1
|
Wang R, Wu M, Zhang X, Jiang T, Wei Z. Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar. THE PLANT GENOME 2024; 17:e20446. [PMID: 38528365 DOI: 10.1002/tpg2.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meixuan Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhigang Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
| |
Collapse
|
2
|
Božić M, Ignjatović Micić D, Delić N, Nikolić A. Maize miRNAs and their putative target genes involved in chilling stress response in 5-day old seedlings. BMC Genomics 2024; 25:479. [PMID: 38750515 PMCID: PMC11094857 DOI: 10.1186/s12864-024-10403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia.
| | - Nenad Delić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
3
|
Aydinoglu F, Kahriman TY, Balci H. Seed bio-priming enhanced salt stress tolerance of maize ( Zea mays L.) seedlings by regulating the antioxidant system and miRNA expression. 3 Biotech 2023; 13:378. [PMID: 37900268 PMCID: PMC10600073 DOI: 10.1007/s13205-023-03802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Maize (Zea mays) is moderately sensitive to salt stress. Therefore, increasing salinity in soil causes the arrestment of physiological processes and retention of growth and development, consequently leading to yield loss. Although many strategies have been launched to improve salt stress tolerance, plant growth-promoting rhizobacteria (PGPR) are considered the most promising approach due to being more environmentally friendly and agronomically sustainable than chemicals. Therefore, this study aims to investigate the potential of Bacillus spp. and the role of microRNA-mediated genetic regulation in maize subjected to seed bio-priming application to mitigate salt stress effects. To this end, maize seeds were bio-primed with the vegetative form of B. pumilus, B. licheniformis, and B. coagulans both individually or combined, subsequently treated to NaCl, and the seedlings were screened morphologically, physiologically, and transcriptionally. The study revealed that seed bio-priming with B. licheniformis reduced the stress effects of maize seedlings by increasing catalase (CAT) and ascorbate peroxidase (APX) activities by 2.5- and 3-fold, respectively, tolerating the decrease in chlorophyll content (CC), upregulating miR160d expression which led to a 36% increase in root fresh weight (RFW) and a 39% increase in shoot fresh weight (SFW). In conclusion, Bacillus spp. successfully alleviated salt stress effects on maize by modulating antioxidant enzymes and miRNA expression.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| | - Taha Yunus Kahriman
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| | - Huseyin Balci
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
4
|
Aydinoglu F, Kuloglu A. Nicotiana benthamiana as a model plant host for Fusarium verticillioides to investigate RNA interference, cross-kingdom RNA exchange, and competitive endogenous RNA (ceRNA) network. Mol Biol Rep 2023; 50:8061-8072. [PMID: 37540455 DOI: 10.1007/s11033-023-08698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Fusarium verticillioides is among the most devastating fungal pathogen of cereals. Therefore, it is crucial to employ effective and long-term strategies for managing F. verticillioides for sustainable agriculture. RNA interference (RNAi) being a natural defense mechanism of plants via regulation of gene expression, has emerged as a promising tool for eradicating pathogens. RNAi also operates between the host and pathogen through RNA exchange. RNAi interacts with competitive endogenous RNAs (ceRNAs) including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA. Due to the lack of an elaborate model to investigate all these mechanisms, this study aimed to establish a Nicotiana benthamiana (Nb)-F. verticillioides (Fv) phyto-pathosystem as an experimental model. METHODS AND RESULTS Nb seedlings were inoculated with Fv, and the pathogenicity was monitored morphologically, microscopically, biochemically, and transcriptionally. To observe the role of RNAi and RNA-exchange in pathogenicity, Nb-miR172 and Nb-miR399 targeting Nb-lncRNA-IPS (Induced by Phosphate Starvation1) and Nb-AP2 (Apetala2) and Nb-PHO2 (phosphate over-accumulator) ceRNA network and Fv-V-ATPase (Vesicle-fusing ATPase) targeted by Nb-miR172 were investigated. As a result, epidermal cell density, leaf area, petiole length, and chlorophyll content were reduced while the density of stomata and trichome and phenolic content and the activity of ascorbate peroxidase (APX) and glutathione reductase (GR) were increased in response to Fv infection in Nb. The expression of AP2 and PHO2 were downregulated against Fv but no significant changes were detected in IPS, miR172, and miR399 expression. CONCLUSION These findings suggested the Fv-Nb phyto-pathosystem as a useful experimental model to reveal genetic regulations.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| | - Aslihan Kuloglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
5
|
Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. Int J Mol Sci 2022; 23:ijms23137296. [PMID: 35806310 PMCID: PMC9266715 DOI: 10.3390/ijms23137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and development at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop. However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study, we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret during inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during ray floret growth, and 607 differentially expressed target genes of these differentially expressed miRNAs were identified using psRNATarget. We performed a comprehensive analysis of the expression profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156, ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs were determined using 5′-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and anthocyanin accumulation in gerbera.
Collapse
|
6
|
Luo X, Luo S, Fu Y, Kong C, Wang K, Sun D, Li M, Yan Z, Shi Q, Zhang Y. Genome-Wide Identification and Comparative Profiling of MicroRNAs Reveal Flavonoid Biosynthesis in Two Contrasting Flower Color Cultivars of Tree Peony. FRONTIERS IN PLANT SCIENCE 2022; 12:797799. [PMID: 35058956 PMCID: PMC8763678 DOI: 10.3389/fpls.2021.797799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 05/08/2023]
Abstract
MicroRNA (miRNA)-mediated gene regulation is involved in various physiological processes in plants. Flower color is one of the vital ornamental traits of tree peony (Paeonia suffruticosa Andr.). However, the yellow-flowered tree peony cultivars are particularly rare. To elucidate the miRNA-mediated gene regulatory mechanism underlying yellow pigmentation in tree peony, we combined pigment assessment, miRNA identification, expression analysis, and gene functional verification in two contrasting flower color cultivars "High Noon" and "Roufurong." Flavones/flavonols and anthocyanins were found to be the main contributors to the coloration of "High Noon" and "Roufurong" petals, respectively. Subsequently, miRNA analysis based on available genome data identified 9 differentially expressed miRNAs and 12 relevant target genes implicated in flavonoid biosynthesis. Their dynamic expression patterns determined the key role of mdm-miR156b-PsSPL2 module in yellow pigmentation of tree peony flowers. The sequence analysis and subcellular localization validated that PsSPL2 might function as a nuclear-localized transcription factor. Overexpression of PsSPL2 in tobacco resulted in a decrease of anthocyanin content and down-regulation of NtF3'H and NtDFR transcripts. PsSPL2-silenced petals exhibited lighter yellow color, and the contents of THC, Ap, and Ch decreased significantly. Meanwhile, expression levels of PsCHS, PsCHI, and PsF3H were significantly decreased in the petals with PsSPL2 silencing, while those of PsF3'H and PsDFR were remarkably increased. This study offers a novel insight into yellow pigmentation-related miRNA regulation network in tree peony, and further provides the valuable information on physiological changes during yellow coloring process of tree peony.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Chen Kong
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Kai Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Mengchen Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Zhenguo Yan
- Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Hou G, Dong Y, Zhu F, Zhao Q, Li T, Dou D, Ma X, Wu L, Ku L, Chen Y. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis. BMC PLANT BIOLOGY 2020; 20:541. [PMID: 33256592 PMCID: PMC7708177 DOI: 10.1186/s12870-020-02751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zhengdan 958 (Zheng 58 × Chang 7-2), a commercial hybrid that is produced in a large area in China, is the result of the successful use of the heterotic pattern of Reid × Tang-SPT. The jointing stage of maize is the key period from vegetative to reproductive growth, which determines development at later stages and heterosis to a certain degree. MicroRNAs (miRNAs) play vital roles in the regulation of plant development, but how they function in the sixth leaf at the six-leaf (V6) stage to influence jointing stage heterosis is still unclear. RESULT Our objective was to study miRNAs in four hybrid combinations developed in accordance with the Reid × Tang-SPT pattern, Zhengdan 958, Anyu 5 (Ye 478 × Chang 7-2), Ye 478 × Huangzaosi, Zheng 58 × Huangzaosi, and their parental inbred lines to explore the mechanism related to heterosis. A total of 234 miRNAs were identified in the sixth leaf at the V6 stage, and 85 miRNAs were differentially expressed between the hybrid combinations and their parental inbred lines. Most of the differentially expressed miRNAs were non-additively expressed, which indicates that miRNAs may participate in heterosis at the jointing stage. miR164, miR1432 and miR528 families were repressed in the four hybrid combinations, and some miRNAs, such as miR156, miR399, and miR395 families, exhibited different expression trends in different hybrid combinations, which may result in varying effects on the heterosis regulatory mechanism. CONCLUSIONS The potential targets of the identified miRNAs are related to photosynthesis, the response to plant hormones, and nutrient use. Different hybrid combinations employ different mature miRNAs of the same miRNA family and exhibit different expression trends that may result in enhanced or repressed gene expression to regulate heterosis. Taken together, our results reveal a miRNA-mediated network that plays a key role in jointing stage heterosis via posttranscriptional regulation.
Collapse
Affiliation(s)
- Gege Hou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yahui Dong
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Fangfang Zhu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qiannan Zhao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Tianyi Li
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Dandan Dou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xingli Ma
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liancheng Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lixia Ku
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yanhui Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
8
|
Inoculation of maize seeds with Pseudomonas putida leads to enhanced seedling growth in combination with modified regulation of miRNAs and antioxidant enzymes. Symbiosis 2020. [DOI: 10.1007/s13199-020-00703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Jiang S, Zhang H, Ni P, Yu S, Dong H, Zhang A, Cao H, Zhang L, Ruan Y, Cui Z. Genome-Wide Association Study Dissects the Genetic Architecture of Maize Husk Tightness. FRONTIERS IN PLANT SCIENCE 2020; 11:861. [PMID: 32695127 PMCID: PMC7338587 DOI: 10.3389/fpls.2020.00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/27/2020] [Indexed: 06/01/2023]
Abstract
The husk is a leafy outer tissue that encloses a maize ear. Previously, we identified the optimum husk structure by measuring the husk length, husk layer number, husk thickness and husk width. Husk tightness (HTI) is a combined trait based on the above four husk measurements. Unveiling the genetic basis of HTI will aid in guiding the genetic improvement of maize for mechanical harvesting and for protecting the ear from pest damage and pathogen infection. Here, we used a maize associate population of 508 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic architecture of HTI. Evaluating the phenotypic diversity in three different environments showed that HTI exhibited broad natural variations and a moderate heritability level of 0.41. A diversity analysis indicated that the inbred lines having a temperate background were more loosely related than those having a tropical or subtropical background. HTI showed significant negative correlations with husk thickness and width, which indicates that thicker and wider husks wrapped the ear tighter than thinner and slimmer husks. Combining husk traits with ∼1.25 million single nucleotide polymorphisms in a genome-wide association study revealed 27 variants that were significantly associated with HTI above the threshold of P < 7.26 × 10-6. We found 27 candidate genes for HTI that may participate in (1) husk senescence involving lipid peroxidation (GRMZM2G017616) and programmed cell death (GRMZM2G168898 and GRMZM2G035045); (2) husk morphogenesis involving cell division (GRMZM5G869246) and cell wall architecture (GRMZM2G319798); and (3) cell signal transduction involving protein phosphorylation (GRMZM2G149277 and GRMZM2G004207) and the ABSISIC ACID INSENSITIVE3/VIVIPAROUS1 transcription factor (GRMZM2G088427). These results provide useful information for understanding the genetic basis of husk development. Further studies of identified candidate genes will help elucidate the molecular pathways that regulate HTI in maize.
Collapse
Affiliation(s)
- Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Haibo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Pengzun Ni
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Haixiao Dong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Lijun Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, henyang, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, China
| |
Collapse
|
10
|
Yan G, Zhang J, Jiang M, Gao X, Yang H, Li L. Identification of Known and Novel MicroRNAs in Raspberry Organs Through High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:728. [PMID: 32582255 PMCID: PMC7284492 DOI: 10.3389/fpls.2020.00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in plants by negatively affecting gene expression. Studies on the identification of miRNAs and their functions in various plant species and organs have significantly contributed to plant development research. In the current study, we utilized high-throughput sequencing to detect the miRNAs in the root, stem, and leaf tissues of raspberry (Rubus idaeus). A total of more than 35 million small RNA reads ranging in size from 18 to 35 nucleotides were obtained, with 147 known miRNAs and 542 novel miRNAs identified among the three organs. Sequence verification and the relative expression profiles of the six known miRNAs were investigated by stem-loop quantitative real-time PCR. Furthermore, the potential target genes of the known and novel miRNAs were predicted and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Enrichment analysis of the GO-associated biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Moreover, the miRNA target prediction revealed that most of the targets predicted as transcription factor-coding genes are involved in cellular and metabolic processes. This report is the first to identify miRNAs in raspberry. The detected miRNAs were analyzed by cluster analysis according to their expression, which revealed that these conservative miRNAs are necessary for plant functioning. The results add novel miRNAs to the raspberry transcriptome, providing a useful resource for the further elucidation of the functional roles of miRNAs in raspberry growth and development.
Collapse
Affiliation(s)
- Gengxuan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xince Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
| |
Collapse
|
11
|
Ma J, Zhao P, Liu S, Yang Q, Guo H. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants. Int J Mol Sci 2020; 21:E1971. [PMID: 32183075 PMCID: PMC7139601 DOI: 10.3390/ijms21061971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Seed plants usually undergo various developmental phase transitions throughout their lifespan, mainly including juvenile-to-adult and vegetative-to-reproductive transitions, as well as developmental transitions within organ/tissue formation. MicroRNAs (miRNAs), as a class of small endogenous non-coding RNAs, are involved in the developmental phase transitions in plants by negatively regulating the expression of their target genes at the post-transcriptional level. In recent years, cumulative evidence has revealed that five miRNAs, miR156, miR159, miR166, miR172, and miR396, are key regulators of developmental phase transitions in plants. In this review, the advanced progress of the five miRNAs and their targets in regulating plant developmental transitions, especially in storage organ formation, are summarized and discussed, combining our own findings with the literature. In general, the functions of the five miRNAs and their targets are relatively conserved, but their functional divergences also emerge to some extent. In addition, potential research directions of miRNAs in regulating plant developmental phase transitions are prospected.
Collapse
Affiliation(s)
- Jingyi Ma
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Pan Zhao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qi Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| |
Collapse
|
12
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 DOI: 10.21203/rs.2.9777/v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. RESULTS A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. CONCLUSION The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
13
|
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, Wang A, He L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020; 21:117. [PMID: 32013881 PMCID: PMC6998100 DOI: 10.1186/s12864-020-6492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background Yam tuber is a storage organ, derived from the modified stem. Tuber expansion is a complex process, and depends on the expressions of genes that can be influenced by environmental and endogenous factors. However, little is known about the regulatory mechanism of tuber expansion. In order to identify the genes and miRNAs involved in tuber expansion, we examined the mRNAs and small RNAs in Dioscorea opposita (Chinese yam) cv. Guihuai 16 tuber during its initiation and expansion stages. Results A total of 14,238 differentially expressed genes in yam tuber at its expansion stage were identified by using RNA sequencing technology. Among them, 5723 genes were up-regulated, and 8515 genes were down-regulated. Functional analysis revealed the coordination of tuber plant involved in processes of cell events, metabolism, biosynthesis, and signal transduction pathways at transcriptional level, suggesting that these differentially expressed genes are somehow involved in response to tuber expansion, including CDPK, CaM, CDL, SAUR, DELLA, SuSy, and expansin. In addition, 541 transcription factor genes showed differential expression during the expansion stage at transcriptional level. MADS, bHLH, and GRAS were involved in cell differentiation, division, and expansion, which may relate to tuber expansion. Noteworthy, data analysis revealed that 22 known tuber miRNAs belong to 10 miRNA families, and 50 novel miRNAs were identified. The integrated analysis of miRNA-mRNA showed that 4 known miRNAs and 11 genes formed 14 miRNA-target mRNA pairs were co-expressed in expansion stage. miRNA160, miRNA396, miRNA535 and miRNA5021 may be involved in complex network to regulate cell division and differentiation in yam during its expansion stage. Conclusion The mRNA and miRNA datasets presented here identified a subset of candidate genes and miRNAs that are putatively associated with tuber expansion in yam, a hypothetical model of genetic regulatory network associated with tuber expansion in yam was put forward, which may provide a foundation for molecular regulatory mechanism researching on tuber expansion in Dioscorea species.
Collapse
Affiliation(s)
- Yunyi Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Saba Hameed
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
14
|
Aydinoglu F. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. PLANTA 2020; 251:38. [PMID: 31907623 DOI: 10.1007/s00425-019-03331-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION: miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 °C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
15
|
Marakli S. In silico determination of transposon-derived miRNAs and targets in Aegilops species. J Biomol Struct Dyn 2019; 38:3098-3109. [PMID: 31402758 DOI: 10.1080/07391102.2019.1654409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transposable elements (TEs) are found almost in all living organism, shaping organisms' genomes. miRNAs are noncoding RNA types which are especially important in gene expression regulations. Many previously determined plant miRNAs are identical/homologous to transposons (TE-MIR). The aim of this study was computational characterization of novel TE-related miRNAs and their targets in Aegilops genome by using stringent criteria. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed by BLAST2GO. Seventeen novel TE-related miRNAs in Aegilops genome were identified for the first time. GO analyses indicated that 40 targets played different roles in biological processes, cellular components and molecular functions. Moreover, these genes were involved in 10 metabolic pathways such as purine metabolism, nitrogen metabolism, oxidative phosphorylation, etc. as a result of KEGG analyses. Identification of miRNAs and their targets are significant to understand miRNA-TEs relationships and even how TEs affect plant growth and development. Obtaining results of this study are expected to provide possible new insight into Aegilops and its related species, wheat, with respect to miRNAs evolution and domestication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevgi Marakli
- Department of Medical Services and Techniques, Amasya University, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya, Turkey.,Amasya University, Central Research Laboratory, Amasya, Turkey
| |
Collapse
|
16
|
Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS One 2019; 14:e0219176. [PMID: 31276526 PMCID: PMC6611575 DOI: 10.1371/journal.pone.0219176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Drought has become one of the most serious abiotic stresses influencing crop production worldwide. Understanding the molecular regulatory networks underlying drought adaption and tolerance in crops is of great importance for future breeding. microRNAs (miRNAs), as important components of post-transcriptional regulation, play crucial roles in drought response and adaptation in plants. Here, we report a miRNome analysis of two maize inbred lines with contrasting levels of drought tolerance under soil drought in the field. Differential expression analysis showed 11 and 34 miRNAs were uniquely responded to drought in H082183 (drought tolerant) and Lv28 (drought sensitive), respectively, in leaves. In roots, 19 and 23 miRNAs uniquely responded to drought in H082183 and Lv28, respectively. Expression analysis of these drought-responsive miRNA-mRNA modules revealed miR164-MYB, miR164-NAC, miR159-MYB, miR156-SPL and miR160-ARF showed a negative regulatory relationship. Further analysis showed that the miR164-MYB and miR164-NAC modules in the tolerant line modulated the stress response in an ABA (abscisic acid)-dependent manner, while the miR156-SPL and miR160-ARF modules in the sensitive line participated in the inhibition of metabolism in drought-exposed leaves. Together, our results provide new insight into not only drought-tolerance-related miRNA regulation networks in maize but also key miRNAs for further characterization and improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|