1
|
Huang M, Chen B, Chen X, Liu T, Liang S, Hu H, Bai X, Gong Y. RanGAP1 maintains chromosome stability in limb bud mesenchymal cells during bone development. Cell Signal 2024; 120:111222. [PMID: 38729327 DOI: 10.1016/j.cellsig.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Bone development involves the rapid proliferation and differentiation of osteogenic lineage cells, which makes accurate chromosomal segregation crucial for ensuring cell proliferation and maintaining chromosomal stability. However, the mechanism underlying the maintenance of chromosome stability during the rapid proliferation and differentiation of Prx1-expressing limb bud mesenchymal cells into osteoblastic precursor cells remains unexplored. METHODS A transgenic mouse model of RanGAP1 knockout of limb and head mesenchymal progenitor cells was constructed to explore the impact of RanGAP1 deletion on bone development by histomorphology and immunostaining. Subsequently, G-banding karyotyping analysis and immunofluorescence staining were used to examine the effects of RanGAP1 deficiency on chromosome instability. Finally, the effects of RanGAP1 deficiency on chromothripsis and bone development signaling pathways were elucidated by whole-genome sequencing, RNA-sequencing, and qPCR. RESULTS The ablation of RanGAP1 in limb and head mesenchymal progenitor cells expressing Prx1 in mice resulted in embryonic lethality, severe cartilage and bone dysplasia, and complete loss of cranial vault formation. Moreover, RanGAP1 loss inhibited chondrogenic or osteogenic differentiation of mesenchymal stem cells (MSCs). Most importantly, we found that RanGAP1 loss in limb bud mesenchymal cells triggered missegregation of chromosomes, resulting in chromothripsis of chromosomes 1q and 14q, further inhibiting the expression of key genes involved in multiple bone development signaling pathways such as WNT, Hedgehog, TGF-β/BMP, and PI3K/AKT in the chromothripsis regions, ultimately disrupting skeletal development. CONCLUSIONS Our results establish RanGAP1 as a critical regulator of bone development, as it supports this process by preserving chromosome stability in Prx1-expressing limb bud mesenchymal cells.
Collapse
Affiliation(s)
- Minjun Huang
- Department of Spine Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China; Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Bochong Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianxiao Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Siying Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongling Hu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan 528399, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan Gong
- Department of Spine Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Morfin C, Sebastian A, Wilson SP, Amiri B, Murugesh DK, Hum NR, Christiansen BA, Loots GG. Mef2c regulates bone mass through Sost-dependent and -independent mechanisms. Bone 2024; 179:116976. [PMID: 38042445 DOI: 10.1016/j.bone.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.
Collapse
Affiliation(s)
- Cesar Morfin
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G Loots
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
4
|
Basu S, Ro EJ, Liu Z, Kim H, Bennett A, Kang S, Suh H. The Mef2c Gene Dose-Dependently Controls Hippocampal Neurogenesis and the Expression of Autism-Like Behaviors. J Neurosci 2024; 44:e1058232023. [PMID: 38123360 PMCID: PMC10860657 DOI: 10.1523/jneurosci.1058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Mutations in the activity-dependent transcription factor MEF2C have been associated with several neuropsychiatric disorders. Among these, autism spectrum disorder (ASD)-related behavioral deficits are manifested. Multiple animal models that harbor mutations in Mef2c have provided compelling evidence that Mef2c is indeed an ASD gene. However, studies in mice with germline or global brain knock-out of Mef2c are limited in their ability to identify the precise neural substrates and cell types that are required for the expression of Mef2c-mediated ASD behaviors. Given the role of hippocampal neurogenesis in cognitive and social behaviors, in this study we aimed to investigate the role of Mef2c in the structure and function of newly generated dentate granule cells (DGCs) in the postnatal hippocampus and to determine whether disrupted Mef2c function is responsible for manifesting ASD behaviors. Overexpression of Mef2c (Mef2cOE ) arrested the transition of neurogenesis at progenitor stages, as indicated by sustained expression of Sox2+ in Mef2cOE DGCs. Conditional knock-out of Mef2c (Mef2ccko ) allowed neuronal commitment of Mef2ccko cells; however, Mef2ccko impaired not only dendritic arborization and spine formation but also synaptic transmission onto Mef2ccko DGCs. Moreover, the abnormal structure and function of Mef2ccko DGCs led to deficits in social interaction and social novelty recognition, which are key characteristics of ASD behaviors. Thus, our study revealed a dose-dependent requirement of Mef2c in the control of distinct steps of neurogenesis, as well as a critical cell-autonomous function of Mef2c in newborn DGCs in the expression of proper social behavior in both sexes.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Eun Jeoung Ro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Zhi Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Hyunjung Kim
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Aubrey Bennett
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Seungwoo Kang
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Hoonkyo Suh
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| |
Collapse
|
5
|
Jaffery H, Huesa C, Chilaka S, Cole J, Doonan J, Akbar M, Dunning L, Tanner KE, van ‘t Hof RJ, McInnes IB, Carmody RJ, Goodyear CS. IĸB Protein BCL3 as a Controller of Osteogenesis and Bone Health. Arthritis Rheumatol 2023; 75:2148-2160. [PMID: 37410754 PMCID: PMC10952620 DOI: 10.1002/art.42639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology. METHODS To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and wild-type (WT) controls were characterized for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength, and turnover were assessed. A destabilization of the medial meniscus model of osteoarthritic osteophytogenesis was used to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength, and altered bone turnover. Molecular and cellular characterization of mesenchymal precursors showed that Bcl3-/- cells displayed an accelerated osteogenic transcriptional profile that led to enhanced differentiation into osteoblasts with increased functional activity, which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibited decreased pathological osteophyte formation (P < 0.05). CONCLUSION Cumulatively, these findings demonstrate that BCL3 controls developmental mineralization to enable appropriate bone formation, whereas in a pathological setting, it contributes to skeletal pathology.
Collapse
Affiliation(s)
- Hussain Jaffery
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Carmen Huesa
- School of Infection & Immunity, University of Glasgow, Glasgow and Institute of Biomedical & Environmental Health, University of the West of ScotlandPaisleyUK
| | | | - John Cole
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - James Doonan
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Moeed Akbar
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | - Lynette Dunning
- Institute of Biomedical & Environmental HealthUniversity of the West of ScotlandPaisleyUK
| | - Kathleen Elizabeth Tanner
- James Watt School of EngineeringUniversity of GlasgowGlasgowUK
- Present address:
School of Engineering and Materials Science and Institute of BioengineeringQueen Mary University of LondonLondonUK
| | - Rob J. van ‘t Hof
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Iain B. McInnes
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | | | |
Collapse
|
6
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
7
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
8
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
9
|
Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne) 2022; 13:1095711. [PMID: 36619549 PMCID: PMC9815800 DOI: 10.3389/fendo.2022.1095711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Wnts are secreted cysteine-rich glycoproteins involved in joint development and skeletal homeostasis and have been implicated in the occurrence of osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has received widespread attention for its strong association with bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. In recent years, further studies have shed light on the role of Wnt16 a positive regulator of bone mass and protective regulator of osteoarthritis progression. Transduction mechanisms and crosstalk involving Wnt16 signaling have also been illustrated. More importantly, local Wnt16 treatment has been shown to ease osteoarthritis, inhibit bone resorption, and promote new bone formation in bone defect models. Thus, Wnt16 is now a potential therapeutic target for skeletal diseases and osteoarthritis. This paper reviews our current understanding of the mechanisms by which Wnt16 signaling regulates bone homeostasis and osteoarthritis.
Collapse
|
10
|
Loss of Wnt16 Leads to Skeletal Deformities and Downregulation of Bone Developmental Pathway in Zebrafish. Int J Mol Sci 2021; 22:ijms22136673. [PMID: 34206401 PMCID: PMC8268848 DOI: 10.3390/ijms22136673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16−/− zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16−/− zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16−/− using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.
Collapse
|
11
|
Wu YZ, Huang HT, Cheng TL, Lu YM, Lin SY, Ho CJ, Lee TC, Hsu CH, Huang PJ, Huang HH, Li JY, Su YD, Chen SC, Kang L, Chen CH. Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures. Int J Mol Sci 2021; 22:ijms22105232. [PMID: 34063380 PMCID: PMC8156577 DOI: 10.3390/ijms22105232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) could serve as ideal entry points to the deregulated pathways in osteoporosis due to their relatively simple upstream and downstream relationships with other molecules in the signaling cascades. Our study aimed to give a comprehensive review of the already identified miRNAs in osteoporosis from human blood samples and provide useful information for their clinical application. A systematic literature search for relevant studies was conducted in the Pubmed database from inception to December 2020. We set two essential inclusion criteria: human blood sampling and design of controlled studies. We sorted the results of analysis on human blood samples according to the study settings and compiled the most promising miRNAs with analyzed diagnostic values. Furthermore, in vitro and in vivo evidence for the mechanisms of the identified miRNAs was also illustrated. Based on both diagnostic value and evidence of mechanism from in vitro and in vivo experiments, miR-23b-3p, miR-140-3p, miR-300, miR-155-5p, miR-208a-3p, and miR-637 were preferred candidates in diagnostic panels and as therapeutic agents. Further studies are needed to build sound foundations for the clinical usage of miRNAs in osteoporosis.
Collapse
Affiliation(s)
- Yen-Zung Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Yen-Mou Lu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Chia-Hao Hsu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Peng-Ju Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60004, Taiwan;
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Yu-De Su
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Chieh Chen
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Medical Records, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| |
Collapse
|
12
|
Oka S, Li X, Zhang F, Tewari N, Ma R, Zhong L, Makishima M, Liu Y, Bhawal UK. MicroRNA-21 facilitates osteoblast activity. Biochem Biophys Rep 2020; 25:100894. [PMID: 33426313 PMCID: PMC7782325 DOI: 10.1016/j.bbrep.2020.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are emerging as critical post-transcriptional modulators in bone remodeling, regulating the functions of osteoblasts and osteoclasts. Intercellular crosstalk between osteoblasts and osteoclasts is mediated by miR-21 that controls the bone homeostasis response, providing potential targets for the maintenance of osteoblast function. The aim of this study was to investigate the effects of miR-21 on osteoblast function, and to explore the underlying mechanism. Increased alkaline phosphatase (ALP) activity and accelerated matrix mineralization was observed in mouse pre-osteoblast MC3T3-E1 cells compared with the non-induction (control) group. MiR-21 positively regulates osteogenic differentiation and mineralization by facilitating the expression of key osteogenic factors (ALP, Runx2, Osteopontin (OPN), Osterix (OSX) and Mef2c) in MC3T3-E1 cells. Furthermore, a deficiency of miR-21 suppresses the expression of those factors at both the mRNA and protein levels, indicating that miR-21 is a positive regulator of osteoblastic differentiation. H-E staining, Azan staining, Masson's Trichrome staining and Toluidine blue staining were performed in jaw and femur tissues of miR-21 knockout (miR-21KO) and wild-type (WT) mice. Immunohistochemical staining revealed substantially lower levels of ALP, Runx2 and OSX expression in jaw and femur tissues of miR-21KO mice. A similar trend was observed in femur tissues using quantitative real-time (RT) PCR. A total of 17 osteogenesis-related mRNAs were found to be differentially expressed in miR-21KO femur tissues using Mouse Gene Expression Microarray analysis. GeneSpring and Ingenuity Pathway Analysis revealed several potential target genes that are involved in bone remodeling, such as IL-1β and HIF-1α. Several important pathways were determined to be facilitators of miR-21, which provides a reliable reference for future studies to elucidate the biological mechanisms of osteoblast function. Taken together, these results lead us to hypothesize a potential role for miR-21 in regulating osteoblast function, thus representing a potential biomarker of osteogenesis.
Collapse
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Fengzhu Zhang
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ri Ma
- Department of Conservative Dentistry & Endodontology, College of Stomatology, Guangxi Medical University, Nanning, PR China
| | - Liangjun Zhong
- Department of Stomatology, Hangzhou Normal University, Hangzhou, PR China
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo, Japan
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
13
|
Jin Y, Sun X, Pei F, Zhao Z, Mao J. Wnt16 signaling promotes osteoblast differentiation of periosteal derived cells in vitro and in vivo. PeerJ 2020; 8:e10374. [PMID: 33282557 PMCID: PMC7694570 DOI: 10.7717/peerj.10374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Background Periosteum plays critical roles in de novo bone formation and fracture repair. Wnt16 has been regarded as a key regulator in periosteum bone formation. However, the role of Wnt16 in periosteum derived cells (PDCs) osteogenic differentiation remains unclear. The study goal is to uncover whether and how Wnt16 acts on the osteogenesis of PDCs. Methods We detected the variation of Wnt16 mRNA expression in PDCs, which were isolated from mouse femur and identified by flow cytometry, cultured in osteogenic medium for 14 days, then knocked down and over-expressed Wnt16 in PDCs to analysis its effects in osteogenesis. Further, we seeded PDCs (Wnt16 over-expressed/vector) in β-tricalcium phosphate cubes, and transplanted this complex into a critical size calvarial defect. Lastly, we used immunofluorescence, Topflash and NFAT luciferase reporter assay to study the possible downstream signaling pathway of Wnt16. Results Wnt16 mRNA expression showed an increasing trend in PDCs under osteogenic induction for 14 days. Wnt16 shRNA reduced mRNA expression of Runx2, collage type I (Col-1) and osteocalcin (OCN) after 7 days of osteogenic induction, as well as alizarin red staining intensity after 21days. Wnt16 also increased the mRNA expression of Runx2 and OCN and the protein production of Runx2 and Col-1 after 2 days of osteogenic stimulation. In the orthotopic transplantation assay, more bone volume, trabecula number and less trabecula space were found in Wnt16 over-expressed group. Besides, in the newly formed tissue Brdu positive area was smaller and Col-1 was larger in Wnt16 over-expressed group compared to the control group. Finally, Wnt16 upregulated CTNNB1/β-catenin expression and its nuclear translocation in PDCs, also increased Topflash reporter luciferase activity. By contrast, Wnt16 failed to increase NFAT reporter luciferase activity. Conclusion Together, Wnt16 plays a positive role in regulating PDCs osteogenesis, and Wnt16 may have a potential use in improving bone regeneration.
Collapse
Affiliation(s)
- Ying Jin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyan Sun
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jeremy Mao
- Columbia University, Center for Craniofacial Regeneration, New York, NY, United States of America
| |
Collapse
|
14
|
Nitkin CR, Xia S, Menden H, Yu W, Xiong M, Heruth DP, Ye SQ, Sampath V. FOSL1 is a novel mediator of endotoxin/lipopolysaccharide-induced pulmonary angiogenic signaling. Sci Rep 2020; 10:13143. [PMID: 32753701 PMCID: PMC7403357 DOI: 10.1038/s41598-020-69735-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Systemic sepsis is a known risk factor for bronchopulmonary dysplasia (BPD) in premature infants, a disease characterized by dysregulated angiogenesis and impaired vascular and alveolar development. We have previoulsy reported that systemic endotoxin dysregulates pulmonary angiogenesis resulting in alveolar simplification mimicking BPD in neonatal mice, but the underlying mechanisms remain unclear. We undertook an unbiased discovery approach to identify novel signaling pathways programming sepsis-induced deviant lung angiogenesis. Pulmonary endothelial cells (EC) were isolated for RNA-Seq from newborn C57BL/6 mice treated with intraperitoneal lipopolysaccharide (LPS) to mimic systemic sepsis. LPS significantly differentially-regulated 269 genes after 6 h, and 1,934 genes after 24 h. Using bioinformatics, we linked 6 h genes previously unknown to be modulated by LPS to 24 h genes known to regulate angiogenesis/vasculogenesis to identify pathways programming deviant angiogenesis. An immortalized primary human lung EC (HPMEC-im) line was generated by SV40 transduction to facilitate mechanistic studies. RT-PCR and transcription factor binding analysis identified FOSL1 (FOS like 1) as a transcriptional regulator of LPS-induced downstream angiogenic or vasculogenic genes. Over-expression and silencing studies of FOSL1 in immortalized and primary HPMEC demonstrated that baseline and LPS-induced expression of ADAM8, CXCR2, HPX, LRG1, PROK2, and RNF213 was regulated by FOSL1. FOSL1 silencing impaired LPS-induced in vitro HPMEC angiogenesis. In conclusion, we identified FOSL1 as a novel regulator of sepsis-induced deviant angiogenic signaling in mouse lung EC and human fetal HPMEC.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| | - Sheng Xia
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Heather Menden
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Wei Yu
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Min Xiong
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Unaffiliated, Kansas City, USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Shui Qing Ye
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| |
Collapse
|
15
|
Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, Murakami S, Gault N, Barroca V, Rombeau I, Mauffrey P, Irbah L, Treffeisen E, Franz S, Boissonnas A, Combadière C, Ito M, Plikus MV, Romeo PH. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. SCIENCE ADVANCES 2020; 6:eaay3704. [PMID: 32219160 PMCID: PMC7083618 DOI: 10.1126/sciadv.aay3704] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Collapse
Affiliation(s)
- Denise Gay
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
| | - Giulia Ghinatti
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rubén A. Ferrer
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Chae Ho Lim
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Shohei Murakami
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Nathalie Gault
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| | - Isabelle Rombeau
- Charles River Laboratories, 169 Bois des Oncins, 69210 Saint-Germain-Nuelles, France
| | - Philippe Mauffrey
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Lamya Irbah
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
| | - Elsa Treffeisen
- Department of Pediatrics, Cohen Children's Medical Center Northwell Health, New Hyde Park, NY 11040, USA
| | - Sandra Franz
- Department of Dermatology, University Leipzig Medical Center, Leipzig, Germany
- DFG-German Research Council Transregio 67, Leipzig-Dresden, Germany
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, F-75013, Paris, France
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology and Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, NSF-Simons Center for Multiscale Cell Fate Research, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses cedex, France
- Inserm U1074, 92265 Fontenay-aux-Roses cedex, France
- Université Paris-Diderot, Paris 7, France
- Université Paris-Sud, Paris 11, France
| |
Collapse
|
16
|
Brommage R, Ohlsson C. High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders. Front Endocrinol (Lausanne) 2019; 10:934. [PMID: 32117046 PMCID: PMC7010808 DOI: 10.3389/fendo.2019.00934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene ARSE and small nuclear RNA U4ATAC, a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes (Ccn6, Cyp2r1, Flna, Galns, Gna13, Lemd3, Manba, Mnx1, Nsd1, Plod1, Smarcal1) do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders. SIGNIFICANCE Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Robert Brommage
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Effect of inhibition of CBP-coactivated β-catenin-mediated Wnt signalling in uremic rats with vascular calcifications. PLoS One 2018; 13:e0201936. [PMID: 30075015 PMCID: PMC6075782 DOI: 10.1371/journal.pone.0201936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022] Open
Abstract
Uremic vascular calcification is a regulated cell-mediated process wherein cells in the arterial wall transdifferentiate to actively calcifying cells resulting in a process resembling bone formation. Wnt signalling is established as a major driver for vessel formation and maturation and for embryonic bone formation, and disturbed Wnt signalling might play a role in vascular calcification. ICG-001 is a small molecule Wnt inhibitor that specifically targets the coactivator CREB binding protein (CBP)/β-catenin-mediated signalling. In the present investigation we examined the effect of ICG-001 on vascular calcification in uremic rats. Uremic vascular calcification was induced in adult male rats by 5/6-nephrectomy, high phosphate diet and alfacalcidol. The presence of uremic vascular calcification in the aorta was associated with induction of gene expression of the Wnt target gene and marker of proliferation, cyclinD1; the mediator of canonical Wnt signalling, β-catenin and the matricellular proteins, fibronectin and periostin. Furthermore, genes from fibrosis-related pathways, TGF-β and activin A, as well as factors related to epithelial-mesenchymal transition, snail1 and vimentin were induced. ICG-001 treatment had significant effects on gene expression in kidney and aorta from healthy rats. These effects were however limited in uremic rats, and treatment with ICG-001 did not reduce the Ca-content of the uremic vasculature.
Collapse
|