1
|
Carrillo JFC, Boaretto AG, Santana DJ, Silva DB. Skin secretions of Leptodactylidae (Anura) and their potential applications. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230042. [PMID: 38374940 PMCID: PMC10876013 DOI: 10.1590/1678-9199-jvatitd-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 02/21/2024] Open
Abstract
The skin of anuran species is a protective barrier against predators and pathogens, showing also chemical defense by substances that represent a potential source for bioactive substances. This review describes the current chemical and biological knowledge from the skin secretions of Leptodactylidae species, one of the most diverse neotropical frog families. These skin secretions reveal a variety of substances such as amines (12), neuropeptides (16), and antimicrobial peptides (72). The amines include histamine and its methylated derivatives, tryptamine derivatives and quaternary amines. The peptides of Leptodactylidae species show molecular weight up to 3364 Da and ocellatins are the most reported. The peptides exhibit commonly glycine (G) or glycine-valine (GV) as C-terminal amino acids, and the most common N-terminal amino acids are glutamic acid (E), lysine (K), and valine (V). The substances from Leptodactylidae species have been evaluated against pathogenic microorganisms, particularly Escherichia coli and Staphylococcus aureus, and the most active peptides showed MIC of 1-15 µM. Furthermore, some compounds showed also pharmacological properties such as immunomodulation, treatment of degenerative diseases, anticancer, and antioxidant. Currently, only 9% of the species in this family have been properly studied, highlighting a large number of unstudied species such as an entire subfamily (Paratelmatobiinae). The ecological context, functions, and evolution of peptides and amines in this family are poorly understood and represent a large field for further exploration.
Collapse
Affiliation(s)
- Juan F. C. Carrillo
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Galdi Boaretto
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Diego J. Santana
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Tian C, Zhao N, Yang L, Lin F, Cai R, Zhang Y, Peng J, Guo G. The antibacterial activity and mechanism of a novel peptide MR-22 against multidrug-resistant Escherichia coli. Front Cell Infect Microbiol 2024; 14:1334378. [PMID: 38328670 PMCID: PMC10847306 DOI: 10.3389/fcimb.2024.1334378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Bacterial infections have become serious threats to human health, and the excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria. E. coli is a human bacterial pathogen, which can cause severe infectious. Antimicrobial peptides are considered the most promising alternative to traditional antibiotics. Materials and methods The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and hemolytic activity were determined by the microdilution method. The antimicrobial kinetics of MR-22 against E. coli were studied by growth curves and time-killing curves. The cytotoxicity of MR-22 was detected by the CCK-8 assay. The antimicrobial activity of MR-22 in salt, serum, heat and trypsin was determined by the microdilution method. The antimicrobial mechanism of MR-22 against drug-resistant E. coli was studied by Scanning Electron Microscope, laser confocal microscopy, and Flow Cytometry. The in vivo antibacterial activity of MR-22 was evaluated by the mice model of peritonitis. Results and discussion In this study, MR-22 is a new antimicrobial peptide with good activity that has demonstrated against MDR E. coli. The antimicrobial activity of MR-22 exhibited stability under conditions of high temperature, 10% FBS, and Ca2+. However, a decline of the activity was observed in the presence of Na+, serum, and trypsin. MR-22 had no significant cytotoxicity or hemolysis in vitro. SEM and fluorescent images revealed that MR-22 could disrupt the integrity of cell membrane. DCFH-DA indicated that MR-22 increased the content of reactive oxygen species, while it decreased the content of intracellular ATP. In mice model of peritonitis, MR-22 exhibited potent antibacterial activity in vivo. These results indicated that MR-22 is a potential drug candidate against drug-resistant E. coli.
Collapse
Affiliation(s)
- Chunren Tian
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
- Clinical Laboratory, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Na Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Longbing Yang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Fei Lin
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Ruxia Cai
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Yong Zhang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Xu K, Zhao X, Tan Y, Wu J, Cai Y, Zhou J, Wang X. A systematical review on antimicrobial peptides and their food applications. BIOMATERIALS ADVANCES 2023; 155:213684. [PMID: 37976831 DOI: 10.1016/j.bioadv.2023.213684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - XinYi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Junheng Wu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yiqing Cai
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China..
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Conlon JM, Guilhaudis L, Attoub S, Coquet L, Leprince J, Jouenne T, Mechkarska M. Purification, conformational analysis and cytotoxic activities of host-defense peptides from the Tungara frog Engystomops pustulosus (Leptodactylidae; Leiuperinae). Amino Acids 2023; 55:1349-1359. [PMID: 37548712 PMCID: PMC10689532 DOI: 10.1007/s00726-023-03312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelmatobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied extensively, but information is limited regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAKKLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secretions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% trifluoroethanol-water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimicrobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP was inactive against both the tumor-derived cells and bacteria.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Laure Guilhaudis
- Laboratoire COBRA (UMR 6014 & FR 3038), INSA de Rouen, CNRS, Université Rouen Normandie, 76000, Rouen, France
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, 17666, Al Ain, United Arab Emirates
| | - Laurent Coquet
- CNRS UAR2026, HeRacLeS-PISSARO PBS UMR 6270, Université Rouen Normandie, 76000, Rouen, France
| | - Jérôme Leprince
- CNRS UAR2026, HeRacLeS-PISSARO PBS UMR 6270, Université Rouen Normandie, 76000, Rouen, France
- INSERM, Normandie Université, NorDiC UMR 1239, HeRacLeS, US 51, PRIMACEN, Université Rouen Normandie, 76000, Rouen, France
| | - Thierry Jouenne
- CNRS UAR2026, HeRacLeS-PISSARO PBS UMR 6270, Université Rouen Normandie, 76000, Rouen, France
| | - Milena Mechkarska
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| |
Collapse
|
5
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
6
|
Iles B, Ribeiro de Sá Guimarães Nolêto I, Dourado FF, de Oliveira Silva Ribeiro F, de Araújo AR, de Oliveira TM, Souza JMT, Barros AB, Sousa GC, de Jesus Oliveira AC, da Silva Martins C, de Oliveira Viana Veras M, de Carvalho Leitão RF, de Souza de Almeida Leite JR, da Silva DA, Medeiros JVR. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NANOIMPACT 2021; 24:100355. [PMID: 35559814 DOI: 10.1016/j.impact.2021.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.
Collapse
Affiliation(s)
- Bruno Iles
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela Ribeiro de Sá Guimarães Nolêto
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Flaviane França Dourado
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Taiane Maria de Oliveira
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jessica Maria Teles Souza
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ayslan Batista Barros
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle Costa Sousa
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Center for Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - University City, Recife, PE 50670-901, Brazil
| | - Conceição da Silva Martins
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Mariana de Oliveira Viana Veras
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - José Roberto de Souza de Almeida Leite
- Center for Research in Applied Morphology and Immunology - NuPMIA, University of Brasilia, Campus Darcy Ribeiro - Asa Norte-Brasília-DF, CEP 70.910-900 Brasilia, Brazil
| | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
7
|
Dematei A, Nunes JB, Moreira DC, Jesus JA, Laurenti MD, Mengarda ACA, Vieira MS, do Amaral CP, Domingues MM, de Moraes J, Passero LFD, Brand G, Bessa LJ, Wimmer R, Kuckelhaus SAS, Tomás AM, Santos NC, Plácido A, Eaton P, Leite JRSA. Mechanistic Insights into the Leishmanicidal and Bactericidal Activities of Batroxicidin, a Cathelicidin-Related Peptide from a South American Viper ( Bothrops atrox). JOURNAL OF NATURAL PRODUCTS 2021; 84:1787-1798. [PMID: 34077221 DOI: 10.1021/acs.jnatprod.1c00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.
Collapse
Affiliation(s)
- Anderson Dematei
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - João B Nunes
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Jéssica A Jesus
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Márcia D Laurenti
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Ana C A Mengarda
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Maria Silva Vieira
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
| | - Constança Pais do Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Josué de Moraes
- Research Center on Neglected Diseases, NPDN, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Luiz F D Passero
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
- Department of Pathology, Laboratory of Pathology of Infectious Diseases, Faculty of Medicine, University of São Paulo, São Paulo 05508-060, Brazil
| | - Guilherme Brand
- Laboratory for the Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, University of Brasilia, Brasília 70910-900, Brazil
| | - Lucinda J Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Selma A S Kuckelhaus
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| | - Ana M Tomás
- I3S, Institute of Research and Innovation in Health, University of Porto, Porto 4099-002, Portugal
- IBMC, Institute of Molecular and Cellular Biology, University of Porto, Porto 4099-002, Portugal
- ICBAS, Abel Salazar Institute for Biomedical Research, University of Porto, Porto 4099-002, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4099-002, Portugal
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K
| | - José Roberto S A Leite
- Center for Tropical Medicine, NMT, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasília 70910-900, Brazil
| |
Collapse
|
8
|
Ferraro DP, Pereyra MO, Topa PE, Faivovich J. Evolution of macroglands and defensive mechanisms in Leiuperinae (Anura: Leptodactylidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Anurans show a wide variety of anti-predator mechanisms, and the species of the Neotropical clade Leiuperinae display several of them. Most species of Edalorhina, Physalaemus and Pleurodema show eyespots, hidden bright colours, macroglands in a inguinal/lumbar position, defensive behaviours and/or chemical defence. We conducted a histological analysis of dorsal and lumbar skin and revised the colour patterns, defensive behaviours and glandular secretions to study the diversity and evolution of anti-predator mechanisms associated with macroglands. We describe 17 characters and optimize these in a phylogenetic hypothesis of Leiuperinae. In the most recent common ancestor of Edalorhina + Engystomops + Physalaemus + Pleurodema, a particular type of serous gland (the main component of macroglands) evolved in the lumbar skin, along with the absence of the Eberth–Katschenko layer. A defensive behaviour observed in leiuperines with macroglands includes four displays (‘crouching down’ behaviour, rear elevation, body inflation and eye protection), all present in the same ancestor. The two elements associated with aposematism (hidden bright colours and eyespots) evolved independently in several species. Our results provide phylogenetic evidence for the startle-first hypothesis, which suggests that behavioural displays arise as sudden movements in camouflaged individuals to avoid predatory attacks, before the origin of bright coloration.
Collapse
Affiliation(s)
- Daiana Paola Ferraro
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (CONICET), Buenos Aires, Argentina
| | - Martín Oscar Pereyra
- Laboratorio de Genética Evolutiva ‘Claudio J. Bidau’, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pascual Emilio Topa
- Centro de Estudios Parasitológicos y de Vectores (CONICET), La Plata, Buenos Aires, Argentina
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Identification of New Ocellatin Antimicrobial Peptides by cDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. Antibiotics (Basel) 2020; 9:antibiotics9110751. [PMID: 33138046 PMCID: PMC7693824 DOI: 10.3390/antibiotics9110751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
Ocellatins are a family of antimicrobial peptides found exclusively in the Leptodactylus genus. To date, 10 species have been studied and more than 23 peptides described. Here we report the sequences of five new peptides from the skin of the frog Leptodactylus latrans (Anura: Leptodactylidae) determined by cDNA cloning of the complete prepro-peptide structures. The mature peptides were characterized with in silico tools and compared with those previously described. With 21 amino acid residues, this new set of peptides not previously described in the Leptodactylus genus share between 100 and 76.2% similarity to ocellatin antimicrobial peptides. These novel peptides are cationic and their three-dimensional (3D) structure holds the highly conserved residues G1, D4, K7, and K11 and a high theoretical amphipathic α-helix content. Furthermore, in silico analyses of these new peptides predicted antimicrobial activity. This study is framed in the context of previous work published about ocellatins, and therefore, provides a review of this intriguing family of peptides.
Collapse
|
10
|
Cancelarich NL, Wilke N, Fanani MAL, Moreira DC, Pérez LO, Alves Barbosa E, Plácido A, Socodato R, Portugal CC, Relvas JB, de la Torre BG, Albericio F, Basso NG, Leite JR, Marani MM. Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog Pleurodema somuncurense. JOURNAL OF NATURAL PRODUCTS 2020; 83:972-984. [PMID: 32134261 DOI: 10.1021/acs.jnatprod.9b00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The skin glands of amphibian species hold a major component of their innate immunity, namely a unique set of antimicrobial peptides (AMPs). Although most of them have common characteristics, differences in AMP sequences allow a huge repertoire of biological activity with varying degrees of efficacy. We present the first study of the AMPs from Pleurodema somuncurence (Anura: Leptodactylidae: Leiuperinae). Among the 11 identified mature peptides, three presented antimicrobial activity. Somuncurin-1 (FIIWPLRYRK), somuncurin-2 (FILKRSYPQYY), and thaulin-3 (NLVGSLLGGILKK) inhibited Escherichia coli growth. Somuncurin-1 also showed antimicrobial activity against Staphylococcus aureus. Biophysical membrane model studies revealed that this peptide had a greater permeation effect in prokaryotic-like membranes and capacity to restructure liposomes, suggesting fusogenic activity, which could lead to cell aggregation and disruption of cell morphology. This study contributes to the characterization of peptides with new sequences to enrich the databases for the design of therapeutic agents. Furthermore, it highlights the importance of investing in nature conservation and the power of genetic description as a strategy to identify new compounds.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPEEC-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Natalia Wilke
- Departamento de Quı́mica Biológica Ranwel Caputto, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Centro de Investigaciones en Quı́mica Biológica de Córdoba, CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Marı A L Fanani
- Departamento de Quı́mica Biológica Ranwel Caputto, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Centro de Investigaciones en Quı́mica Biológica de Córdoba, CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Daniel C Moreira
- Área de Morfologia, Faculdade de Medicina, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Luis O Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPCSH-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Eder Alves Barbosa
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brası́lia 70770-917, Brazil
- Laboratório de Sı́ntese e Análise de Biomoléculas, Instituto de Quı́mica, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciéncias da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IDEAus-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - José R Leite
- Área de Morfologia, Faculdade de Medicina, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPEEC-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| |
Collapse
|
11
|
Chlamydomonas reinhardtii-expressed multimer of ToAMP4 inhibits the growth of bacteria of both Gram-positive and Gram-negative. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020; 10:biom10040512. [PMID: 32230960 PMCID: PMC7226163 DOI: 10.3390/biom10040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.
Collapse
|
13
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
14
|
Plácido A, Ferreira-da-Silva F, Leite JRSA, de-los-Santos-Álvarez N, Delerue-Matos C. A convenient renewable surface plasmon resonance chip for relative quantification of genetically modified soybean in food and feed. PLoS One 2020; 15:e0229659. [PMID: 32101588 PMCID: PMC7043770 DOI: 10.1371/journal.pone.0229659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
The cultivation of genetically modified organisms (GMO) continues to expand worldwide. Still, many consumers express concerns about the use of GMO in food or feed, and many countries have legislated on labelling systems to indicate the presence of GMO in commercial products. To deal with the increased number of GMO events and to address related regulations, alternative detection methods for GMO inspection are required. In this work, a genosensor based on Surface Plasmon Resonance under continuous flow was developed for the detection and quantification of a genetically modified soybean (event GTS 40-3-2). In a single chip, the simultaneous detection of the event-specific and the taxon-specific samples were achieved, whose detection limits were 20 pM and 16 pM, respectively. The reproducibility was 1.4%, which supports the use of the chip as a reliable and cost-effective alternative to other DNA-based techniques. The results indicate that the proposed method is a versatile tool for GMO quantification in food and feed samples.
Collapse
Affiliation(s)
- Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - José Roberto S. A. Leite
- Área Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, Federal District, Brazil
| | | | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
15
|
Pereira LA, da Silva Reis L, Batista FA, Mendes AN, Osajima JA, Silva-Filho EC. Biological properties of chitosan derivatives associated with the ceftazidime drug. Carbohydr Polym 2019; 222:115002. [DOI: 10.1016/j.carbpol.2019.115002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/03/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022]
|
16
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
17
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
18
|
Meng DM, Lv YJ, Zhao JF, Liu QY, Shi LY, Wang JP, Yang YH, Fan ZC. Efficient production of a recombinant Venerupis philippinarum defensin (VpDef) in Pichia pastoris and characterization of its antibacterial activity and stability. Protein Expr Purif 2018. [PMID: 29524591 DOI: 10.1016/j.pep.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
VpDef is a novel defensin isolated from the clam Venerupis philippinarum. Previously it was expressed in Escherichia coli; however, the E. coli-derived recombinant VpDef did not show effective antimicrobial activity against Staphyloccocus aureus or the Gram-negative bacteria tested. As such, the goal of this study was to design, express, and purify a recombinant VpDef (rVpDef) in Pichia pastoris and to determine its antibacterial potency and stability. A 6.9 KDa rVpDef was successfully expressed as a secreted peptide in P. pastoris, and the amount of rVpDef accumulation was shown to reach as high as approximate 60 μg per 1 ml of culture medium only after an initial optimization was performed. The purified rVpDef demonstrated a broad antibacterial spectrum and was active against six typical common bacteria, both Gram-positive and Gram-negative. A minimal inhibition concentration of as low as 50 μg/ml was observed for rVpDef against the growth of E. coli O157 (ATCC 35150). Moreover, rVpDef was tolerant to temperature shock and proteinase digestion and maintained a high stability over a relatively broad pH range. In addition, rVpDef had a low hemolytic activity against rabbit erythrocytes. Taken together, this study demonstrated that rVpDef could be produced in a large-scale manner in P. pastoris and has a good antibacterial activity and suitable stability. This is the first report on heterologous expression of a biologically active VpDef in P. pastoris, supporting its use for both research and application purposes.
Collapse
Affiliation(s)
- De-Mei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yu-Jie Lv
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jing-Fang Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qing-Yan Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lin-Yue Shi
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jun-Ping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yong-Hai Yang
- Tianjin Haifa Sea Food Industrial Development Co., LTD, People's Republic of China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Institute of Health Biotechnology, International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China; Obesita & Algaegen LLC, College Station, TX 77845, USA.
| |
Collapse
|
19
|
Bessa LJ, Eaton P, Dematei A, Plácido A, Vale N, Gomes P, Delerue-Matos C, Sa Leite JR, Gameiro P. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol 2018; 13:151-163. [PMID: 29308671 DOI: 10.2217/fmb-2017-0175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To test ocellatin peptides (ocellatins-PT2-PT6) for antibacterial and antibiofilm activities and synergy with antibiotics against Pseudomonas aeruginosa. MATERIALS & METHODS Normal- and checkerboard-broth microdilution methods were used. Biofilm studies included microtiter plate-based assays and microscopic analysis by confocal laser scanning microscopy and atomic force microscopy. RESULTS Ocellatins were more active against multidrug-resistant isolates of P. aeruginosa than against susceptible strains. Ocellatin-PT3 showed synergy with ciprofloxacin and ceftazidime against multidrug-resistant isolates and was capable of preventing the proliferation of 48-h mature biofilms at concentrations ranging from 4 to 8× the MIC. Treated biofilms had low viability and were slightly more disaggregated. CONCLUSION Ocellatin-PT3 may be promising as a template for the development of novel antimicrobial peptides against P. aeruginosa. [Formula: see text].
Collapse
Affiliation(s)
- Lucinda J Bessa
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Anderson Dematei
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal.,Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900 Brasil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Engenharia Química, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Nuno Vale
- UCIBIO/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV/REQUIMTE, Departamento de Engenharia Química, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - José Roberto Sa Leite
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.,Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900 Brasil
| | - Paula Gameiro
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Su X, Zhou X, Tan Z, Zhou C. Highly efficient antibacterial diblock copolypeptides based on lysine and phenylalanine. Biopolymers 2017; 107. [DOI: 10.1002/bip.23041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaokai Su
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Xinyu Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Zhengzhong Tan
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Chuncai Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| |
Collapse
|