1
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Jiang F, Zhou S, Xia C, Lu J, Wang B, Wang X, Shen J, Ding W, Yin M, Dai F, Fu S. Downregulation of GLYAT correlates with tumour progression and poor prognosis in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e70197. [PMID: 39495775 PMCID: PMC11534071 DOI: 10.1111/jcmm.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/06/2024] Open
Abstract
Glycine N-acyltransferase (GLYAT), known to influence glycine metabolism, has been implicated in the progression of various malignant tumours. However, its clinical relevance in hepatocellular carcinoma (HCC) remains unexplored. Here, GLYAT expression levels in HCC tissues were significantly reduced compared to normal liver tissues. Similarly, GLYAT expression levels in Huh 7, HepG2, PLC and SK-HEP1 were lower than those in LO2. Receiver operating characteristic curve analysis demonstrated that GLYAT exhibited good diagnostic performance for HCC. Kaplan-Meier analyses suggested that decreased GLYAT expression was correlated with poorer progress in HCC. Low GLYAT expression was significantly associated with gender and histologic grade. Multivariate Cox regression analysis identified low GLYAT expression and T stage as independent prognostic factors. Nomograms based on GLYAT mRNA expression and T stage showed good concordance with actual survival rates at 1, 2, 3 and 5 years. Moreover, GLYAT downregulation in the Huh 7 cell line enhanced cell proliferation, invasion and migration abilities, while GLYAT overexpression in the HepG2 cell line inhibited these abilities. HCC patients with low GLYAT expression exhibited a predisposition to immune escape and poor response to immunotherapy. This research revealed that GLYAT holds promise as both a prognostic biomarker and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Fengchen Jiang
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- Comparative Medicine Institution, Nantong UniversityNantongChina
| | - Shuiping Zhou
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- Comparative Medicine Institution, Nantong UniversityNantongChina
- School of MedicineNantong UniversityNantongChina
| | - Chuanlong Xia
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- School of MedicineNantong UniversityNantongChina
| | - Jiale Lu
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- School of MedicineNantong UniversityNantongChina
| | - Bin Wang
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Xiaowei Wang
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Jiandong Shen
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Wei Ding
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Mengjie Yin
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Feng Dai
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Shouzhong Fu
- Department of Interventional AngiologyAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| |
Collapse
|
3
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Fernandes Silva L, Hokkanen J, Vangipurapu J, Oravilahti A, Laakso M. Metabolites as Risk Factors for Diabetic Retinopathy in Patients With Type 2 Diabetes: A 12-Year Follow-up Study. J Clin Endocrinol Metab 2023; 109:100-106. [PMID: 37560996 PMCID: PMC10735554 DOI: 10.1210/clinem/dgad452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Diabetic retinopathy (DR) is a specific microvascular complication in patients with diabetes and the leading cause of blindness. Recent advances in omics, especially metabolomics, offer the possibility identifying novel potential biomarkers for DR. OBJECTIVE The aim was to identify metabolites associated with DR. METHODS We performed a 12-year follow-up study including 1349 participants with type 2 diabetes (1021 without DR, 328 with DR) selected from the METSIM cohort. Individuals who had retinopathy before the baseline study were excluded (n = 63). The diagnosis of retinopathy was based on fundus photography examination. We performed nontargeted metabolomics profiling to identify metabolites. RESULTS We found 17 metabolites significantly associated with incident DR after adjustment for confounding factors. Among amino acids, N-lactoyl isoleucine, N-lactoyl valine, N-lactoyl tyrosine, N-lactoyl phenylalanine, N-(2-furoyl) glycine, and 5-hydroxylysine were associated with an increased risk of DR, and citrulline with a decreased risk of DR. Among the fatty acids N,N,N-trimethyl-5-aminovalerate was associated with an increased risk of DR, and myristoleate (14:1n5), palmitoleate (16:1n7), and 5-dodecenoate (12:1n7) with a decreased risk of DR. Sphingomyelin (d18:2/24:2), a sphingolipid, was significantly associated with a decreased risk of DR. Carboxylic acid maleate and organic compounds 3-hydroxypyridine sulfate, 4-vinylphenol sulfate, 4-ethylcatechol sulfate, and dimethyl sulfone were significantly associated with an increased risk of DR. CONCLUSION Our study is the first large population-based longitudinal study to identify metabolites for DR. We found multiple metabolites associated with an increased and decreased risk for DR from several different metabolic pathways.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jenna Hokkanen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Deng L, Jiang H. Decreased Expression of GLYATL1 Predicts Poor Prognosis in Patients with Clear Cell Renal Cell Carcinoma. Int J Gen Med 2023; 16:3757-3768. [PMID: 37649851 PMCID: PMC10464902 DOI: 10.2147/ijgm.s419301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Background GLYATL1 is a member of the glycine-N-acyltransferase family, which catalyses acyl group transfer. The role of GLYATL1 in cancer is largely unknown; therefore, the potential value of GLYATL1 in clear cell renal cell carcinoma (ccRCC) was explored. Methods The ccRCC gene expression profiles and clinical data were obtained from the University of California Santa Cruz Xena platform. Differential expression and survival analysis were performed using R software. Samples from the TIMER public database and real-world were used for validation. The potential molecular mechanism of GLYATL1 in ccRCC was explored using gene set enrichment analysis (GSEA). Results GLYATL1 was downregulated, indicating a poor prognosis in ccRCC. Low expression of GLYATL1 was significantly associated with advanced stage and higher histological grade ccRCC. The differential expression of GLYATL1 was validated at the protein level using clinical samples and tissue microarray. The results of GSEA showed that multiple crucial signalling pathways including fatty acid metabolism, adipogenesis, oxidative phosphorylation and epithelial-mesenchymal transition were enriched. Conclusion This study demonstrated that GLYATL1 downregulation has an unfavourable impact on the survival of patients with ccRCC. The resulting data indicated that GLYATL1 could be a potential new target for ccRCC therapy, which may be helpful for the personalized treatment of such individuals.
Collapse
Affiliation(s)
- Limin Deng
- Department of Urology, Meizhou Academy of Medical Sciences, Meizhou People’s Hospital, Guangdong Medical University, Meizhou, Guangdong Province, People’s Republic of China
| | - Huiming Jiang
- Department of Urology, Meizhou Academy of Medical Sciences, Meizhou People’s Hospital, Meizhou, Guangdong Province, People's Republic of China
| |
Collapse
|
6
|
Xiang L, Ru Y, Shi J, Wang L, Zhao H, Huang Y, Cai Z. Derivatization of N-Acyl Glycines by 3-Nitrophenylhydrazine for Targeted Metabolomics Analysis and Their Application to the Study of Diabetes Progression in Mice. Anal Chem 2023; 95:2183-2191. [PMID: 36657965 PMCID: PMC9893217 DOI: 10.1021/acs.analchem.2c02507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
N-Acyl glycines (NAGlys) are an important class of metabolites in the detoxification system of the human body. They have been used in the diagnosis of several metabolic diseases. Liquid chromatography-mass spectrometry (LC-MS) is the most frequently used NAGlys detection platform. Here, we describe a simple and sensitive method of NAGlys detection by LC-MS in plasma and urine samples. This approach is based on the use of a derivatization reagent, 3-nitrophenylhydrazine. The reaction is quick in aqueous solution, and no quenching step is needed. To expand the coverage of NAGlys when standards are not available, NAGlys were first identified based on high-resolution LC-MS. Quantification was subsequently carried out on triple quadrupole LC-MS. This approach allowed a much broader measurement of NAGlys (41 NAGlys in total), especially when authentic standards are unavailable. Comprehensive analysis of NAGlys with this new method was applied in plasma and urine samples of db/db diabetic and non-diabetic db/m+ control mice. The majority of detected NAGlys were altered with high differentiation ability in plasma and urine samples from diabetic and non-diabetic mice. These identified NAGlys hold the potential to be diagnostic biomarkers for type II diabetes and diabetic complications.
Collapse
Affiliation(s)
- Li Xiang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yi Ru
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jingchun Shi
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Li Wang
- Department
of Biomedical Sciences, City University
of Hong Kong, Hong Kong 999077, China
| | - Hongzhi Zhao
- Ministry
of Education Key Laboratory of Pollution Processes and Environmental
Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Huang
- Department
of Biomedical Sciences, City University
of Hong Kong, Hong Kong 999077, China,
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China,
| |
Collapse
|
7
|
Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148034. [PMID: 34111793 DOI: 10.1016/j.scitotenv.2021.148034] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Pesticides make indispensable contributions to agricultural productivity. However, the residues after their excessive use may be harmful to crop production, food safety and human health. Although the ability of plants (especially crops) to accumulate and metabolize pesticides has been intensively investigated, data describing the chemical and metabolic processes in plants are limited. Understanding how pesticides are metabolized is a key step toward developing cleaner crops with minimal pesticides in crops, creating new green pesticides (or safeners), and building up the engineered plants for environmental remediation. In this review, we describe the recently discovered mechanistic insights into pesticide metabolic pathways, and development of improved plant genotypes that break down pesticides more effectively. We highlight the identification of biological features and functions of major pesticide-metabolized enzymes such as laccases, glycosyltransferases, methyltransferases and ATP binding cassette (ABC) transporters, and discuss their chemical reactions involved in diverse pathways including the formation of pesticide S-conjugates. The recent findings for some signal molecules (phytohomormes) like salicylic acid, jasmonic acid and brassinosteroids involved in metabolism and detoxification of pesticides are summarized. In particular, the emerging research on the epigenetic mechanisms such DNA methylation and histone modification for pesticide metabolism is emphasized. The review would broaden our understanding of the regulatory networks of the pesticide metabolic pathways in higher plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, Liu C, Gao S. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol 2021; 11:641399. [PMID: 33968740 PMCID: PMC8100313 DOI: 10.3389/fonc.2021.641399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients. Methods GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell proliferation and migration capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients. Results GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, downregulation of GLYAT promoted the migratory properties of BC cells, likely through the activation of PI3K/AKT/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses. Conclusion Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/AKT/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Shengjing Hospital, China Medical University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Sun R, Li S, Zhao K, Diao M, Li L. Identification of Ten Core Hub Genes as Potential Biomarkers and Treatment Target for Hepatoblastoma. Front Oncol 2021; 11:591507. [PMID: 33868991 PMCID: PMC8047669 DOI: 10.3389/fonc.2021.591507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to systematically investigate gene signatures for hepatoblastoma (HB) and identify potential biomarkers for its diagnosis and treatment. Materials and Methods GSE131329 and GSE81928 were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between hepatoblastoma and normal samples were identified using the Limma package in R. Then, the similarity of network traits between two sets of genes was analyzed by weighted gene correlation network analysis (WGCNA). Cytoscape was used to visualize and select hub genes. PPI network of hub genes was construed by Cytoscape. GO enrichment and KEGG pathway analyses of hub genes were carried out using ClueGO. The random forest classifier was constructed based on the hub genes using the GSE131329 dataset as the training set, and its reliability was validated using the GSE81928 dataset. The resulting core hub genes were combined with the InnateDB database to identify the innate core genes. Results A total of 4244 DEGs in HB were identified. WGCNA identified four modules that were significantly correlated with the disease status. A total of 114 hub genes were obtained within the top 20 genes of each node rank. 6982 relation pairs and 3700 nodes were contained in the PPI network of 114 hub genes. GO enrichment and KEGG pathway analyses of hub genes were focused on MAPK, cell cycle, p53, and other crucial pathways involved in HB. A random forest classifier was constructed using the 114 hub genes as feature genes, resulting in a 95.5% true positive rate when classifying HB and normal samples. A total of 35 core hub genes were obtained through the mean decrease in accuracy and mean decrease Gini of the random forest model. The classification efficiency of the random forest model was 81.4%. Finally, CDK1, TOP2A, ADRA1A, FANCI, XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3 were identified by cross-comparison with the InnateDB database. Conclusion Our study established a random forest classifier that identified 10 core genes in HB. These findings may be beneficial for the diagnosis, prediction, and targeted therapy of HB.
Collapse
Affiliation(s)
- Rui Sun
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Mei Diao
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
10
|
Functional Characterisation of Three Glycine N-Acyltransferase Variants and the Effect on Glycine Conjugation to Benzoyl-CoA. Int J Mol Sci 2021; 22:ijms22063129. [PMID: 33803916 PMCID: PMC8003330 DOI: 10.3390/ijms22063129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
The glycine conjugation pathway in humans is involved in the metabolism of natural substrates and the detoxification of xenobiotics. The interactions between the various substrates in this pathway and their competition for the pathway enzymes are currently unknown. The pathway consists of a mitochondrial xenobiotic/medium-chain fatty acid: coenzyme A (CoA) ligase (ACSM2B) and glycine N-acyltransferase (GLYAT). The catalytic mechanism and substrate specificity of both of these enzymes have not been thoroughly characterised. In this study, the level of evolutionary conservation of GLYAT missense variants and haplotypes were analysed. From these data, haplotype variants were selected (156Asn > Ser, [17Ser > Thr,156Asn > Ser] and [156Asn > Ser,199Arg > Cys]) in order to characterise the kinetic mechanism of the enzyme over a wide range of substrate concentrations. The 156Asn > Ser haplotype has the highest frequency and the highest relative enzyme activity in all populations studied, and hence was used as the reference in this study. Cooperative substrate binding was observed, and the kinetic data were fitted to a two-substrate Hill equation. The coding region of the GLYAT gene was found to be highly conserved and the rare 156Asn > Ser,199Arg > Cys variant negatively affected the relative enzyme activity. Even though the 156Asn > Ser,199Arg > Cys variant had a higher affinity for benzoyl-CoA (s0.5,benz = 61.2 µM), kcat was reduced to 9.8% of the most abundant haplotype 156Asn > Ser (s0.5,benz = 96.6 µM), while the activity of 17Ser > Thr,156Asn > Ser (s0.5,benz = 118 µM) was 73% of 156Asn > Ser. The in vitro kinetic analyses of the effect of the 156Asn > Ser,199Arg > Cys variant on human GLYAT enzyme activity indicated that individuals with this haplotype might have a decreased ability to metabolise benzoate when compared to individuals with the 156Asn > Ser variant. Furthermore, the accumulation of acyl-CoA intermediates can inhibit ACSM2B leading to a reduction in mitochondrial energy production.
Collapse
|
11
|
Schulke D, Sass JO. Frequent sequence variants of human glycine N-acyltransferase (GLYAT) and inborn errors of metabolism. Biochimie 2021; 183:30-34. [PMID: 33567294 DOI: 10.1016/j.biochi.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Glycine conjugation is an important phase II reaction and represents a central detoxification pathway which is essential for the recycling of free coenzyme A. Only few sequence variants have been reported in the human GLYAT gene and only two studies have overexpressed the human protein in bacterial systems and partially characterized it. This has prompted us to study the wild-type enzyme and two sequence variants not only in the E. coli strain Origami 2(DE3), but also to overexpress GLYAT in HEK293 cells, a human-derived cell line. Following purification of the recombinant proteins from E. coli the wild-type GLYAT protein and sequence variants, p.(Gln61Leu) yielded decreased specific activity than the wild-type enzyme, while specific activity of p.(Asn156Ser) activity of the latter variant was somewhat increased. KM values were similar for the three forms of GLYAT overexpressed in bacteria and for the wild-type enzyme overexpressed in HEK293 cells. Localization studies demonstrated intramitochondrial localization of human wild-type GLYAT, conjugated with eGFP, in the HEK293 cells. As p.(Gln61Leu) does not only impair GLYAT activity in vitro, but is of high prevalence in a Caucasian Afrikaner cohort in South Africa, potential pharmacogenetic implications, warrant further studies of GLYAT.
Collapse
Affiliation(s)
- Daniel Schulke
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany; Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| |
Collapse
|
12
|
Erasmus E, Mason S, van Reenen M, Steffens FE, Vorster BC, Reinecke CJ. A laboratory approach for characterizing chronic fatigue: what does metabolomics tell us? Metabolomics 2019; 15:158. [PMID: 31776682 DOI: 10.1007/s11306-019-1620-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition. OBJECTIVES Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels. METHODS The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox. RESULTS Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups. CONCLUSIONS Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.
Collapse
Affiliation(s)
- Elardus Erasmus
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| | - Shayne Mason
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois E Steffens
- Department of Consumer Science, University of Pretoria, Pretoria, South Africa
| | - B Chris Vorster
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Carolus J Reinecke
- Centre for Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| |
Collapse
|
13
|
Eich ML, Chandrashekar DS, Rodriguez Pen A MDC, Robinson AD, Siddiqui J, Daignault-Newton S, Chakravarthi BVSK, Kunju LP, Netto GJ, Varambally S. Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate 2019; 79:1629-1639. [PMID: 31376196 DOI: 10.1002/pros.23887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen. METHOD We performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways. RESULTS Our in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways. CONCLUSIONS In summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alyncia D Robinson
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Javed Siddiqui
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | | | | | | | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Ren W, Badgery W, Ding Y, Guo H, Gao Y, Zhang J. Hepatic transcriptome profile of sheep (Ovis aries) in response to overgrazing: novel genes and pathways revealed. BMC Genet 2019; 20:54. [PMID: 31272371 PMCID: PMC6610972 DOI: 10.1186/s12863-019-0760-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Overgrazing is a major factor that causes steppe degradation in Inner Mongolian, resulting in extensive ecosystem damage. Scarcity of grass means sheep are smaller and therefore mutton and cashmere production is greatly reduced, which has resulted in massive annual economic losses. Liver is the primary metabolic organ in mammals. It is also the key source of energy supply and detoxification of metabolites in animals, has a close relationship with animal growth. However, investigations on the responses of sheep induced by consequence of overgrazing, particularly those relating to liver-related molecular mechanisms and related metabolic pathways, remain elusive. RESULTS The body weight daily gain of sheep, immune organ indices (liver and spleen), and serum parameters related to immune response, protein synthesis and energy supply (IgG, albumin, glucose and non-esterified fatty acid) were significantly lower in the overgrazing group. Other serum parameters including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen and interleukin-6 were significantly higher in the overgrazing group. For the RNA-Seq results, we identified approximately 50 differentially expressed genes, of which half of were up-regulated and the other half were down-regulated (overgrazing group versus light grazing group). Bioinformatics analysis identified two enriched KEGG pathways including peroxisome proliferator-activated receptor (PPAR) signaling pathway (related to lipolysis) and ECM-receptor interaction (related to liver injury and apoptosis). Additionally, several of the down-regulated genes were related to detoxification and immune response. CONCLUSIONS Overall, based on the high-throughput RNA sequencing profile integrated with the results of serum biochemical analyses, consequences of lower forage availability and quality under overgrazing condition induced altered expression levels of genes participating in energy metabolism (particularly lipid metabolism) and detoxification and immune responses, causing lipolysis and impaired health status, which might be key reasons for the reduced growth performance of sheep. This investigation provides a novel foundation for the development of sheep hepatic gene interactive networks that are a response to the degraded forage availability under overgrazing condition.
Collapse
Affiliation(s)
- Weibo Ren
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Warwick Badgery
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia
| | - Yong Ding
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010019, Inner Mongolia, China
| | - Yang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130018, Jilin, China
| | - Jize Zhang
- Key Laboratory of Forage Grass, Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, Inner Mongolia, China.
| |
Collapse
|
15
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
16
|
Erasmus E, Steffens FE, van Reenen M, Vorster BC, Reinecke CJ. Biotransformation profiles from a cohort of chronic fatigue women in response to a hepatic detoxification challenge. PLoS One 2019; 14:e0216298. [PMID: 31075116 PMCID: PMC6510445 DOI: 10.1371/journal.pone.0216298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 02/02/2023] Open
Abstract
Chronic fatigue, in its various manifestations, frequently co-occur with pain, sleep disturbances and depression and is a non-communicable condition which is rapidly becoming endemic worldwide. However, it is handicapped by a lack of objective definitions and diagnostic measures. This has prompted the World Health Organization to develop an international instrument whose intended purpose is to improve quality of life (QOL), with energy and fatigue as one domain of focus. To complement this objective, the interface between detoxification, the exposome, and xenobiotic-sensing by nuclear receptors that mediate induction of biotransformation-linked genes, is stimulating renewed attention to a rational development of strategies to identify the metabolic profiles in complex multifactorial conditions like fatigue. Here we present results from a seven-year study of a cohort of 576 female patients suffering from low to high levels of chronic fatigue, in which phase I and phase II biotransformation was assessed. The biotransformation profiles used were based on hepatic detoxification challenge tests through oral caffeine, acetaminophen and acetylsalicylic acid ingestion coupled with oxidative stress analyses. The interventions indicated normal phase I but increased phase II glucuronidation and glycination conjugation. Complementarity was indicated between a fatigue scale, medical symptoms and associated energy-related parameters by application of Chi-square Automatic Interaction Detector (CHAID) analysis. The presented study provides a cluster of data from which we propose that multidisciplinary inputs from the combination of a fatigue scale, medical symptoms and biotransformation profiles provide the rationale for the development of a comprehensive laboratory instrument for improved diagnostics and personalized interventions in patients with chronic fatigue with a view to improving their QOL.
Collapse
Affiliation(s)
- Elardus Erasmus
- Human Metabolomics, North-West University (Potchefstroom Campus), South Africa
| | | | - Mari van Reenen
- Human Metabolomics, North-West University (Potchefstroom Campus), South Africa
| | - B. Chris Vorster
- Human Metabolomics, North-West University (Potchefstroom Campus), South Africa
| | - Carolus J. Reinecke
- Human Metabolomics, North-West University (Potchefstroom Campus), South Africa
| |
Collapse
|
17
|
Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B. Mol Genet Genomics 2018; 293:1279-1292. [PMID: 29948332 DOI: 10.1007/s00438-018-1460-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Benzoate (found in milk and widely used as preservative), salicylate (present in fruits and the active component of aspirin), dietary polyphenols produced by gut microbiota, metabolites from organic acidemias, and medium-chain fatty acids (MCFAs) are all metabolised/detoxified by the glycine conjugation pathway. Xenobiotics are first activated to an acyl-CoA by the mitochondrial xenobiotic/medium-chain fatty acid: CoA ligases (ACSMs) and subsequently conjugated to glycine by glycine N-acyltransferase (GLYAT). The MCFAs are activated to acyl-CoA by the ACSMs before entering mitochondrial β-oxidation. This two-step enzymatic pathway has, however, not been thoroughly investigated and the biggest gap in the literature remains the fact that studies continuously characterise the pathway as a one-step reaction. There are no studies available on the interaction/competition of the various substrates involved in the pathway, whilst very little research has been done on the ACSM ligases. To identify variants/haplotypes that should be characterised in future detoxification association studies, this study assessed the naturally observed sequence diversity and protein expression variation of ACSM2A and ACSM2B. The allelic variation, haplotype diversity, Tajima's D values, and phylogenetic analyses indicated that ACSM2A and ACSM2B are highly conserved. This confirmed an earlier hypothesis that the glycine conjugation pathway is highly conserved and essential for life as it maintains the CoA and glycine homeostasis in the liver mitochondria. The protein expression analyses showed that ACSM2A is the predominant transcript in liver. Future studies should investigate the effect of the variants identified in this study on the substrate specificity of these proteins.
Collapse
|
18
|
Hoffman TE, Hanneman WH. Physiologically-based pharmacokinetic analysis of benzoic acid in rats, guinea pigs and humans: Implications for dietary exposures and interspecies uncertainty. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Creatine maintains intestinal homeostasis and protects against colitis. Proc Natl Acad Sci U S A 2017; 114:E1273-E1281. [PMID: 28137860 DOI: 10.1073/pnas.1621400114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N-ethyl-N-nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted (Gatmc/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatmc/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatmc/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.
Collapse
|
20
|
Nortje C, van der Sluis R, van Dijk AA, Erasmus E. The Use ofp-Aminobenzoic Acid as a Probe Substance for the Targeted Profiling of Glycine Conjugation. J Biochem Mol Toxicol 2015; 30:136-47. [PMID: 26484797 DOI: 10.1002/jbt.21772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Carla Nortje
- Focus Area: Human Metabolomics; North-West University; Potchefstroom 2531 North-West South Africa
| | - Rencia van der Sluis
- Focus Area: Human Metabolomics; North-West University; Potchefstroom 2531 North-West South Africa
| | - Alberdina Aike van Dijk
- Focus Area: Human Metabolomics; North-West University; Potchefstroom 2531 North-West South Africa
| | - Elardus Erasmus
- Focus Area: Human Metabolomics; North-West University; Potchefstroom 2531 North-West South Africa
| |
Collapse
|