1
|
Afonso J, Barbosa-Matos C, Silvestre R, Pereira-Vieira J, Gonçalves SM, Mendes-Alves C, Parpot P, Pinto J, Carapito Â, Guedes de Pinho P, Santos L, Longatto-Filho A, Baltazar F. Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect. Cancers (Basel) 2024; 16:1418. [PMID: 38611096 PMCID: PMC11010907 DOI: 10.3390/cancers16071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Samuel Martins Gonçalves
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Camille Mendes-Alves
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
| | - Pier Parpot
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Carapito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt SLiM ligand mimic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. Infect Immun 2023; 91:e0008523. [PMID: 37530530 PMCID: PMC10501218 DOI: 10.1128/iai.00085-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/03/2023] [Indexed: 08/03/2023] Open
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt short linear motif ligand mimetic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531456. [PMID: 36945589 PMCID: PMC10028901 DOI: 10.1101/2023.03.06.531456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120 and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors (Yap and TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, TRP120 Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased BCL-xL and decreased Bax levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in levels of GLUT1 and BCL-xL, and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimetic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction. Int J Mol Sci 2023; 24:ijms24032197. [PMID: 36768527 PMCID: PMC9917057 DOI: 10.3390/ijms24032197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.
Collapse
Affiliation(s)
- Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| |
Collapse
|
7
|
Desai P, Awatiger MM, Mane DR. Evaluation of Immunoexpression of AJUBA Protein in Normal Oral Mucosa and Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2023; 31:1-8. [PMID: 36222508 DOI: 10.1097/pai.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
AJUBA is multifunctional scaffold protein which belongs to Zyxin family of proteins. It is known to have dual role in cancer as a tumor promoter and tumor suppressor. AJUBA has a key role in systemic malignancies like esophageal squamous cell carcinoma, colorectal cancer, cervical, breast, prostate cancer, etc. But there is very sparse literature available regarding its expression profile in oral squamous cell carcinoma (OSCC) and moreover its expression has not been observed in normal oral mucosa (NOM). Thus, the aim of this research is to explore the expression profile of AJUBA by immunohistochemical method in NOM and OSCC. Furthermore, we also evaluated the association of AJUBA expression with clinicopathologic parameters. A total of 84 samples of formalin fixed paraffin embedded tissue blocks comprising of 42 cases each of NOM and OSCC were subjected to detect immunoexpression of AJUBA. We found enhanced intense immune-expression of AJUBA in OSCC cases than compared with NOM and found to be statistically significant. The parameters specific to histologic tumor grade and inflammatory response in OSCC also found to have statistically significant with AJUBA expression. Our study is first of its kind to reveal AJUBA expression in basal and suprabasal layer of NOM suggestive of its definitive role in differentiation and stratification process. We also observed its intense expression in peripheral cell of tumor islands of OSCC cases, which can suggest its possible role in tumor growth and progression.
Collapse
Affiliation(s)
- Priyanka Desai
- Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | | |
Collapse
|
8
|
Kirichenko E, Irvine KD. AJUBA and WTIP can compete with LIMD1 for junctional localization and LATS regulation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000666. [PMID: 36439396 PMCID: PMC9685415 DOI: 10.17912/micropub.biology.000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 01/25/2023]
Abstract
Each of the three mammalian Ajuba family proteins, AJUBA, LIMD1 and WTIP, exhibit tension-dependent localization to adherens junctions, and can associate with Lats kinases. However, only LIMD1 has been directly demonstrated to directly regulate Lats activity in vivo. To assess the relationship of LIMD1 to AJUBA and WTIP, and the potential contributions of AJUBA and WTIP to Lats regulation, we examined the consequences of over-expressing AJUBA and WTIP in MCF10A cells. Over-expression of either AJUBA or WTIP reduced junctional localization of LIMD1, implying that these proteins can compete for binding to adherens junctions. This over-expression also reduced junctional localization of LATS1, implying that AJUBA or WTIP are unable to efficiently recruit Lats kinases to adherens junctions. This over-expression was also associated with increased YAP1 phosphorylation and decreased YAP1 nuclear localization, consistent with increased Lats kinase activity. These observations indicate that AJUBA and WTIP compete with LIMD1 for association with adherens junctions but have activities distinct from LIMD1 in Hippo pathway regulation. They further suggest that the ability of Ajuba family proteins to associate with Lats kinases in solution is not sufficient to enable regulation in vivo, and that tumor suppressor activities of AJUBA and WTIP could stem in part from competition with LIMD1 for regulation of Lats kinases at cell junctions.
Collapse
Affiliation(s)
- Elmira Kirichenko
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghusen Rd, Piscataway NJ 08854 USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghusen Rd, Piscataway NJ 08854 USA
,
Correspondence to: Kenneth D Irvine (
)
| |
Collapse
|
9
|
Liu C, Li S, Zhang X, Jin C, Zhao B, Li L, Miao QR, Jin Y, Fan Z. Nogo-B receptor increases glycolysis and the paclitaxel resistance of estrogen receptor-positive breast cancer via the HIF-1α-dependent pathway. Cancer Gene Ther 2022; 30:647-658. [PMID: 36241702 DOI: 10.1038/s41417-022-00542-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy can improve the prognosis and overall survival of breast cancer patients, but chemoresistance continues a major problem in clinical. Most breast cancer is estrogen receptor (ER) positive but responds less to neoadjuvant or adjuvant chemotherapy than ER-negative breast cancer. The Nogo-B receptor (NgBR) increases the chemoresistance of ER-positive breast cancer by facilitating oncogene signaling pathways. Here, we further investigated the potential role of NgBR as a novel target to overcome glycolysis-dependent paclitaxel resistance in ER-positive breast cancer. NgBR knockdown inhibited glycolysis and promoted paclitaxel-induced apoptosis by attenuating HIF-1α expression in ER-positive breast cancer cells via NgBR-mediated estrogen receptor alpha (ERα)/hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-kappa B subunit (NF-κB)/HIF-1α signaling pathways. A ChIP assay further confirmed that NgBR overexpression not only facilitates ERα binding to HIF-1α and GLUT1 genes but also promotes HIF-1α binding to GLUT1, HK2, and LDHA genes, which further promotes glycolysis and induces paclitaxel resistance. In conclusion, our study suggests that NgBR expression is essential for maintaining the metabolism and paclitaxel resistance of ER-positive breast cancer, and the NgBR can be a new therapeutic target for improving chemoresistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxiao Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Institute Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute, Liaoning, China
| | - Liying Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Robert Miao
- Department of Foundations of Medicine, NYU Long Island School of Medicine, New York, NY, USA.
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Song N, Liu J, Zhang K, Yang J, Cui K, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Su W, Wang H. The LIM Protein AJUBA is a Potential Oncogenic Target and Prognostic Marker in Human Cancer via Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:921897. [PMID: 35898403 PMCID: PMC9309301 DOI: 10.3389/fcell.2022.921897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: The LIM (Lin-11, Isl1, MEC-3) domain protein AJUBA is involved in multiple biological functions, and its aberrant expression is related to the occurrence and progression of various cancers. However, there are no analytical studies on AJUBA in pan-cancer. Methods: We performed a comprehensive pan-cancer analysis and explored the potential oncogenic roles of AJUBA, including gene expression, genetic mutation, protein phosphorylation, clinical diagnostic biomarker, prognosis, and AJUBA-related immune infiltration based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. Results: The results revealed that the expression of AJUBA highly correlated with poor clinical outcomes in patients with different types of cancer. Meanwhile, AJUBA expression was positively correlated with cancer-associated fibroblasts in many human cancers, such as breast invasive carcinoma, colon adenocarcinoma, brain lower-grade glioma, lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that AJUBA is mainly involved in protein serine/threonine kinase activity, cell–cell junction, covalent chromatin modification, and Hippo signaling pathway. Conclusion: The pan-cancer study reveals the oncogenic roles of AJUBA and provides a comprehensive understanding of the molecular biological genetic information of AJUBA in various tumors.
Collapse
Affiliation(s)
- Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haijun Wang,
| |
Collapse
|
11
|
Li Y, Yang S, Liu Y, Yang S. Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (Beijing) 2022; 3:e131. [PMID: 35615117 PMCID: PMC9026232 DOI: 10.1002/mco2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism reprogramming is a critical factor in the progression of multiple cancers and is directly regulated by many tumor suppressors. However, how glucose metabolism regulates osteosarcoma development and progression is largely unknown. Cathepsin K (Ctsk) has been reported to express in chondroprogenitor cells and stem cells besides osteoclasts. Moreover, mutations in the tumor suppressors transformation-related protein 53 (Trp53) and retinoblastoma protein (Rb1) are evident in approximately 50%-70% of human osteosarcoma. To understand how deletion of Trp53 and Rb1 in Ctsk-expressing cells drives tumorigenesis, we generated the Ctsk-Cre;Trp53f/f/Rb1f/f mouse model. Our data revealed that those mice developed osteosarcoma without formation of tumor in osteoclast lineage. The level of cortical bone destruction was gradually increased in parallel to the osteosarcoma progression rate. Through mechanistic studies, we found that loss of Trp53/Rb1 in Ctsk-expressing cells significantly elevated Yes-associated protein (YAP) expression and activity. YAP/TEAD1 complex binds to the glucose transporter 1 (Glut1) promoter to upregulate Glut1 expression. Upregulated Glut1 expression led to overactive glucose metabolism, increasing osteosarcoma progression. Ablation of YAP signaling inhibited energy metabolism and delayed osteosarcoma progression in Ctsk-Cre;Trp53f/f/Rb1f/f mice. Collectively, these findings provide proof of principle that inhibition of YAP activity may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shuting Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yang Liu
- College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina
| | - Shuying Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Innovation & Precision DentistrySchool of Dental MedicineSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Penn Center for Musculoskeletal DisordersSchool of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Ajuba Overexpression Promotes Breast Cancer Chemoresistance and Glucose Uptake through TAZ-GLUT3/Survivin Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3321409. [PMID: 35178446 PMCID: PMC8844350 DOI: 10.1155/2022/3321409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
The LIM protein Ajuba has been implicated in the development of human cancers. To date, its expression pattern and biological significance in breast cancers (BC) have not been fully investigated. In the current study, we examined Ajuba protein levels in 93 invasive ductal carcinoma specimens by immunohistochemistry. The Ajuba expression level was elevated in breast cancer tissue compared with normal tissue. Ajuba overexpression is correlated with advanced tumor-node-metastasis (TNM) stage, positive node status, and adverse patient outcomes. The Ajuba protein level was also higher in BC cell lines compared to normal breast epithelial cell line MCF-10A. Ectopically expressed Ajuba in MCF-7 cells stimulated in vitro and in vivo cell growth, invasion, cell cycle progression, and decreased paclitaxel-induced apoptosis. RNA-sequencing (RNA-seq) followed by gene set enrichment analysis (GSEA) analysis showed that Ajuba overexpression regulated the Hippo signaling pathway. Ajuba overexpression also increased glucose uptake and increased expression of TAZ, GLUT3, and Survivin. TAZ knockdown abolished the role of Ajuba on GLUT3 and Survivin induction. The ChIP assay showed that TEAD4, a major TAZ binding transcription factor, could bind to the GLUT3 and Survivin promoter regions. In conclusion, our data demonstrated that elevated Ajuba expression is correlated with poor BC prognosis and regulated malignant behavior through TAZ-GLUT3/Survivin signaling in BC cells.
Collapse
|
14
|
A Critical YAP in Malignancy of HCC Is Regulated by Evodiamine. Int J Mol Sci 2022; 23:ijms23031855. [PMID: 35163776 PMCID: PMC8837083 DOI: 10.3390/ijms23031855] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Liver cancer has relatively few early symptoms and is usually diagnosed in the advanced stage. Sorafenib is the only first-line anticancer drug approved by the Food and Drug Administration (FDA) for advanced HCC; however, its use is limited due to resistance. Therefore, the development of new drugs is essential to achieving customized treatment. Many studies have suggested that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) is associated with metastasis and cancer formation and progression in various cancers. In the present study, YAP was overexpressed in various patient-derived hepatocarcinoma (HCC) tissues. In addition, this study examined whether evodiamine (which has anticancer effects) can inhibit YAP and, if so, modulate HCC. Evodiamine significantly reduced both the YAP level and cell growth of HCC in a dose-dependent manner. Biochemical analysis indicated mitochondria dysfunction-mediated apoptosis to be the cause of the reduction in HCC cell growth by evodiamine. YAP was overexpressed in metastatic HCC tissues as well when compared to primary HCC tissues. Migration and invasion analysis showed that evodiamine has anti-metastatic ability on Hep3B and Huh-7 cells and reduces the level of vimentin, an EMT marker. In conclusion, YAP is a critical target in HCC therapy, and evodiamine can be an effective HCC anticancer drug by reducing the YAP level.
Collapse
|
15
|
Tan S, Fu L, Dong Q. AATF is Overexpressed in Human Bladder Cancer and Regulates Chemo-Sensitivity Through Survivin. Onco Targets Ther 2022; 14:5493-5505. [PMID: 35002255 PMCID: PMC8721289 DOI: 10.2147/ott.s319734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Dysregulation of apoptosis antagonizing transcription factor (AATF) has been reported to be closely associated with human cancers. However, its involvement in human bladder cancer (BC) remains unexplored. This study aimed to investigate the clinical significance and biological roles of AATF in human bladder cancers. Methods AATF protein expression was examined in 107 cases of bladder cancer tissues using immunohistochemistry. AATF plasmid transfection and small interfering RNA (siRNA) knockdown were performed in T24 and 5637 cell lines. CCK-8, colony formation, annexin V/PI, JC-1 staining, and Western blotting were carried out to investigate the biological roles and underlying mechanisms of AATF in bladder cancer cells. Results Our results showed that AATF expression was upregulated in human bladder cancer specimens and correlated with T stage. Analysis of the Oncomine database showed elevation of AATF mRNA in BC tissues. The Cancer Genome Atlas (TCGA) data suggested that high AATF expression correlated with poor patient survival. Western blotting showed that AATF protein expression was higher in BC cell lines compared to normal bladder transitional epithelial cell line SV-HUC-1. CCK-8 and colony assays showed that ectopic AATF expression upregulated cell growth rate and colony numbers. CCK-8, annexin V/propidium iodide (PI), JC-1 assays and Western blotting showed that AATF overexpression decreased cisplatin sensitivity, downregulated cisplatin-induced apoptosis and upregulated mitochondrial membrane potential, with decreased cytochrome c and cleaved-PARP expression. AATF siRNA knockdown showed the opposite effects. Mechanistically, AATF overexpression upregulated cyclin E and Survivin at both mRNA and protein levels. The decreased cisplatin sensitivity/apoptosis induced by ectopic AATF were reversed after treatment with Survivin inhibitor YM155. Conclusion Our results showed that AATF was overexpressed in human bladder cancers and promoted malignant behavior by regulating cyclin E and Survivin, indicating AATF could serve as a malignant biomarker and potential therapeutic target in BC.
Collapse
Affiliation(s)
- Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
16
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhang Y, Bai X, Zhang Y, Li Y. Daam1 Overexpression Promotes Gastric Cancer Progression and Regulates ERK and AKT Signaling Pathways. Onco Targets Ther 2021; 14:4609-4619. [PMID: 34475767 PMCID: PMC8408046 DOI: 10.2147/ott.s316157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objective The dishevelled-associated activator of morphogenesis 1 (DAAM1) has been reported to be closely associated with human cancers. However, its involvement in human gastric cancer (GC) remains largely unexplored. This study aimed to investigate the clinical significance and biological roles of Daam1 in human GC. Methods Daam1 protein expression was examined in 124 cases of gastric adenocarcinomas using immunohistochemistry. Daam1 plasmid and siRNA transfection were carried out in SGC7901 and AGS cell lines. CCK-8, colony formation, Annexin V/PI, JC-1 staining, and Western blotting were used to explore the biological functions and potential underlying mechanisms of Daam1 in GC cells. Results Our results showed that Daam1 was overexpressed in GC specimens. A high Daam1 level was associated with tumor-node-metastasis (TNM) stage, T status, nodal metastasis, and poor patient survival. Analysis of the Oncomine dataset revealed upregulation of Daam1 mRNA in GC tissues. Western blot showed that Daam1 protein expression was higher in GC cell lines compared to the normal GES-1 cell line. CCK-8 and colony formation assays showed that ectopic Daam1 expression upregulated the cell growth rate and colony number in SGC-7901 cells, while Daam1 siRNA knockdown downregulated the growth rate and colony number in AGS cells. CCK-8 and Annexin V/PI apoptosis assays demonstrated that Daam1 overexpression decreased cisplatin sensitivity and downregulated cisplatin-induced apoptosis. JC1 staining showed that Daam1 overexpression upregulated, while Daam1 depletion downregulated mitochondrial membrane potential. Mechanistically, Daam1 overexpression downregulated p21 and upregulated p-ERK and p-AKT. The increased proliferation rate and decreased cisplatin sensitivity/apoptosis induced by ectopic Daam1 were reversed after treatment with AKT and ERK inhibitors. Conclusion Taken together, our results showed that Daam1 overexpression was associated with poor prognosis and promoted malignant activity via regulation of ERK and AKT pathways in GC cells, indicating Daam1 is a malignant biomarker and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
18
|
Wang H, Wang F, Ouyang W, Jiang X, Wang Y. BCAT1 overexpression regulates proliferation and c‑Myc/GLUT1 signaling in head and neck squamous cell carcinoma. Oncol Rep 2021; 45:52. [PMID: 33760210 PMCID: PMC7962101 DOI: 10.3892/or.2021.8003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Branched chain amino acid transaminase 1 (BCAT1) overexpression has been reported in various cancers; however, at present, its significance and biological role in head and neck squamous cell carcinoma (HNSCC) remain unknown. BCAT1 protein expression was upregulated in 56/106 (52.8%) cases of HNSCC. BCAT1 overexpression was associated with tumor-node-metastasis stage, tumor stage and nodal metastasis. The Cancer Genome Atlas data suggested that high BCAT1 expression was associated with poor patient survival. Oncomine data suggested that BCAT1 expression was increased in HNSCC. Functionally, BCAT1 overexpression promoted cell proliferation, colony formation, invasion and cisplatin resistance in FaDu cells. BCAT1 overexpression also upregulated the mitochondrial membrane potential, and increased ATP production, glucose consumption and glucose uptake. Western blotting demonstrated that BCAT1 overexpression upregulated c-Myc and glucose transporter 1 (GLUT1) protein levels. Depletion of c-Myc using small interfering RNA abolished the influence of BCAT1 on GLUT1. Chromatin immunoprecipitation assays demonstrated that c-Myc has binding sites in the GLUT1 promoter. Collectively, the present findings suggested that BCAT1 is upregulated in human HNSCC and regulates HNSCC cell proliferation, invasion, cisplatin sensitivity and c-Myc/GLUT1 signaling.
Collapse
Affiliation(s)
- Hongming Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fei Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyu Ouyang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Le Y, He Y, Bai M, Wang Y, Wu J, Yu L. Knockout of Ajuba Attenuates the Growth and Migration of Hepatocellular Carcinoma Cells. Cytogenet Genome Res 2021; 160:650-658. [PMID: 33640888 DOI: 10.1159/000512264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Yichen Le
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Meirong Bai
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ying Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxue Wu
- School of Life Sciences, Fudan University, Shanghai, China,
| | - Long Yu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Schleicher K, Schramek D. AJUBA: A regulator of epidermal homeostasis and cancer. Exp Dermatol 2021; 30:546-559. [PMID: 33372298 DOI: 10.1111/exd.14272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The epidermis, outermost layer of the skin, is constantly renewing itself through proliferative and differentiation processes. These processes are vital to maintain proper epidermal integrity during skin development and homeostasis and for preventing skin diseases and cancers. The biological mechanisms that permit this balancing act are vast, where individual pathway regulators are known, but the exact regulatory control and cross-talk between simultaneously turning one biological pathway on and an opposing one off remain elusive. This review explores the diverse roles the scaffolding protein AJUBA plays during epidermal homeostasis and cancer. Initially identified for its role in promoting meiotic progression in oocytes through Grb2 and MAP kinase activity, AJUBA also maintains cytoskeletal tension permitting epidermal tissue development and responds to retinoic acid committing cells to initiate development of surface epidermal layer. AJUBA regulates proliferation of skin stem cells through Hippo and Wnt signalling and encourages mitotic commitment through Aurora-A, Aurora-B and CDK1. In addition, AJUBA also induces epidermal differentiation to maintain appropriate epidermal thickness and barrier function by activating Notch signalling and stabilizing catenins and actin during cellular remodelling. AJUBA also plays an imperative context-dependent tumor-promoting and tumor-suppressive role within epithelial cancers. AJUBA's abundant roles within the epidermis signify its importance as a molecular switchboard, vetting multiple signalling pathways to control epidermal biology.
Collapse
Affiliation(s)
- Krista Schleicher
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
High expression of bone morphogenetic protein 1 (BMP1) is associated with a poor survival rate in human gastric cancer, a dataset approaches. Genomics 2020; 113:1141-1154. [PMID: 33189777 DOI: 10.1016/j.ygeno.2020.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) is a secreted metalloprotease of the astacin M12A family of bone morphogenetic proteins (BMPs). BMP1 activates transforming growth factor-β (TGF-β) and BMP signaling pathways by proteolytic cleavage, which has dual roles in gastrointestinal tumor development and progression.TGF-β promotes invasion and metastasis of gastric cancer (GC) by the help of BMP1, so upregulation of the BMP1 may increase cancer invasiveness in GC. In this study,the transcriptional expression, mutations, survival rate, TFs, miRNAs, gene ontology, and signaling pathways of BMP1 were analyzed by using different web servers. We found higher transcriptional and clinicopathological characteristics expression compared to normal tissues, worsening survival rate in GC. We detected 25 missenses, 15 truncating mutations, 23 TFs, and 8 miRNAs. Finally, we identified and analyzed the co-expressed genes and found that the leukemia inhibitory factor is the most positively correlated gene. The gene ontological features and signaling pathways involved in GC development were evaluated as well. We believe that this study will provide a basis for BMP1 to be a significant biomarker for human GC prognosis.
Collapse
|
22
|
Zhou D, Jiang L, Jin L, Yao Y, Wang P, Zhu X. Glucose Transporter-1 Cooperating with AKT Signaling Promote Gastric Cancer Progression. Cancer Manag Res 2020; 12:4151-4160. [PMID: 32581586 PMCID: PMC7276340 DOI: 10.2147/cmar.s251596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Objective High expression of GLUT1 has been observed in numerous solid cancers, facilitating glucose consumption for supporting tumor cell survival. The altered metabolic activity is regulated by series of signaling pathways, including AKT signaling that acts as a key role in glucose metabolism and shows close correlation with the malignant transformation. In this study, we aimed to elucidate the effect of GLUT1 on gastric cancer (GC) and to explore the relation between GLUT1 and AKT signaling. Materials and Methods GLUT1, p-AKT, and p-S6k1 expression were investigated by immunohistochemistry and semi-quantitative analysis in 57 paired-GC samples. The relationship of GLUT1 with clinical indexes in GC tissues was investigated. The effects of GLUT1 on the prognosis of GC patients and the underlying mechanism involved were studied by subgroup analysis. Results In GC tissues, an obvious increase in GLUT1 expression was observed when compared with that of normal tissues (P<0.001). Advanced clinicopathological factors (tumor size P=0.019, invasion depth P=0.002, lymph node metastasis P<0.001, differentiation P=0.024, neural invasion P=0.003, and TNM staging P=0.001) correlated with high GLUT1 levels. GLUT1 was an independent risk factor resulting in poor prognosis (P=0.002, HR=5.132). GLUT1 increased the activation ratio of p-AKT (P<0.01) and p-S6K1 (P<0.001) in GC. The expression of p-S6K1 and GLUT1 was positively correlated. (P=0.001, R=0.173). The survival probability of GC patients with GLUT1(+)/p-S6K1(+) was worse when compared to that of GLUT1(+)/p-S6K1(-) or GLUT1(-)/p-S6K1(+) (P<0.001). Conclusion High expression of GLUT1 facilitated GC progression, leading to poor prognosis. Overexpression of GLUT1 activated AKT-S6K1 axis, resulting in adverse outcomes of GC. GLUT1 is novel indicator of GC prognosis and GLUT1 targeted metabolic treatment that has potential therapeutic value.
Collapse
Affiliation(s)
- Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lichen Jin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Peijie Wang
- Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Ji X, Guo X, Wang Y, Li X, Li H. Rab18 Regulates Proliferation, Invasion and Cisplatin Sensitivity Through STAT3 Signaling in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:4123-4134. [PMID: 32494165 PMCID: PMC7231766 DOI: 10.2147/ott.s238503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction The clinical significance, biological roles and potential mechanism of Rab18 remain unknown in most human cancers, including head and neck squamous cell carcinoma (HNSCC). Methods We used immunohistochemistry to examine Rab18 protein expression in 112 cases of HNSCC specimens. We overexpressed and knockdown Rab18 in FaDu and Detroit562 cancer cell lines. Biological roles and mechanisms of Rab18 were examined using MTT, colony formation, Matrigel invasion assay, Western blotting, Annexin V and JC1 staining. Results Rab18 was upregulated in 45/112 (40.2%) cases of HNSCC tissues, which correlated with advanced T classification, positive nodal metastasis and tumor node metastasis (TNM) stage. The Oncomine and The Cancer Genome Atlas (TCGA) analyses indicated that Rab18 was elevated in human HNSCC tissues and correlated with poor patient survival. Functionally, Rab18 overexpression increased growth rate, colony numbers, cell cycle progression and invading ability in FaDu cells. Rab18 downregulated cisplatin-induced apoptosis and upregulated the mitochondrial membrane potential (Δψm). Western blot revealed that Rab18 overexpression induced epithelial-to-mesenchymal transition, with downregulation of E-cadherin and upregulation of N-cadherin, Vimentin and Twist. Rab18 overexpression also upregulated Survivin protein and Rab18 knockdown showed the opposite effects on these proteins. Treatment of STAT3 inhibitor, SH-4-54, inhibited cell invasion, increased E-cadherin and downregulated N-cadherin, Twist and Survivin. SH-4-54 also abolished the effects of BCAT1 on these proteins, as well as cell invasion. Conclusion In summary, our data showed that Rab18 was overexpressed in human HNSCC and functioned as an oncoprotein. Rab18 regulated HNSCC cell proliferation, invasion and cisplatin sensitivity through STAT3 signaling in HNSCC.
Collapse
Affiliation(s)
- Xu Ji
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xing Guo
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaotian Li
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Li
- Department of Otolaryngology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Zou R, Xu Y, Feng Y, Shen M, Yuan F, Yuan Y. YAP nuclear‐cytoplasmic translocation is regulated by mechanical signaling, protein modification, and metabolism. Cell Biol Int 2020; 44:1416-1425. [DOI: 10.1002/cbin.11345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rong Zou
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yahui Xu
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan HospitalFudan University 180# Fenglin Road 200032 Shanghai China
| |
Collapse
|
25
|
Ajuba: An emerging signal transducer in oncogenesis. Pharmacol Res 2019; 151:104546. [PMID: 31740385 DOI: 10.1016/j.phrs.2019.104546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
The LIM protein Ajuba contains an unstructured proline/glycine-rich preLIM region in the N terminus and conserved tandem LIM motifs in the C terminus. Additionally, Ajuba contains both nuclear export sequences (NES) and nuclear localization sequences (NLS), which enable Ajuba shuttle between the cytoplasm and the nucleus. Thus, Ajuba can act as a versatile scaffold participating in assembly of variety of protein complexes to execute multiple cellular functions including cell adhesion, motility, mitosis, survival, gene expression, microRNA processing and mechanical force sensing. Numerous studies have demonstrated that Ajuba plays important roles in oncogenesis and progression by regulating major signalling pathways such as Wnt, RAS/ERK, JAK/STAT and Hippo, and by acting as a co-regulator of key transcription factors such as Snail, Sp1 and nuclear hormone receptors. Clinically, Ajuba is highly expressed in various types of tumors and can be a marker for prognosis and diagnosis. In this review, we aim to summarize the up-to-date literatures on the signaling pathways mediated by Ajuba and its associated protein complexes in oncogenesis, and to discuss Ajuba as a potential target for new therapeutics to treat cancers.
Collapse
|
26
|
Song Y, Sun Y, Lei Y, Yang K, Tang R. YAP1 promotes multidrug resistance of small cell lung cancer by CD74-related signaling pathways. Cancer Med 2019; 9:259-268. [PMID: 31692299 PMCID: PMC6943160 DOI: 10.1002/cam4.2668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/12/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our previous research found that YAP1 may have a role in multidrug resistance (MDR) in small cell lung cancer (SCLC). However, its underlying mechanism is unknown. METHODS In this study, we investigated the expression of YAP1 using immunohistochemical staining and assessed the relationship between the expression of YAP1 and overall survival in patients with SCLC. We established H69 stable cell lines that overexpressed constitutively active YAP1 and H446 stable cell lines that dominate negative YAP1. We conducted CCK-8, flow cytometric analysis, and in vivo chemosensitivity experiments to evaluate the function of YAP1 in drug sensitivity apoptosis in vitro and in vivo. RESULTS The results indicated that patients with high YAP1 expression have shorter survival rates and more advanced disease stage than those with low YAP1 expression. YAP1 may induce MDR by inhibiting the apoptosis of SCLC. YAP1 induced MDR when YAP1 was hyperactivated, and drug sensitivity increased when YAP1 was inhibited in vitro and in vivo. CD74 was significantly correlated with YAP1 in SCLC samples. Inhibition of CD74 using ISO-1 increased drug sensitivity significantly. CONCLUSIONS The expression of YAP1 is significantly correlated with overall survival and disease stage in patients with SCLC. YAP1 may play an important role in these patients. We were the first to report that YAP1 can induce MDR in SCLC in vitro and in vivo. CD74 may be involved in YAP1-induced MDR.
Collapse
Affiliation(s)
- Yongchun Song
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yingying Lei
- Department of Oncology, Panyu Maternal and Child Care Service Centre of Guangzhou and Hexian Memorial affiliated hospital of Southern Medical University, Guangzhou, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruixiang Tang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Essential Oil from Pinus Koraiensis Pinecones Inhibits Gastric Cancer Cells via the HIPPO/YAP Signaling Pathway. Molecules 2019; 24:molecules24213851. [PMID: 31731517 PMCID: PMC6864528 DOI: 10.3390/molecules24213851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Pinecone is a traditional folk herb, which has been used in China for many years. In this paper, the essential oil from Pinus koraiensis pinecones (PEO) was obtained by hydrodistillation and 41 compounds were identified by gas chromatography–mass spectrometry (GC-MS), mainly including α-Pinene (40.91%), Limonene (24.82%), and β-Pinene (7.04%). The purpose of this study was to investigate the anti-tumor activity of PEO on MGC-803 cells and its mechanism. Anti-tumor experiments in vitro showed PEO could significantly inhibit the proliferation and migration of MGC-803 cells, and it also could arrest the cell cycle in the G2/M phase, decrease the mitochondrial membrane potential, and induce apoptosis. Finally, the effects of PEO on genes expression on MGC-803 cells were analyzed by RNA sequencing, and results showed that after treatment with PEO, 100 genes were up-regulated, and 57 genes were down-regulated. According to the KEGG pathway and GSEA, FAT4, STK3, LATS2, YAP1, and AJUBA were down-regulated, which were related to HIPPO signaling pathway. Real-time PCR and western blot further confirmed the results of RNA sequencing. These results indicated that PEO may exert anti-tumor activity via the HIPPO/YAP signaling pathway. The anti-tumor mechanism of this oil can be further studied, which is important for the development of anti-tumor drugs.
Collapse
|
28
|
Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3808432. [PMID: 31317026 PMCID: PMC6601494 DOI: 10.1155/2019/3808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
The aberrant expression of Eya2 has been observed in a wide range of cancer types. However, the clinical significance and biological effects of EYA2 in human prostate cancer remain unknown. In this study, we showed that increased levels of Eya2 protein correlated with advanced TNM stage, T stage, and a higher Gleason score. Data from the Cancer Genome Atlas (TCGA) prostate cohort consistently revealed that Eya2 mRNA was positively correlated with a higher Gleason score, higher T stage, and positive nodal metastasis in prostate cancer. Furthermore, data from the Oncomine database showed increased levels of EYA2 mRNA expression in prostate cancer tissues compared with normal tissues. Eya2 protein expression was also higher in prostate cancer cell lines compared with a normal RWPE-1 cell line. We selected LNCaP and PC-3 cell lines for plasmid overexpression and shRNA knockdown. CCK-8, colony formation, and Matrigel invasion assays demonstrated that the overexpression of Eya2 promoted proliferation, colony number, and invasion while Eya2 shRNA inhibited proliferation rate, colony formation, and invasion ability. CCK-8 and Annexin V assays showed that Eya2 reduced sensitivity to docetaxel and docetaxel-induced apoptosis while Eya2 shRNA showed the opposite effects. The overexpression of Eya2 also downregulated the cleavage of caspase3 and PARP while Eya2 depletion upregulated caspase3 and PARP cleavage. Notably, JC-1 staining demonstrated that Eya2 upregulated mitochondrial membrane potential. We further revealed that the overexpression of Eya2 upregulated Bcl-2, matrix metalloproteinase 7 (MMP7), and AKT phosphorylation. Accordingly, data from the TCGA prostate cohort indicated that EYA2 mRNA was positively correlated with the expression of Bcl-2 and MMP7. The inhibition of AKT attenuated EYA2-induced Bcl-2 upregulation. In conclusion, our data demonstrated that Eya2 was upregulated in prostate cancers. EYA2 promotes cell proliferation and invasion as well as cancer progression by regulating docetaxel sensitivity and mitochondrial membrane potential, possibly via the AKT/Bcl-2 axis.
Collapse
|
29
|
Zhang X, Li F, Cui Y, Liu S, Sun H. Mst1 overexpression combined with Yap knockdown augments thyroid carcinoma apoptosis via promoting MIEF1-related mitochondrial fission and activating the JNK pathway. Cancer Cell Int 2019; 19:143. [PMID: 31139020 PMCID: PMC6530088 DOI: 10.1186/s12935-019-0860-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cancer cell viability is strongly modulated by the Hippo pathway, which includes mammalian STE20-like protein kinase 1 (Mst1) and yes-associated protein (Yap). Although the roles of Mst1 and Yap in thyroid carcinoma cell death have been fully addressed, no study has determined whether differential modification of Mst1 and Yap could further suppress thyroid carcinoma progression. The aim of our study was to explore the antiapoptotic effects exerted by combined Mst1 overexpression and Yap knockdown in thyroid carcinoma MDA-T32 cells in vitro. Methods Mst1 adenovirus and Yap shRNA were transfected into MDA-T32 cells to overexpress Mst1 and inhibit Yap, respectively. Cell viability and death were determined via an MTT assay, a TUNEL assay and western blotting. Mitochondrial function, mitochondrial fission and pathway studies were performed via western blotting and immunofluorescence. Results The results of our study showed that combined Mst1 overexpression and Yap knockdown further augmented MDA-T32 cell death by mediating mitochondrial damage. In addition, cancer cell migration and proliferation were suppressed by combined Mst1 overexpression and Yap knockdown. At the molecular level, mitochondrial membrane potential, ATP production, respiratory function, and caspase-9-related apoptosis were activated by combined Mst1 overexpression and Yap knockdown. Further, we found that fatal mitochondrial fission was augmented by combined Mst1 overexpression and Yap knockdown in a manner dependent on the JNK-MIEF1 pathway. Inhibition of JNK-MIEF1 pathway activity abolished the proapoptotic effects exerted by Mst1/Yap on MDA-T32 cells. Conclusions Taken together, our data suggest that Mst1 activation and Yap inhibition coordinate to augment thyroid cancer cell death by controlling the JNK-MIEF1-mitochondria pathway, suggesting that differential regulation of the core Hippo pathway components is potentially a novel therapeutic tool for the treatment of thyroid cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0860-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Yeqing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Shuang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| | - Haichen Sun
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, #45, Chang Chun Street, Beijing, 100053 China
| |
Collapse
|