Target Ther 2018; 3:25. [PMID: 30254753 PMCID: PMC6147911 DOI: 10.1038/s41392-018-0027-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
We previously reported that expression of an environmentally induced gene, mineral dust-induced gene (mdig), predicts overall survival in breast cancer patients. In the present report, we further demonstrate the differential roles of mdig between earlier- and later-stage breast cancers. In noncancerous breast, mdig is a proliferation factor for cell growth and cell motility. In breast cancer, however, higher levels of mdig negatively regulate the migration and invasion of cancer cells. Assessment of global DNA methylation, chromatin accessibility and H3K9me3 heterochromatin signature suggests that silencing mdig enhances DNA and histone methylation. Through immunostaining and data mining, we found that mdig is significantly upregulated in noninvasive and/or earlier-stage breast cancers. In contrast, in triple-negative and other invasive breast cancers, diminished mdig expression was noted, indicating that the loss of mdig expression could be an important feature of aggressive breast cancers. Taken together, our data suggest that mdig is a new biomarker that likely promotes tumor growth in the early stages of breast cancer while acting as a tumor suppressor to inhibit invasion and metastasis in later-stage tumors. Differential expression of an environmentally-induced gene appears to influence the growth of breast cancer tumors, thus providing a valuable biomarker and therapeutic target. Environmental factors can influence cancerous tumor development by interfering with epigenetic processes such as DNA and histone methylation. For example, the mineral dust induced gene (mdig) is over-expressed in coal miners who are susceptible to lung cancer. Now, Fei Chen, a pioneer in toxicology and carcinogenesis research at the Wayne State University in Detroit, USA, and his team have demonstrated that mdig also plays important roles in breast cancer. The gene is upregulated in early, non-invasive tumors, where it regulates cell growth, motility and invasion by influencing DNA and histone methylation. However, mdig expression drops in later stage or more aggressive tumor types. When the researchers abrogated mdig expression completely, they observed an enhanced DNA and histone methylation, suggesting the gene has a demethylase role and is implicated in regulating the epigenetic landscape under neoplastic conditions.
Collapse
Affiliation(s)
- Chitra Thakur
- 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201 USA
| | - Bailing Chen
- 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201 USA.,Synthesis Medchem Corp, 425 Changyang Street, Suzhou Industrial Park, Suzhou, 215025 China
| | - Lingzhi Li
- 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201 USA.,3City of Hope Institute, 1500 E. Duarte Road, Duarte, CA 91010 USA
| | - Qian Zhang
- 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201 USA
| | - Zeng-Quan Yang
- 4Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202 USA
| | - Fei Chen
- 1Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201 USA
| |
Collapse
|
15
|
Bräuer KE, Brockers K, Moneer J, Feuchtinger A, Wollscheid-Lengeling E, Lengeling A, Wolf A. Phylogenetic and genomic analyses of the ribosomal oxygenases Riox1 (No66) and Riox2 (Mina53) provide new insights into their evolution. BMC Evol Biol 2018; 18:96. [PMID: 29914368 PMCID: PMC6006756 DOI: 10.1186/s12862-018-1215-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Translation of specific mRNAs can be highly regulated in different cells, tissues or under pathological conditions. Ribosome heterogeneity can originate from variable expression or post-translational modifications of ribosomal proteins. The ribosomal oxygenases RIOX1 (NO66) and RIOX2 (MINA53) modify ribosomal proteins by histidine hydroxylation. A similar mechanism is present in prokaryotes. Thus, ribosome hydroxylation may be a well-conserved regulatory mechanism with implications in disease and development. However, little is known about the evolutionary history of Riox1 and Riox2 genes and their encoded proteins across eukaryotic taxa. RESULTS In this study, we have analysed Riox1 and Riox2 orthologous genes from 49 metazoen species and have constructed phylogenomic trees for both genes. Our genomic and phylogenetic analyses revealed that Arthropoda, Annelida, Nematoda and Mollusca lack the Riox2 gene, although in the early phylum Cnidaria both genes, Riox1 and Riox2, are present and expressed. Riox1 is an intronless single-exon-gene in several species, including humans. In contrast to Riox2, Riox1 is ubiquitously present throughout the animal kingdom suggesting that Riox1 is the phylogenetically older gene from which Riox2 has evolved. Both proteins have maintained a unique protein architecture with conservation of active sites within the JmjC domains, a dimerization domain, and a winged-helix domain. In addition, Riox1 proteins possess a unique N-terminal extension domain. Immunofluorescence analyses in Hela cells and in Hydra vulgaris identified a nucleolar localisation signal within the extended N-terminal domain of human RIOX1 and an altered subnuclear localisation for the Hydra Riox2. CONCLUSIONS Conserved active site residues and uniform protein domain architecture suggest a consistent enzymatic activity within the Riox orthologs throughout evolution. However, differences in genomic architecture, like single exon genes and alterations in subnuclear localisation, as described for Hydra, point towards adaption mechanisms that may correlate with taxa- or species-specific requirements. The diversification of Riox1/Riox2 gene structures throughout evolution suggest that functional requirements in expression of protein isoforms and/or subcellular localisation of proteins may have evolved by adaptation to lifestyle.
Collapse
Affiliation(s)
- Katharina E Bräuer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Kevin Brockers
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Jasmin Moneer
- Department of Biology II, Ludwig Maximillians University, Munich, Großhaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Evi Wollscheid-Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andreas Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.,Present address: Max-Planck-Society, Administrative Headquarters, Hofgartenstr. 8, 80539, Munich, Germany
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
16
|
Geng F, Jiang Z, Song X, Zhou H, Zhao H. Mdig suppresses epithelial-mesenchymal transition and inhibits the invasion and metastasis of non-small cell lung cancer via regulating GSK-3β/β-catenin signaling. Int J Oncol 2017; 51:1898-1908. [DOI: 10.3892/ijo.2017.4154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/02/2017] [Indexed: 11/06/2022] Open
|
17
|
Abstract
Pancreatic cancer is a highly aggressive malignant disease having very limited therapeutic options that ultimately results in its poor prognosis. It is still elusive on the etiology and tumorigenic mechanisms of pancreatic cancer. In the present report, we provide evidence showing involvement of the mineral dust-induced gene (mdig) in the pathogenesis and prognosis of the pancreatic cancer. Using immunohistochemistry approach on human pancreatic cancer tissue microarray, we found differential expression of mdig in pancreatic adenocarcinoma and normal pancreas. Based on the staining intensities of mdig in these tissue samples, we found that 12% of the cancer tissues were strongly positive for mdig, 39% and 31% were moderately and weakly positive respectively. Several alternatively spliced mdig mRNAs were detected in the selected pancreatic cancer cell lines. Through R2 platform for the patient survival analysis (http://r2.amc.nl), we found that enrichment of some specific exon of mdig predicates different survival rate of the pancreatic cancer patients. In summary, our findings may help in assessing the role of mdig in the pathogenesis of the pancreatic cancer and the prognosis of the pancreatic cancer patients.
Collapse
Affiliation(s)
- Srinivas Ashok Kumar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, Chen F. Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep 2016; 6:36305. [PMID: 27833099 PMCID: PMC5105131 DOI: 10.1038/srep36305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Several epidemiological studies suggested an increased incidence rate of multiple myeloma (MM) among first responders and other individuals who exposed to World Trade Center (WTC) dust. In this report, we provided evidence showing that WTC dust is potent in inducing mdig protein and/or mRNA in bronchial epithelial cells, B cells and MM cell lines. An increased mdig expression in MM bone marrow was observed, which is associated with the disease progression and prognosis of the MM patients. Through integrative genomics and proteomics approaches, we further demonstrated that mdig directly interacts with c-myc and JAK1 in MM cell lines, which contributes to hyperactivation of the IL-6-JAK-STAT3 signaling important for the pathogenesis of MM. Genetic silencing of mdig reduced activity of the major downstream effectors in the IL-6-JAK-STAT3 pathway. Taken together, these data suggest that WTC dust may be one of the key etiological factors for those who had been exposed for the development of MM by activating mdig and c-myc signaling circuit linked to the IL-6-JAK-STAT3 pathway essential for the tumorigenesis of the malignant plasma cells.
Collapse
Affiliation(s)
- Kai Wu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
19
|
Wang W, Lu Y, Stemmer PM, Zhang X, Bi Y, Yi Z, Chen F. The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair. Oncotarget 2016; 6:28269-81. [PMID: 26293673 PMCID: PMC4695059 DOI: 10.18632/oncotarget.4961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022] Open
Abstract
To investigate how mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) promotes carcinogenesis through inducing active chromatin, we performed proteomics analyses for the interacting proteins that were co-immunoprecipitated by anti-mdig antibody from either the lung cancer cell line A549 cells or the human bronchial epithelial cell line BEAS-2B cells. On SDS-PAGE gels, three to five unique protein bands were consistently observed in the complexes pulled-down by mdig antibody, but not the control IgG. In addition to the mdig protein, several DNA repair or chromatin binding proteins, including XRCC5, XRCC6, RBBP4, CBX8, PRMT5, and TDRD, were identified in the complexes by the proteomics analyses using both Orbitrap Fusion and Orbitrap XL nanoESI-MS/MS in four independent experiments. The interaction of mdig with some of these proteins was further validated by co-immunoprecipitation using antibodies against mdig and its partner proteins, respectively. These data, thus, provide evidence suggesting that mdig accomplishes its functions on chromatin, DNA repair and cell growth through interacting with the partner proteins.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Paul M Stemmer
- The Proteomics Core and Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Viant C, Rankin LC, Girard-Madoux MJH, Seillet C, Shi W, Smyth MJ, Bartholin L, Walzer T, Huntington ND, Vivier E, Belz GT. Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci Signal 2016; 9:ra46. [PMID: 27141930 DOI: 10.1126/scisignal.aaf2176] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are composed of subsets that are either positive or negative for the natural cytotoxicity receptor (NCR) NKp46 (encoded by Ncr1). ILC3s are located at mucosal sites, such as in the intestine and lung, where they are exposed to billions of commensal microbes and potentially harmful pathogens. Together with T cells, the various ILC3 subsets maintain the balance between homeostasis and immune activation. Through genetic mapping, we identified a previously uncharacterized subset of NCR(-) ILC3s in mice that transiently express Ncr1, demonstrating previously undescribed heterogeneity within the ILC3 population. In addition, we showed that sustained Notch signaling was required for the maintenance of the NCR(+) phenotype and that the cytokine transforming growth factor-β (TGF-β) impaired the development of NCR(+) ILC3s. Thus, the plasticity of ILC3s is regulated by the balance between the opposing effects of Notch and TGF-β signaling, maintaining homeostasis in the face of continual challenges.
Collapse
Affiliation(s)
- Charlotte Viant
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, INSERM, U1104, CNRS UMR 7280, 13288 Marseille, France
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mathilde J H Girard-Madoux
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, INSERM, U1104, CNRS UMR 7280, 13288 Marseille, France
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Computing and Information Systems, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Université Lyon 1, Centre Léon Bérard, 69373 Lyon, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, 69364 Lyon, France
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, INSERM, U1104, CNRS UMR 7280, 13288 Marseille, France. Immunologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13385 Marseille, France.
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
Rankin LC, Girard-Madoux MJH, Seillet C, Mielke LA, Kerdiles Y, Fenis A, Wieduwild E, Putoczki T, Mondot S, Lantz O, Demon D, Papenfuss AT, Smyth GK, Lamkanfi M, Carotta S, Renauld JC, Shi W, Carpentier S, Soos T, Arendt C, Ugolini S, Huntington ND, Belz GT, Vivier E. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 2016; 17:179-86. [PMID: 26595889 PMCID: PMC4720992 DOI: 10.1038/ni.3332] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet-dependent differentiation of NCR(-) ILC3 cells into NCR(+) ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR(+) ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR(+) ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis.
Collapse
Affiliation(s)
- Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Mathilde J H Girard-Madoux
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Yann Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Aurore Fenis
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Elisabeth Wieduwild
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Tracy Putoczki
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - Olivier Lantz
- Laboratoire d'Immunologie and Inserm U932, Institut Curie, Paris, France
| | - Dieter Demon
- Inflammation Research Center, VIB, Ghent University, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Mohamed Lamkanfi
- Inflammation Research Center, VIB, Ghent University, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Boehringer-Ingelheim RCV, Vienna, Austria
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Catholic University of Louvain, Brussels, Belgium
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Computing and Information Systems, University of Melbourne, Parkville, Australia
| | - Sabrina Carpentier
- MI-mAbs consortium Aix-Marseille University, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Tim Soos
- Bioinnovation, SANOFI, Boston, Massachusetts, USA
| | | | - Sophie Ugolini
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, University of Melbourne, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université d'Aix-Marseille UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
- Immunologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
22
|
Thakur C, Wolfarth M, Sun J, Zhang Y, Lu Y, Battelli L, Porter DW, Chen F. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells. Oncotarget 2016; 6:3722-36. [PMID: 25669985 PMCID: PMC4414149 DOI: 10.18632/oncotarget.2914] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Abstract
Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/-) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/- mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/- mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/- mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Michael Wolfarth
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Respiratory Medicine, The 4th Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yadong Zhang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA
| | - Lori Battelli
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Dale W Porter
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.,Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, USA
| |
Collapse
|
23
|
Thakur C, Chen F. Current understanding of mdig/MINA in human cancers. Genes Cancer 2015; 6:288-302. [PMID: 26413213 PMCID: PMC4575916 DOI: 10.18632/genesandcancer.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
Mineral dust-induced gene, mdig has recently been identified and is known to be overexpressed in a majority of human cancers and holds predictive power in the poor prognosis of the disease. Mdig is an environmentally expressed gene that is involved in cell proliferation, neoplastic transformation and immune regulation. With the advancement in deciphering the prognostic role of mdig in human cancers, our understanding on how mdig renders a normal cell to undergo malignant transformation is still very limited. This article reviews the current knowledge of the mdig gene in context to human neoplasias and its relation to the clinico-pathologic factors predicting the outcome of the disease in patients. It also emphasizes on the promising role of mdig that can serve as a potential candidate for biomarker discovery and as a therapeutic target in inflammation and cancers. Considering the recent advances in understanding the underlying mechanisms of tumor formation, more preclinical and clinical research is required to validate the potential of using mdig as a novel biological target of therapeutic and diagnostic value.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Li X, Yang N, Zhang Y, Li H, Yin T, Sun L, Li G. Sensitive Detection of Transcription Factor Kaiso via Self-Assembly of DNA on an Electrode Surface. ELECTROANAL 2014. [DOI: 10.1002/elan.201400380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Sun J, Yu M, Lu Y, Thakur C, Chen B, Qiu P, Zhao H, Chen F. Carcinogenic metalloid arsenic induces expression of mdig oncogene through JNK and STAT3 activation. Cancer Lett 2014; 346:257-63. [PMID: 24434654 PMCID: PMC3976992 DOI: 10.1016/j.canlet.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022]
Abstract
Environmental or occupational exposure to arsenic, a chemical element classified as metalloid, has been associated with cancer of the lung, skin, bladder, liver, etc. Mdig (mineral dust-induced gene) is a newly identified oncogene linked to occupational lung diseases and lung cancer. It is unclear whether mdig is also involved in arsenic-induced malignant transformation of the lung cells. By using human bronchial epithelial cells and human lung cancer cell lines, we showed that arsenic was able to induce expression of mdig. We further demonstrated that this mdig induction by arsenic was partially dependent on the JNK and STAT3 signaling pathways. Disruption of the JNK or STAT3 by either chemical inhibitors or siRNAs diminished arsenic-induced accumulation of mdig mRNA and protein. Furthermore, we also showed that microRNA-21 (miR-21) and Akt were down-stream effectors of the JNK and STAT3 signaling pathways in arsenic-induced mdig expression. Transfection of the cells with anti-miR-21 or pre-treatment of the cells with Akt inhibitor blunted mdig induction by arsenic. Clinically, the levels of mdig can be applied to predict the disease progression, the first progression (FP), in non-small cell lung cancer (NSCLC) patients. Taken together, our data suggest that mdig may play important roles on the pathogenesis of arsenic-induced lung cancer and that JNK and STAT3 signaling pathways are essential in mediating arsenic-induced mdig expression.
Collapse
Affiliation(s)
- Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; Institute of Respiratory Diseases, Department of Pulmonary Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China; Respiratory Medicine, The 4th Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Miaomiao Yu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; Institute of Respiratory Diseases, Department of Pulmonary Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bailing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Ping Qiu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Hongwen Zhao
- Institute of Respiratory Diseases, Department of Pulmonary Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China.
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Yu M, Sun J, Thakur C, Chen B, Lu Y, Zhao H, Chen F. Paradoxical roles of mineral dust induced gene on cell proliferation and migration/invasion. PLoS One 2014; 9:e87998. [PMID: 24505346 PMCID: PMC3913710 DOI: 10.1371/journal.pone.0087998] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/03/2014] [Indexed: 01/20/2023] Open
Abstract
Increased expression of mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) has been observed in a number of human cancers. The mechanism of how mdig contribute to the pathogenesis of cancer remains to be fully elucidated. In this report, we demonstrated that overexpression of mdig decreased the nuclear staining signal by 4′,6-diamidino-2-phenylindole (DAPI), along with a considerable enhancement in cell proliferation. Silencing mdig by shRNA resulted in a statistically significant decrease of cell proliferation. Intriguingly, mdig overexpression reduced the capacity of the cells in migration and invasion in vitro, whereas silencing mdig by shRNA/siRNA enhanced migration and invasion. Clinically, we found that increased expression of mdig in cancer tissues correlates with poorer overall survival of the lung cancer patients, esp., for those without lymph node metastasis. Taken together, our results suggest that mdig plays opposite roles on cell growth and motility, which possibly indicates the paradoxical effect of mdig at the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
- Department of Pulmonary Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
- Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jiaying Sun
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
- Department of Pulmonary Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
- Respiratory Medicine, The 4th Affiliated Hospital, China Medical University, China
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
| | - Bailing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
| | - Hongwen Zhao
- Department of Pulmonary Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, China
- * E-mail: (HZ); (FC)
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (HZ); (FC)
| |
Collapse
|