1
|
Hu H, Yin X, Pang S, Jiang Y, Weng Q, Hu Q, Wang J. Mechanism of destruxin a inhibits juvenile hormone binding protein transporting juvenile hormone to affect insect growth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105654. [PMID: 38072529 DOI: 10.1016/j.pestbp.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023]
Abstract
Destruxin A, a non-ribosomal peptide toxin produced by Metarhizium, exhibits potent insecticidal activity by targeting various tissues, organs, and cells of insects. Our previous research has revealed that DA possesses the ability to bind to multiple proteins. In this study, we aimed to identify the most sensitive binding proteins of DA and investigate the physiological processes in which DA regulated. Through RNAi technology, we screened 22 binding proteins of DA in silkworm hemolymph. Among them, the juvenile hormone binding protein (JHBP), a hormone transport protein crucial for growth and development regulation, exhibited the highest sensitivity to DA. Subsequent experiments demonstrated that DA could inhibit the body weight gain of silkworm larvae, accelerate the pupation occurrence, and modulate the content of free juvenile hormone (JH) in the hemolymph. We also observed that DA could induce conformational changes in both the JHBP and the JHBP-JH binding complex. Notably, at low dosage, DA influenced the binding of JHBP to JH, while at high dosage, it irreversibly affected the binding of JHBP to JH. Molecular docking and point-mutant experiments suggested that DA might affect the N-arm of JHBP, which is responsible for JH binding. Additionally, we discovered that JHBP is widely distributed in various tissues of the silkworm, including the epidermis, gut, fat body, Malpighian tubule, gonad, muscle, trachea, and hemocyte. This study provides novel insights into the insecticidal mechanism of DA and enhances our understanding of the pathogenic process of Metarhizium.
Collapse
Affiliation(s)
- Hongwang Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Xuyu Yin
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Suyun Pang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Yali Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Shen Z, Yang Q, Luo L, Li T, Ke Z, Li T, Chen J, Meng X, Xiang H, Li C, Zhou Z, Chen P, Pan G. Non-coding RNAs identification and regulatory networks in pathogen-host interaction in the microsporidia congenital infection. BMC Genomics 2023; 24:420. [PMID: 37495972 PMCID: PMC10373312 DOI: 10.1186/s12864-023-09490-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.
Collapse
Affiliation(s)
- Zigang Shen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Qiong Yang
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People's Republic of China
| | - Lie Luo
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tangxin Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zhuojun Ke
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China
- College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, People's Republic of China.
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Tiansheng Street, Chongqing, 400715, People's Republic of China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Shen ZJ, Liu YJ, Cheng J, Li Z, Michaud JP, Liu XX. High temperature exposure reduces the susceptibility of Helicoverpa armigera to its nucleopolyhedrovirus (HearNPV) by enhancing expression of heat shock proteins. PEST MANAGEMENT SCIENCE 2022; 78:2378-2389. [PMID: 35289068 DOI: 10.1002/ps.6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND High temperatures will occur more frequently with global warming, with potential impacts on the efficacy of biological control agents. Heat shock proteins (HSPs) are induced by high temperature, but their possible roles in pest resistance to entomopathogens remain unexplored. We investigated the effects of high temperature (35 °C) on Helicoverpa armigera resistance to H. armigera nucleopolyhedrovirus (HearNPV) and the putative roles of HSPs in this process. RESULTS Even short periods (24 h) of high temperature (35 °C) reduced mortality in HearNPV-infected H. armigera larvae. Sustained 35 °C exposure significantly shortened developmental time, and increased fresh weight and locomotor activity in infected larvae. Moreover, high temperature inhibited virus replication and thickened the epidermis of H. armigera, resulting in reduced spread of infection from cadavers. Real-time polymerase chain reaction (PCR) analysis showed that expression of 11 HSP genes was altered by the 35 °C treatment, and that mostly small heat shock protein (sHSP) genes were up-regulated, the same sHSPs were induced when larvae were infected with HearNPV. Finally, RNA interference (RNAi) suppression of these sHSPs showed that only Hsp24.91 and Hsp21.8 diminished H. armigera defensive responses to HearNPV infection. CONCLUSION Even short periods of exposure to high temperature can significantly reduce susceptibility of H. armigera larvae to HearNPV by stimulating the production of sHSPs which enhance immune responses, with important implications for the use of entomopathogens as biological control agents under global warming scenarios. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Duan J, Li Y, Du J, Duan E, Lei Y, Liang S, Zhang X, Zhao X, Kan Y, Yao L, Yang X, Zhang X, Wu X. A chromosome‐scale genome assembly of
Antheraea pernyi
(Saturniidae, Lepidoptera). Mol Ecol Resour 2020; 20:1372-1383. [DOI: 10.1111/1755-0998.13199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Ying Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Erzhen Duan
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Yuyu Lei
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xin Zhao
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Yunchao Kan
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, Henan Engineering Lab of Insects Bio‐reactor College of Agricultural Engineering, Nanyang Normal University Nanyang China
| | - Xinfeng Yang
- Henan Institute of Sericulture Science Zhengzhou China
| | - Xingtan Zhang
- Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology Fujian Agriculture and Forestry University Fuzhou China
| | | |
Collapse
|
5
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
6
|
Liu Y, Xin ZZ, Zhang DZ, Zhu XY, Wang Y, Chen L, Tang BP, Zhou CL, Chai XY, Tian JW, Liu QN. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi. Int J Biol Macromol 2018; 112:1199-1207. [DOI: 10.1016/j.ijbiomac.2018.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|
7
|
Liu QN, Liu Y, Xin ZZ, Zhu XY, Ge BM, Li CF, Wang D, Bian XG, Yang L, Chen L, Tian JW, Zhou CL, Tang BP. A small heat shock protein 21 (sHSP21) mediates immune responses in Chinese oak silkworm Antheraea pernyi. Int J Biol Macromol 2018; 111:1027-1031. [DOI: 10.1016/j.ijbiomac.2018.01.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
8
|
Xin ZZ, Liu QN, Liu Y, Zhang DZ, Wang ZF, Zhang HB, Ge BM, Zhou CL, Chai XY, Tang BP. Transcriptome-Wide Identification of Differentially Expressed Genes in Chinese Oak Silkworm Antheraea pernyi in Response to Lead Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9305-9314. [PMID: 28954195 DOI: 10.1021/acs.jafc.7b03391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antheraea pernyi is a commercially cultivated silk moth and a source of insect food with high-quality protein. Insects suffer oxidative stress on exposure to heavy metals, and reactive oxygen species are cleared by antioxidant enzymes. To gain better understanding of the antioxidant defense system of A. pernyi, we analyzed transcriptomes of pupae after stimulation with lead and phosphate-buffered saline (control). In total, 72 367 unigenes were identified. Gene ontology analysis revealed that these DEGs were in 20 biological process subcategories, 19 cellular component subcategories, and 18 molecular function subcategories. Clusters of orthologous groups of protein annotation placed a total of 528 DEGs into 25 categories. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified antioxidant defense pathways, including "Peroxisome" and "Glutathione metabolism", which are reported for the first time in A. pernyi. Our study enriches A. pernyi transcriptome databases and provides insight into the heavy metal responses of antioxidant systems of this insect fat bodies.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Bao-Ming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University , Yancheng 224007, P. R. China
| |
Collapse
|