1
|
Zhang B, Mei X, Zhao M, Lu Q. The new era of immune skin diseases: Exploring advances in basic research and clinical translations. J Transl Autoimmun 2024; 8:100232. [PMID: 39022635 PMCID: PMC11252396 DOI: 10.1016/j.jtauto.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
2
|
Sun P, Vu R, Dragan M, Haensel D, Gutierrez G, Nguyen Q, Greenberg E, Chen Z, Wu J, Atwood S, Pearlman E, Shi Y, Han W, Kessenbrock K, Dai X. OVOL1 Regulates Psoriasis-Like Skin Inflammation and Epidermal Hyperplasia. J Invest Dermatol 2021; 141:1542-1552. [PMID: 33333123 PMCID: PMC8532526 DOI: 10.1016/j.jid.2020.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Psoriasis is a common inflammatory skin disease characterized by aberrant inflammation and epidermal hyperplasia. Molecular mechanisms that regulate psoriasis-like skin inflammation remain to be fully understood. Here, we show that the expression of Ovol1 (encoding ovo-like 1 transcription factor) is upregulated in psoriatic skin, and its deletion results in aggravated psoriasis-like skin symptoms following stimulation with imiquimod. Using bulk and single-cell RNA sequencing, we identify molecular changes in the epidermal, fibroblast, and immune cells of Ovol1-deficient skin that reflect an altered course of epidermal differentiation and enhanced inflammatory responses. Furthermore, we provide evidence for excessive full-length IL-1α signaling in the microenvironment of imiquimod-treated Ovol1-deficient skin that functionally contributes to immune cell infiltration and epidermal hyperplasia. Collectively, our study uncovers a protective role for OVOL1 in curtailing psoriasis-like inflammation and the associated skin pathology.
Collapse
Affiliation(s)
- Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA
| | - Daniel Haensel
- Department of Biological Chemistry, University of California, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Elyse Greenberg
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Zeyu Chen
- Department of Biological Chemistry, University of California, Irvine, California, USA; Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Scott Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Eric Pearlman
- Department of Ophthalmology and Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Yuling Shi
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, People's Republic of China
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA.
| |
Collapse
|
3
|
Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging Multilayered "Omics" Data for Atopic Dermatitis: A Road Map to Precision Medicine. Front Immunol 2018; 9:2727. [PMID: 30631320 PMCID: PMC6315155 DOI: 10.3389/fimmu.2018.02727] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a complex multifactorial inflammatory skin disease that affects ~280 million people worldwide. About 85% of AD cases begin in childhood, a significant portion of which can persist into adulthood. Moreover, a typical progression of children with AD to food allergy, asthma or allergic rhinitis has been reported (“allergic march” or “atopic march”). AD comprises highly heterogeneous sub-phenotypes/endotypes resulting from complex interplay between intrinsic and extrinsic factors, such as environmental stimuli, and genetic factors regulating cutaneous functions (impaired barrier function, epidermal lipid, and protease abnormalities), immune functions and the microbiome. Though the roles of high-throughput “omics” integrations in defining endotypes are recognized, current analyses are primarily based on individual omics data and using binary clinical outcomes. Although individual omics analysis, such as genome-wide association studies (GWAS), can effectively map variants correlated with AD, the majority of the heritability and the functional relevance of discovered variants are not explained or known by the identified variants. The limited success of singular approaches underscores the need for holistic and integrated approaches to investigate complex phenotypes using trans-omics data integration strategies. Integrating omics layers (e.g., genome, epigenome, transcriptome, proteome, metabolome, lipidome, exposome, microbiome), which often have complementary and synergistic effects, might provide the opportunity to capture the flow of information underlying AD disease manifestation. Overlapping genes/candidates derived from multiple omics types include FLG, SPINK5, S100A8, and SERPINB3 in AD pathogenesis. Overlapping pathways include macrophage, endothelial cell and fibroblast activation pathways, in addition to well-known Th1/Th2 and NFkB activation pathways. Interestingly, there was more multi-omics overlap at the pathway level than gene level. Further analysis of multi-omics overlap at the tissue level showed that among 30 tissue types from the GTEx database, skin and esophagus were significantly enriched, indicating the biological interconnection between AD and food allergy. The present work explores multi-omics integration and provides new biological insights to better define the biological basis of AD etiology and confirm previously reported AD genes/pathways. In this context, we also discuss opportunities and challenges introduced by “big omics data” and their integration.
Collapse
Affiliation(s)
- Debajyoti Ghosh
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jonathan A Bernstein
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol 2018; 27:340-357. [DOI: 10.1111/exd.13514] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bridget P. Kaufman
- Department of Dermatology; Mount Sinai St. Luke's and Mount Sinai West; New York NY USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Andrew F. Alexis
- Department of Dermatology; Mount Sinai St. Luke's and Mount Sinai West; New York NY USA
| |
Collapse
|
5
|
Yazd NKK, Patel RR, Dellavalle RP, Dunnick CA. Genetic Risk Factors for Development of Atopic Dermatitis: a Systematic Review. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0199-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Tsuji G, Hashimoto-Hachiya A, Kiyomatsu-Oda M, Takemura M, Ohno F, Ito T, Morino-Koga S, Mitoma C, Nakahara T, Uchi H, Furue M. Aryl hydrocarbon receptor activation restores filaggrin expression via OVOL1 in atopic dermatitis. Cell Death Dis 2017; 8:e2931. [PMID: 28703805 PMCID: PMC5550867 DOI: 10.1038/cddis.2017.322] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
Filaggrin (FLG) mutation is a well-confirmed genetic aberration in atopic dermatitis (AD). Genome-wide association studies on AD have revealed other susceptibility genes, for example, Ovo-like 1 (OVOL1). Nonetheless, the relation between FLG and OVOL1 is unclear. Because aryl hydrocarbon receptor (AHR; a ligand-activated transcription factor), plays a role in FLG expression in keratinocytes, we hypothesized that AHR regulates FLG expression via OVOL1. To demonstrate this mechanism, we analyzed FLG expression in OVOL1-overexpressing or OVOL1-knockdown normal human epidermal keratinocytes (NHEKs). Furthermore, we tested whether AHR activation by 6-formylindolo(3,2-b)carbazole (FICZ), an endogenous AHR ligand, or Glyteer, clinically used soybean tar, upregulates FLG and OVOL1 expression in NHEKs. We found that (1) OVOL1 regulates FLG expression; (2) AHR activation upregulates OVOL1; and (3) AHR activation upregulates FLG via OVOL1. Moreover, nuclear translocation of OVOL1 was less pronounced in AD skin compared with normal skin. IL-4-treated NHEKs, an in vitro AD skin model, also showed inhibition of the OVOL1 nuclear translocation, which was restored by FICZ and Glyteer. Thus, targeting the AHR–OVOL1–FLG axis may provide new therapeutics for AD.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.,Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Mari Kiyomatsu-Oda
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Saori Morino-Koga
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.,Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.,Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.,Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan.,Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Giridhar PV, Bell SM, Sridharan A, Rajavelu P, Kitzmiller JA, Na CL, Kofron M, Brandt EB, Ericksen M, Naren AP, Moon C, Khurana Hershey GK, Whitsett JA. Airway Epithelial KIF3A Regulates Th2 Responses to Aeroallergens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4228-4239. [PMID: 27794000 PMCID: PMC5123825 DOI: 10.4049/jimmunol.1600926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
KIF3A, the gene encoding kinesin family member 3A, is a susceptibility gene locus associated with asthma; however, mechanisms by which KIF3A might influence the pathogenesis of the disorder are unknown. In this study, we deleted the mouse Kif3a gene in airway epithelial cells. Both homozygous and heterozygous Kif3a gene-deleted mice were highly susceptible to aeroallergens from Aspergillus fumigatus and the house dust mite, resulting in an asthma-like pathology characterized by increased goblet cell metaplasia, airway hyperresponsiveness, and Th2-mediated inflammation. Deletion of the Kif3a gene increased the severity of pulmonary eosinophilic inflammation and expression of cytokines (Il-4, Il-13, and Il-17a) and chemokine (Ccl11) RNAs following pulmonary exposure to Aspergillus extract. Inhibition of Kif3a disrupted the structure of motile cilia and impaired mucociliary clearance, barrier function, and epithelial repair, demonstrating additional mechanisms by which deficiency of KIF3A in respiratory epithelial cells contributes to pulmonary pathology. Airway epithelial KIF3A suppresses Th2 pulmonary inflammation and airway hyperresponsiveness following aeroallergen exposure, implicating epithelial microtubular functions in the pathogenesis of Th2-mediated lung pathology.
Collapse
Affiliation(s)
- Premkumar Vummidi Giridhar
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sheila M Bell
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Priya Rajavelu
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Joseph A Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Cheng-Lun Na
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Matthew Kofron
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Eric B Brandt
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Mark Ericksen
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Changsuk Moon
- Division of Pulmonary Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Jeffrey A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
| |
Collapse
|
8
|
Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:52. [PMID: 27777593 PMCID: PMC5069938 DOI: 10.1186/s13223-016-0158-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors. There have many recent discoveries involving the genetic and epigenetic studies of AD. METHODS A retrospective PubMed search was carried out from June 2009 to June 2016 using the terms "atopic dermatitis", "association", "eczema", "gene", "polymorphism", "mutation", "variant", "genome wide association study", "microarray" "gene profiling", "RNA sequencing", "epigenetics" and "microRNA". A total of 132 publications in English were identified. RESULTS To elucidate the genetic factors for AD pathogenesis, candidate gene association studies, genome-wide association studies (GWAS) and transcriptomic profiling assays have been performed in this period. Epigenetic mechanisms for AD development, including genomic DNA modification and microRNA posttranscriptional regulation, have been explored. To date, candidate gene association studies indicate that filaggrin (FLG) null gene mutations are the most significant known risk factor for AD, and genes in the type 2 T helper lymphocyte (Th2) signaling pathways are the second replicated genetic risk factor for AD. GWAS studies identified 34 risk loci for AD, these loci also suggest that genes in immune responses and epidermal skin barrier functions are associated with AD. Additionally, gene profiling assays demonstrated AD is associated with decreased gene expression of epidermal differentiation complex genes and elevated Th2 and Th17 genes. Hypomethylation of TSLP and FCER1G in AD were reported; and miR-155, which target the immune suppressor CTLA-4, was found to be significantly over-expressed in infiltrating T cells in AD skin lesions. CONCLUSIONS The results suggest that two major biologic pathways are responsible for AD etiology: skin epithelial function and innate/adaptive immune responses. The dysfunctional epidermal barrier and immune responses reciprocally affect each other, and thereby drive development of AD.
Collapse
Affiliation(s)
- Lianghua Bin
- The Department of Dermatology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chuh A, Zawar V, Lee A, Sciallis G. Is Gianotti-Crosti Syndrome Associated with Atopy? A Case-Control Study and a Postulation on the Intrinsic Host Factors in Gianotti-Crosti Syndrome. Pediatr Dermatol 2016; 33:488-92. [PMID: 27339179 DOI: 10.1111/pde.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate whether Gianotti-Crosti syndrome (GCS) in children is associated with atopy. METHODS The setting was two outpatient clinic. Diagnoses of asthma and atopic dermatitis (AD) were made according to internationally accepted diagnostic criteria. Allergic rhinitis, atopic urticaria, and allergic conjunctivitis were diagnosed clinically. Participants were children with GCS diagnosed over the previous 5 years. For any child with GCS, we extracted the record of the subsequent age and sex pair-matched child seen for problems unrelated to the skin as controls. RESULTS We retrieved the records of 37 pairs of study and control subjects; 28 (76%) children with GCS and 9 (24%) controls had AD (risk ratio [RR] = 3.11[95% confidence interval {CI} 1.73, 5.73]), 31 (84%) children with GCS and 19 (51%) controls had at least one atopic condition (RR = 1.63 [95% CI 1.13, 2.18]) and 11 (30%) children with GCS and 2 (5%) controls had at least three atopic conditions (RR = 5.50 [95% CI 1.29, 35.35]). CONCLUSION GCS is significantly associated with AD and the presence of atopic conditions.
Collapse
Affiliation(s)
- Antonio Chuh
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong.
| | | | - Albert Lee
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong and Prince of Wales Hospital, Shatin, Hong Kong
| | - Gabriel Sciallis
- Department of Dermatology, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|